- 无标题文档
查看论文信息

题名:

 亚稳态铁矿物调控高氨氮低C/N废水自养生物脱氮效果的研究    

作者:

 张晨灿    

学号:

 2022103049    

保密级别:

 保密两年    

语种:

 chi    

学科代码:

 083002    

学科:

 工学 - 环境科学与工程(可授工学、理学、农学学位) - 环境工程    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 南京农业大学    

院系:

 资源与环境科学学院    

专业:

 环境工程    

研究方向:

 水污染控制    

导师姓名:

 周立祥    

导师单位:

  南京农业大学    

完成日期:

 2025-05-01    

答辩日期:

 2025-05-23    

外文题名:

 Autotrophic Nitrogen Removal Performance of High-Ammonia Low C/N Ratio Wastewater Facilitated by a Meta-stable Iron Minerals    

关键词:

 高氨氮 ; 低C/N废水 ; 生物自养脱氮 ; 亚稳态铁矿物 ; 厌氧氨氧化 ; 铁氨氧化    

外文关键词:

 High-ammonia ; Low C/N ratio wastewater ; Autotrophic nitrogen removal ; Metastable iron minerals ; Anammox ; Feammox    

摘要:

含氮污水的深度脱氮是一直是水环境污染治理面临的重要挑战,特别是针对高氨氮低C/N类污水,如厌氧发酵沼液、垃圾渗滤液等。生物脱氮技术因其能耗和运行成本低且无二次污染等显著优势,现已成为应用最广泛的污水脱氮技术。然而在处理高氨氮低C/N废水时,传统的硝化-反硝化生物脱氮技术虽然能实现脱氮,但存在曝气大能耗高和碳源消耗大等问题。厌氧氨氧化(Anammox)是在厌氧条件下以NO2⁻-N作为电子受体直接去除NH4+-N,是一种高效节能的新型生物脱氮技术,在高氨氮低C/N废水处理方面极具应用前景。然而Anammox工艺核心功能菌厌氧氨氧化菌(AnAOB)对环境条件敏感,活性易受到抑制;同时该工艺依赖的NO2⁻-N底物难以稳定供给,且存在NO3⁻-N副产物累积问题,制约了大规模化的推广应用。因此,完善生物脱氮技术意义重大。

鉴于铁矿物中铁元素可以通过多种机制参与和强化生物脱氮效能,并考虑到相比于其他铁矿物,施氏矿物(Sch)和磁性纳米施氏矿物(Fe3O4@Sch)作为亚稳态铁矿物在强化生物脱氮方面可能具有独特优势,有望强化Anammox过程以及诱导AnAOB发生Feammox。但目前关于Sch和Fe3O4@Sch强化生物脱氮,尤其是在强化高氨氮低C/N废水脱氮方面的研究还鲜有报道。为此,本研究在生物脱氮过程中引入亚稳态的Sch及其复合材料,探索其通过强化硝化-反硝化、Anammox及诱导Feammox,实现高氨氮低C/N废水的有效脱氮的可能性。主要结果如下:

(1)提出了Sch强化SBR活性污泥法对餐厨沼液废水(固液分离预处理后)的碳氮协同去除方法。结果表明,添加Sch有效促进了沼液废水中难降解有机物的降解转化,为微生物提供更多可利用的碳源,间接强化了反硝化过程。TN的去除效果提高了23%,实现了高氨氮低C/N废水生物脱氮体系中C、N协同去除。此外,添加Sch处理组中,污泥中微生物EPS含量显著增加,尤其是蛋白质组分,促进了污泥絮体聚集能力,增强了功能微生物的代谢活性。

(2)探究了Fe3O4@Sch对Anammox过程的驯化、启动过程的影响,并优化了Fe3O4@Sch添加量对Anammox体系的脱氮效果。添加Fe3O4@Sch驯化处理组中,尽管Anammox功能微生物丰度未显著增加,但TN去除率提高了16.84%,推测是体系中其他功能菌如OLB14通过提供Anammox反应底物(NO2⁻-N)进而强化了脱氮效果。添加Fe3O4@Sch将Anammox启动期缩短了25%(10 d),并可以促进AnAOB在失活情况下的活性恢复及启动过程。此外,Fe3O4@Sch添加量在0.25~0.5 g/g MLVSS(以Fe计)时,对Anammox体系脱氮的强化效果为优。与对照组相比,TN去除率由64%增加至80%~83%,并以0.5 g/g MLVSS为最优,但Fe3O4@Sch过量也会抑制Anammox。

