- 无标题文档
查看论文信息

中文题名:

 外源赤霉素(GA3)对不同需冷量桃品种(系)花芽分化特性的影响机制研究    

姓名:

 陈鸿    

学号:

 2022104039    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090201    

学科名称:

 农学 - 园艺学 - 果树学    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 南京农业大学    

院系:

 园艺学院    

专业:

 果树学    

研究方向:

 果树栽培生理    

第一导师姓名:

 俞明亮    

第一导师单位:

 南京农业大学    

完成日期:

 2025-04-05    

答辩日期:

 2025-05-28    

外文题名:

 Effect of exogenous gibberellin (GA3) on flower bud differentiation characteristics of peach varieties with different chilling requirements and study on its mechanism    

中文关键词:

 GA3 ; ; 需冷量 ; 花芽分化 ; 果实品质 ; 转录组    

外文关键词:

 GA3 ; Peach ; Chilling requirement ; Differentiation of flower buds ; Fruit quality ; Transcriptome    

中文摘要:

桃[Prunus persica (L.) Batsch]是我国重要的农产品,具有很高的经济价值。大多数桃品