(3)构建了Fe3O4@Sch调控的Anammox、Feammox及铁自养反硝化(NDFO)耦合脱氮体系,并实现了对高氨氮低C/N废水的高效脱氮。经过长期驯化后,耦合体系对NH4+-N及TN去除能力显著增加,进水NO2⁻-N /NH4+-N比值由1.2降低到1.0后(进水TN浓度为900 mg/L,负荷保持不变),TN去除能达到86%,优于单一Anammox体系(83%);同时改善了Anammox体系NO3⁻-N积累的问题(ΔNO3⁻-N /ΔNH4+-N值从0.26降低至0.17)。耦合体系降低了短程硝化NO2⁻-N供给需求及NO3⁻-N脱除的反硝化碳源消耗,能耗与碳源需求分别降低了10%和28%。运行稳定后,Anammox、Feammox和NDFO的脱氮贡献分别为79.4%、10.7%和9.8%。Brocadia sinica和Brocadia sapporoensis为体系中的主要功能菌,其相对丰度分别从11.43%和4.77%提高到了15.85%和5.69%,其中Brocadia sinica为潜在的Feammox功能菌。

综上,亚稳态的Sch在调控高氨氮低C/N废水生物脱氮方面具有突出优势。本研究通过在异养与自养生物脱氮过程中分别添加Sch和Fe3O4@Sch,对废水中碳氮协同去除均表现显著效果,特别是调控Anammox与Feammox等自养脱氮过程。本研究将为铁矿物调控多途径生物脱氮的协同增效及其在高氨氮低C/N废水的深度处理中提供参考。

外摘要要:

Deep nitrogen removal from nitrogen-containing wastewater has always been a critical challenge in water pollution control, particularly for high-ammonia and low C/N ratio wastewater such as anaerobic fermentation biogas slurry and landfill leachate. Biological nitrogen removal technologies, owing to its advantages of low energy consumption and operational costs, as well as absence of secondary pollution, have become the most widely applied methods. However, when treating high-ammonia and low C/N wastewater, traditional nitrification-denitrification processes, while effective, face issues such as high aeration demand and excessive carbon consumption. Anaerobic ammonium oxidation (Anammox), a novel and energy-efficient biological nitrogen removal technology, directly converts NH4+-N using NO2⁻-N as an electron acceptor under anaerobic conditions, showing great potential for high-ammonia and low C/N wastewater treatment. Nevertheless, the core functional bacteria of Anammox - anaerobic ammonium-oxidizing bacteria (AnAOB) - are environmentally sensitive and prone to activity inhibition. Additionally, the process relies on unstable NO₂⁻-N substrate supply and faces challenges with NO₃⁻-N byproduct accumulation, limiting its large-scale application. Therefore, improving biological nitrogen removal technologies is of great significance.

Considering that iron species in iron minerals can participate in and enhance biological nitrogen removal through multiple mechanisms, and given that compared to other iron minerals, schwertmannite (Sch) and its magnetic nanocomposite (Fe3O4@Sch), as metastable iron minerals, may possess unique advantages in enhancing biological nitrogen removal—potentially strengthening the Anammox process and inducing Feammox in AnAOB—there is currently limited research on Sch and Fe3O4@Sch for enhanced biological nitrogen removal, particularly in the treatment of high-ammonia and low C/N ratio wastewater. Therefore, this study introduces metastable Sch and its composite materials into biological nitrogen removal processes to explore their potential in achieving efficient nitrogen removal from high-ammonia and low C/N ratio wastewater by enhancing nitrification-denitrification, Anammox, and inducing Feammox. The main findings are as follows:

(1) This study proposes a novel approach utilizing Sch to enhance the synergistic removal of carbon and nitrogen in food waste anaerobic digestion effluent (after solid-liquid separation pretreatment) via SBR activated sludge process. The results demonstrate that Sch addition effectively promoted the degradation and transformation of refractory organic matter in the digester effluent, thereby providing additional bioavailable carbon sources for microorganisms and indirectly strengthening the denitrification process. Notably, the total nitrogen (TN) removal efficiency was improved by 23%, achieving coordinated C/N removal in the high-ammonia low C/N ratio wastewater treatment system. Furthermore, in Sch-amended reactors, a significant increase in extracellular polymeric substances (EPS) content was observed, particularly in protein components, which enhanced sludge flocculation capacity and improved the metabolic activity of functional microorganisms.

(2) This study investigated the effects of Fe3O4@Sch on the acclimation and start-up processes of Anammox, while optimizing its dosage for enhanced nitrogen removal. In Fe3O4@Sch-amended systems, although the abundance of Anammox functional microorganisms showed no significant increase, the total nitrogen (TN) removal efficiency improved by 16.84%. This enhancement is presumably attributed to other functional bacteria (e.g., OLB14) that may supply NO2⁻-N as substrates for Anammox reactions. Notably, Fe3O4@Sch addition shortened the Anammox start-up period by 25% (10 days) and facilitated activity recovery of inhibited AnAOB during reactor restart. Optimal Fe3O4@Sch dosage was determined to be 0.25-0.5 g/g MLVSS (Fe basis), under which TN removal efficiency increased from 64% (control) to 80%-83%, with 0.5 g/g MLVSS showing peak performance. However, excessive Fe3O4@Sch addition exhibited inhibitory effects on Anammox activity.

(3) This study successfully constructed a Fe3O4@Sch-regulated integrated nitrogen removal system coupling Anammox, Feammox and iron-mediated autotrophic denitrification (NDFO) that achieved highly efficient treatment of high-ammonia low C/N ratio wastewater. After long-term acclimation, the coupled system demonstrated significantly enhanced NH4+-N and total nitrogen removal capacities, achieving 86% TN removal efficiency when the influent NO2⁻-N/NH4+-N ratio was reduced from 1.2 to 1.0 while maintaining 900 mg/L TN concentration, outperforming conventional Anammox systems (83%) and effectively alleviating NO3⁻-N accumulation by decreasing ΔNO3⁻-N/ΔNH4+-N ratio from 0.26 to 0.17. The integrated system reduced NO2⁻-N supply demand for partial nitrification by 15%, decreased carbon requirement for NO3⁻-N removal by 28%, and lowered overall energy consumption by 10% compared to single-process systems, with stable operation analysis revealing nitrogen removal contributions of 79.4% from Anammox, 10.7% from Feammox and 9.8% from NDFO. Microbial community analysis showed enrichment of key functional species including Brocadia sinica (increased from 11.43% to 15.85%) and Brocadia sapporoensis (increased from 4.77% to 5.69%), with Brocadia sinica identified as a potential Feammox-performing bacterium exhibiting dual metabolic capability, while the system maintained excellent operational stability for over 120 days with sludge volume index consistently below 50 mL/g, demonstrating the first successful Fe3O4@Sch-mediated tri-pathway synergistic nitrogen removal with quantitatively resolved metabolic contributions and practical energy/carbon savings validated by comprehensive mass balance analysis.

In summary, metastable schwertmannite (Sch) exhibits outstanding advantages in regulating biological nitrogen removal from wastewater with high ammonia nitrogen and low C/N ratios. In this study, the addition of Sch and Fe3O4@Sch during heterotrophic and autotrophic nitrogen removal processes, respectively, demonstrated significant effects on the synergistic removal of carbon and nitrogen from wastewater, particularly in enhancing autotrophic nitrogen removal pathways such as Anammox and Feammox. This research provides valuable insights into the synergistic effects of iron minerals in regulating multi-pathway biological nitrogen removal and their application in advanced treatment of high-ammonia, low C/N wastewater.

参考文献:

[1] 陈翠忠, 额热艾汗, 刘洪光, 等. 铁对厌氧氨氧化过程及脱氮性能的影响[J]. 环境科学与技术, 2021, 44: 14-24.

[2] 陈方敏. 不同培养方式下Anammox微生物的特性研究[D]. 苏州:苏州科技大学,2019.

[3] 程盼. 低C/N比高氨氮废水生物脱氮技术研究进展[J]. 山东化工, 2024, 53: 134-136.

[4] 丁雪梅, 张晓君, 赵云, 等. 蒽酮比色法测定可溶性糖含量的试验方法改进[J]. 黑龙江畜牧兽医, 2014: 230-233.

[5] 冯帆. 黄铁矿强化厌氧氨氧化脱氮机制研究[D]. 长沙:中南大学,2023.

[6] 高守有, 彭永臻, 胡天红, 等. 氧化沟工艺及其生物脱氮原理[J]. 哈尔滨商业大学学报(自然科学版), 2005: 435-439.

[7] 胡世文, 刘同旭, 李芳柏, 等. 土壤铁矿物的生物-非生物转化过程及其界面重金属反应机制的研究进展[J]. 土壤学报, 2022, 59: 54-65.

[8] 姜玉. 基于赤铁矿Fe(Ⅲ)生物还原的填埋场地下水氨氮、有机污染原位修复技术[D]. 上海:上海大学,2020.

[9] 李婷. 施氏矿物基复合催化剂的制备及其异相芬顿催化性能研究[D]. 南京:南京农业大学,2021.

[10] 李祥, 林兴, 杨朋兵, 等. 活性污泥厌氧Fe(Ⅲ)还原氨氧化现象初探[J]. 环境科学, 2016, 37: 3114-3119.

[11] 刘恒蔚, 毕玮, 李祥, 等. 厌氧氨氧化与铁氨氧化反应器功能微生物对比研究[J]. 环境科学与技术, 2020, 43: 39-45.

[12] 刘嘉玮, 汪涵, 王亚宜. 铁矿物强化厌氧氨氧化效能及其微生物机制研究进展[J]. 微生物学通报, 2022, 49: 4305-4326.

[13] 刘爽. 厌氧氨氧化工艺的启动及强化其净化污泥效能研究[D]. 哈尔滨:东北农业大学,2023.

[14] 彭梦文. 厌氧氨氧化菌微观结构及铁调控机理研究[D]. 重庆:重庆大学,2020.

[15] 宋卫锋, 骆定法, 王孝武, 等. 折点氯化法处理高NH3-N含钴废水试验与工程实践[J]. 环境工程, 2006, 5: 12-13.

[16] 孙冰. 厌氧铁氨氧化的实现及外加硝酸盐影响研究[D]. 沈阳:沈阳建筑大学,2022.

[17] 万雨岚. 餐厨垃圾实际厌氧消化工艺研究[J]. 生态与资源, 2024: 70-73.

[18] 吴彦成, 顾鑫, 朱继涛, 等. 铁氨氧化污水生物脱氮技术的研究进展[J]. 中国给水排水, 2020, 36: 38-44.

[19] 吴悦溪, 曾薇, 刘宏, 等. Feammox系统内氮素转化途径的研究[J]. 化工学报, 2020, 71: 2265-2272.

[20] 谢越和周立祥. 酸性环境下生物成因施氏矿物稳定性研究[J]. 地学前缘, 2011, 18: 310-318.

[21] 许冬冬, 康达, 郭磊艳, 等. 厌氧氨氧化颗粒污泥研究进展[J]. 微生物学通报, 2019, 46: 1988-1997.

[22] 杨亚飞. Fe(Ⅱ)/Fe(Ⅲ)循环驱动的厌氧脱氨氮[D]. 大连:大连理工大学,2020.

[23] 姚海楠, 张立秋, 李淑更, 等. 厌氧铁氨氧化处理模拟垃圾渗滤液的影响因素研究[J]. 环境科学学报, 2019, 39: 2953-2963.

[24] 张莉红. 基于生物铁泥的厌氧NH4+-N氧化耦合NOx-N还原脱氮研究[D]. 兰州:兰州交通大学,2023.

[25] 赵庆良和李湘中. 化学沉淀法去除垃圾渗滤液中的氨氮[J]. 环境科学, 1999: 93-95.

[26] 中国环保产业协会. 餐厨垃圾厌氧消化沼液生物聚沉-生化处理技术规范[S]. 团体标准T/CAEPI 90-2024, 2024.

[27] 周立祥. 生物矿化:构建酸性矿山废水新型被动处理系统的新方法[J]. 化学学报, 2017, 75: 552-559

[28] ADRIANO J, DAVID S, JACK E, et al. Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR[J]. Environmental Science & Technology, 2009, 43: 5301-5306.

[29] BLGHAM J M, SCHWERTMANN U, CARLSON L, et al. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters[J]. Geochimica et Cosmochimica Acta, 1990, 54: 2743-2758.

[30] CAO S, RUI D, BAIKUN L, et al. High-throughput profiling of microbial community structures in an ANAMMOX-UASB reactor treating high-strength wastewater[J]. Applied Microbiology and Biotechnology, 2016, 100: 6457-6467.

[31] CHEN D, LIU T, LI X, et al. Biological and chemical processes of microbially mediated nitrate-reducing Fe(II) oxidation by Pseudogulbenkiania sp. strain 2002[J]. Chemical Geology, 2017a, 476: 59-69.

[32] CHEN H, BEN Z, CHANGQI Y, et al. The effects of magnetite on anammox performance: Phenomena to mechanisms[J]. Bioresource Technology, 2021, 337: 125470.

[33] CHEN Q-Q, SUN F-Q, GUO Q, et al. Process stability in an anammox UASB reactor with individual and combined thiocyanate and hydraulic shocks[J]. Separation and Purification Technology, 2017b, 173: 165-173.

[34] CHRISTINA K, ANNA M, PAVEL J, et al. Advances in nitrogen removal and recovery technologies from reject water: Economic and environmental perspectives[J]. Bioresource Technology, 2023, 391: 129888.

[35] DEĞERMENCI N, ATA O N, YILDıZ E. Ammonia removal by air stripping in a semi-batch jet loop reactor [J]. Journal of Industrial and Engineering Chemistry, 2011, 18: 399-404.

[36] DESIREDDY S, SABUMON P C, MALIYEKKAL S M. Anoxic ammonia removal using granulated nanoscale oxyhydroxides of Fe (GNOF) in a SBR[J]. Journal of Environmental Chemical Engineering, 2018, 6: 4273-4281.

[37] DING B, CHEN Z, LI Z, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to Iron reduction from ecosystem habitats in the Taihu estuary region[J]. Science of the Total Environment, 2019, 662: 600-606.

[38] DING B, QIN Y, LUO W, et al. Spatial and seasonal distributions of Feammox from ecosystem habitats in the Wanshan region of the Taihu watershed, China[J]. Chemosphere, 2020, 239: 124742.

[39] DING B, ZHANG H, LUO W. Nitrogen loss through denitrification, anammox and Feammox in a paddy soil[J]. Science of the Total Environment, 2021, 773: 145601.

[40] DU R, PENG Y, CAO S, et al. Advanced nitrogen removal from wastewater by combining anammox with partial denitrification[J]. Bioresource Technology, 2015, 179: 497-504.

[41] FENG L, LI J, MA H, et al. Effect of Fe(II) on simultaneous marine anammox and Feammox treating nitrogen-laden saline wastewater under low temperature: Enhanced performance and kinetics[J]. Desalination, 2020, 478: 114287.

[42] FEROUSI C, LINDHOUD S, BAYMANN F, et al. Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria[J]. Current Opinion in Chemical Biology, 2017, 37: 129-136.

[43] FR/OLUND B, GRIEBE T, NIELSEN P H. Enzymatic activity in the activated-sludge floc matrix[J]. Applied Microbiology and Biotechnology, 2004, 43: 755-761.

[44] FRANCESCO D C, FRANCESCA I, FABRIZIO S, et al. Simultaneous nitrification-denitrification in biofilm systems for wastewater treatment: key factors, potential routes, and engineered applications[J]. Bioresource Technology, 2022, 361: 127702.

[45] FRANZISKA S, CINDY L, ULF L, et al. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments[J]. Applied and Environmental Microbiology, 2017, 84: e02013-02017.

[46] FU Q, ZHENG B, ZHAO X, et al. Ammonia pollution characteristics of centralized drinking water sources in China [J]. Journal of Environmental Sciences, 2012, 24: 1739-1743.

[47] GACITúA M A, GONZáLEZ B, MAJONE M, et al. Boosting the electrocatalytic activity of Desulfovibrio paquesii biocathodes with magnetite nanoparticles[J]. International Journal of Hydrogen Energy, 2014, 39: 14540-14545.

[48] GAO F, ZHANG H, YANG F, et al. The effects of zero-valent iron (ZVI) and ferroferric oxide (Fe3O4) on anammox activity and granulation in anaerobic continuously stirred tank reactors (CSTR)[J]. Process Biochemistry, 2014, 49: 1970-1978.

[49] GIJS K J. Anammox bacteria: from discovery to application[J]. Nature Reviews Microbiology, 2008, 6: 320-326.

[50] GONZALEZ M, CERDA A, RODRIGUEZ C, et al. Coupling of the Feammox - Anammox pathways by using a sequential discontinuous bioreactor[J]. Bioresource Technology, 2024, 395.

[51] H. P D, RINKE C, CHUVOCHINA M, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life (vol 2, pg 1533, 2017)[J]. Nature Microbiology, 2018, 3: 253.

[52] HAO X, ZENG W, LI J, et al. High-efficient nitrogen removal with low demand of Fe source and mechanism analysis driven by Fe(II)/Fe(III) cycle[J]. Chemical Engineering Journal, 2024, 481: 148702.

[53] HUANG D-Q, JIN-JIN F, ZI-YUE L, et al. Inhibition of wastewater pollutants on the anammox process: A review[J]. Science of the Total Environment, 2022, 803: 150009.

[54] IVAR Z, OLEG A, ERGO R, et al. Start-Up of Anammox SBR from Non-Specific Inoculum and Process Acceleration Methods by Hydrazine[J]. Water Research, 2021, 13: 350.

[55] JAMES J, HENNING P, H K A, et al. Identifying and Quantifying the Intermediate Processes during Nitrate-Dependent Iron(II) Oxidation[J]. Environmental Science & Technology, 2018, 52: 5771-5781.

[56] JIN R-C, YANG G-F, YU J-J, et al. The inhibition of the Anammox process: A review[J]. Chemical Engineering Journal, 2012, 197: 67-79.

[57] KANG D, XU D, YU T, et al. Texture of anammox sludge bed: Composition feature, visual characterization and formation mechanism[J]. Water Research, 2019, 154: 180-188.

[58] LI X, HOU L, LIU M, et al. Evidence of Nitrogen Loss from Anaerobic Ammonium Oxidation Coupled with Ferric Iron Reduction in an Intertidal Wetland[J]. Environmental Science & Technology, 2015, 49: 11560-11568.

[59] LI X, HUANG Y, LIU H-W, et al. Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge[J]. Journal of Environmental Sciences, 2018, 64: 42-50.

[60] LIANG Z, LIU J-X, LI J. Decomposition and mineralization of aquatic humic substances (AHS) in treating landfill leachate using the Anammox process[J]. Chemosphere, 2009, 74: 1315-1320.

[61] LIAO Y, ZHOU L, LIANG J, et al. Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different pH condition[J]. Materials Science & Engineering C, 2008, 29: 211-215.

[62] LIN J, H S, L T. Coupled Kinetics Model for Microbially Mediated Arsenic Reduction and Adsorption/Desorption on Iron Oxides: Role of Arsenic Desorption Induced by Microbes[J]. Environmental Science & Technology, 2019, 53: 8892-8902.

[63] LIU D, YU N, PAPINEAU D, et al. The catalytic role of planktonic aerobic heterotrophic bacteria in protodolomite formation: Results from Lake Jibuhulangtu Nuur, Inner Mongolia, China[J]. Geochimica et Cosmochimica Acta, 2019, 263: 31-49.

[64] LIU T, BOLUO X, WU Y. Extracellular electron shuttling mediated by soluble c-type cytochromes produced by Shewanella oneidensis MR-1[J]. Environmental Science & Technology, 2020, 54: 10577-10587.

[65] LIU Y, AN T, XIE J, et al. The influencing mechanisms and optimization strategies of organics on anammox process: A critical review[J]. Chemical Engineering Journal, 2024, 493: 152743.

[66] LIU Y, ZHANG Y, NI B-J. Evaluating enhanced sulfate reduction and optimized volatile fatty acids (VFA) composition in anaerobic reactor by Fe (III) addition[J]. Environmental Science & Technology, 2015, 49: 2123-2131.

[67] LOTTI T, STAR W R L V D, KLEEREBEZEM R, et al. The effect of nitrite inhibition on the anammox process [J]. Water Research, 2012, 46: 2559-2569.

[68] LU D, XING B, LIU Y, et al. Enhanced production of short-chain fatty acids from waste activated sludge by addition of magnetite under suitable alkaline condition[J]. Bioresource Technology, 2019, 289: 121713.

[69] LU D, ZHIPING Q, MENGQI L, et al. Organics and nutrient removal from swine wastewater by constructed wetlands using ceramsite and magnetite as substrates[J]. Journal of Environmental Chemical Engineering, 2020, 9: 104739.

[70] MAGRí A, VANOTTI M B, SZöGI A A. Anammox sludge immobilized in polyvinyl alcohol (PVA) cryogel carriers[J]. Bioresource Technology, 2012, 114: 231-240.

[71] MARGALEF-MARTI R, CARREY R, BENITO J A, et al. Nitrate and nitrite reduction by ferrous iron minerals in polluted groundwater: Isotopic characterization of batch experiments[J]. Chemical Geology, 2020, 548.

[72] PANG S, LI N, LUO H, et al. Autotrophic Fe-Driven Biological Nitrogen Removal Technologies for Sustainable Wastewater Treatment&[J]. Frontiers in Microbiology, 2022, 13: 895409.

[73] PARK W, NAM Y-K, LEE M-J, et al. Anaerobic ammonia-oxidation coupled with Fe3+ reduction by an anaerobic culture from a piggery wastewater acclimated to NH4+/Fe3+ medium[J]. Biotechnology and Bioprocess Engineering, 2009, 14: 680-685.

[74] PENG Y, SHENGBING H, FEI W. Biochemical processes mediated by iron-based materials in water treatement: Enhancing nitrogen and phosphorus removal in low C/N ratio wastewater[J]. Science of the Total Environment, 2021, 775.

[75] QIN Y, DING B, LI Z, et al. Variation of Feammox following ammonium fertilizer migration in a wheat-rice rotation area, Taihu Lake, China[J]. Environmental Pollution, 2019, 252: 119-127.

[76] RAJENDRAN K, SEN S, G. S, et al. Evaluation of cytotoxicity of hematite nanoparticles in bacteria and human cell lines[J]. Colloids and Surfaces B: Biointerfaces, 2017, 157: 101-109.

[77] REN Y, NGO H H, GUO W, et al. New perspectives on microbial communities and biological nitrogen removal processes in wastewater treatment systems[J]. Bioresource Technology, 2020, 297: 122491.

[78] REN Y N H H, GUO W. Raw hematite based Fe(III) bio-reduction process for humified landfill leachate treatment[J]. Journal of Hazardous Materials, 2018, 355: 10-16.

[79] RIKMANN E, ZEKKER I, TENNO T, et al. Inoculum-free start-up of biofilm- and sludge-based deammonification systems in pilot scale[J]. International Journal of Environmental Science and Technology, 2018, 15: 133-148.

[80] SAWAYAMA S. Possibility of anoxic ferric ammonium oxidation[J]. Journal of Bioscience and Bioengineering, 2006, 101: 70-72.

[81] SCHWERTMANN U, BIGHAM J M, MURAD E. The first occurrence of schwertmannite in a natural stream environment[J]. European Journal of Mineralogy, 1995, 7: 547-552.

[82] SHABIB A, TATAN B, ELBAZ Y, et al. Advancements in reverse osmosis desalination: Technology, environment, economy, and bibliometric insights[J]. Desalination, 2025, 598: 118413.

[83] SHAN H, R J P. Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6[J]. PloS one, 2018, 13: e0194007.

[84] SHEN L-D, HU A-H, JIN R-C, et al. Enrichment of anammox bacteria from three sludge sources for the startup of monosodium glutamate industrial wastewater treatment system[J]. Journal of Hazardous Materials, 2011, 199: 193-199.

[85] STRAUB K L, BENZ M, SCHINK B, et al. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron[J]. Applied and Environmental Microbiology, 1996, 62: 1458-1460.

[86] SUANON F, SUN Q, MAMA D, et al. Effect of nanoscale zero-valent iron and magnetite (Fe3O4 ) on the fate of metals during anaerobic digestion of sludge[J]. Water Research, 2016, 88: 897-903.

[87] SUN L, ATAKA M, KOMINAMI Y, et al. A constant microbial C/N ratio mediates the microbial nitrogen mineralization induced by root exudation among four co-existing canopy species[J]. Rhizosphere, 2021, 17: 100317.

[88] TAO N, XU M, WU X, et al. Supplementation of Schwertmannite improves methane production and heavy metal stabilization during anaerobic swine manure treatment[J]. Fuel, 2021, 299: 120883.

[89] TIAN T, YU H-Q. Iron-assisted biological wastewater treatment: Synergistic effect between iron and microbes[J]. Biotechnology Advances, 2020, 44: 107610.

[90] TIAN T, ZHOU K, XUAN L, et al. Exclusive microbially driven autotrophic iron-dependent denitrification in a reactor inoculated with activated sludge[J]. Water Research, 2020, 170: 115300.

[91] TOH S K, ASHBOLT N J. Adaptation of anaerobic ammonium-oxidising consortium to synthetic coke-ovens wastewater[J]. Applied Microbiology and Biotechnology, 2002, 59: 344-352.

[92] TOMINSKI C B L T, RUECKER A Insights into Carbon Metabolism Provided by Fluorescence In Situ Hybridization-Secondary Ion Mass Spectrometry Imaging of an Autotrophic, Nitrate-Reducing, Fe(II)-Oxidizing Enrichment Culture[J]. Applied and Environmental Microbiology, 2018, 84: e02166-02117.

[93] VICTORY F D, HAEJUN J, YURI C, et al. Characterization of magnetite assisted anammox granules based on in-depth analysis of extracellular polymeric substance (EPS)[J]. Bioresource Technology, 2022, 369: 128372.

[94] VILAJELIU-PONS A, KOCH C, BALAGUER M D, et al. Microbial electricity driven anoxic ammonium removal[J]. Water Research, 2018, 130: 168-175.

[95] VINEYARD D, HICKS A, KARTHIKEYAN K. Economic analysis of electrodialysis, denitrification, and anammox for nitrogen removal in municipal wastewater treatment[J]. Journal of Cleaner Production, 2020, 262: 121145.

[96] VLAEMINCK S E, CLIPPELEIR H D, VERSTRAETE W. Microbial resource management of one-stage partial nitritation/anammox[J]. Microbial Biotechnology, 2012, 5: 433-448.

[97] WANG H, FAN Y, ZHOU M, et al. Function of Fe(III)-minerals in the enhancement of anammox performance exploiting integrated network and metagenomics analyses[J]. Water Research, 2022a, 210: 117998.

[98] WANG R, YANG C, ZHANG M, et al. Chemoautotrophic denitrification based on ferrous iron oxidation: Reactor performance and sludge characteristics[J]. Chemical Engineering Journal, 2017, 313: 693-701.

[99] WANG W, WANG J, WANG H, et al. Anammox Granule Enlargement by Heterogenous Granule Self-assembly[J]. Water Research, 2020a, 187: 116454-.

[100] WANG X, WANG W, ZHOU B, et al. Improving solid–liquid separation performance of anaerobic digestate from food waste by thermally activated persulfate oxidation[J]. Journal of Hazardous Materials, 2020b, 398: 122989.

[101] WANG Y, NIE S, YUAN Q, et al. Formation of iron-rich encrustation layer on anammox granules for high load stress resistance: Performance, advantages, and mechanisms[J]. Bioresource Technology, 2024, 406: 131046.

[102] WANG Z, CHENG S, YUE Z, et al. Anaerobic ammonium oxidation driven by dissimilatory iron reduction in autotrophic Anammox consortia[J]. Bioresource Technology, 2022b, 364: 128077.

[103] WANG Z, LIU X, NI S, et al. Nano zero-valent iron improves anammox activity by promoting the activity of quorum sensing system[J]. Water Research, 2021, 202: 117491.

[104] WEI Y, DAI J, MACKEY H R, et al. The feasibility study of autotrophic denitrification with iron sludge produced for sulfide control[J]. Water Research, 2017, 122: 226-233.

[105] XING F, LEI H, SHUOHUI S, et al. The coupling system of magnetite-enhanced thermophilic hydrolysis-acidification and denitrification for refractory organics removal from anaerobic digestate food waste effluent (ADFE)[J]. Bioresource Technology, 2023, 371: 128601.

[106] XU J, CHENG Y, JIN R-C. Long-term effects of Fe3O4 NPs on the granule-based anaerobic ammonium oxidation process: Performance, sludge characteristics and microbial community[J]. Ecology, Environment & Conservation, 2020, 398: 122965.

[107] YAMADA C, KATO S, UENO Y, et al. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate[J]. Journal of Bioscience and Bioengineering, 2015, 119: 678-682.

[108] YANG W H, WEBER K A, SILVER W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5: 538-541.

[109] YANG Y, XIAO C, LU J, et al. Fe(III)/Fe(II) forwarding a new anammox-like process to remove high-concentration ammonium using nitrate as terminal electron acceptor[J]. Water Research, 2020, 172: 115528.

[110] YANG Y, XIAO C, YU Q. Using Fe(II)/Fe(III) as catalyst to drive a novel anammox process with no need of anammox bacteria[J]. Water Research, 2021, 189: 116626.

[111] YANG Y, ZHANG Y, LI Y, et al. Nitrogen removal during anaerobic digestion of wasted activated sludge under supplementing Fe(III) compounds[J]. Chemical Engineering Journal, 2018, 332: 711-716.

[112] YAO Z, W F, W C. Anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a eutrophic lake[J]. Environmental Science and Pollution Research International, 2019, 26: 15084-15094.

[113] ZANG Y, YANG Y, HU Y. Zero-valent iron enhanced anaerobic digestion of pre-concentrated domestic wastewater for bioenergy recovery: characteristics and mechanisms[J]. Bioresource Technology, 2020, 310: 123441.

[114] ZHANG L, YANG L, DONG T, et al. Response of anammox consortia to inhibition from high ferroferric oxide nanoparticles concentration and potential recovery mechanism[J]. Bioresource Technology, 2024, 402: 130808.

[115] ZHANG M, XIAOMENG W, DEJIN Z, et al. Food waste hydrolysate as a carbon source to improve nitrogen removal performance of high ammonium and high salt wastewater in a Sequencing Batch Reactor[J]. Bioresource Technology, 2022, 349: 126855.

[116] ZHANG M, ZHENG P, LI W, et al. Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: A novel prospective technology for autotrophic denitrification[J]. Bioresource Technology, 2015, 179: 543-548.

[117] ZHANG M, ZHENG P, WANG R, et al. Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifying bacteria: A perspective autotrophic nitrogen pollution control technology[J]. Chemosphere, 2014, 117: 604-609.

[118] ZHANG X, ZHOU Y, ZHAO S, et al. Effect of Fe (II) in low-nitrogen sewage on the reactor performance and microbial community of an ANAMMOX biofilter[J]. Chemosphere, 2018a, 200: 412-418.

[119] ZHANG Z-Z, CHENG Y-F, BAI Y-H, et al. Enhanced effects of maghemite nanoparticles on the flocculent sludge wasted from a high-rate anammox reactor: Performance, microbial community and sludge characteristics[J]. Bioresource Technology, 2018b, 250: 265-272.

[120] ZHOU B, WANG D, YAN C, et al. A novel approach for purifying food waste anaerobic digestate through bio-conditioning dewatering followed by activated sludge process: A case study [J]. Environmental Pollution (Barking, Essex : 1987), 2024, 346: 123644.

[121] ZHU T-T, ZHANG Y-B, LIU Y-W, et al. Electrostimulation enhanced ammonium removal during Fe(III) reduction coupled with anaerobic ammonium oxidation (Feammox) process[J]. Science of the Total Environment, 2021, 751: 141703.

中图分类号:

 X17    

开放日期:

 2027-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式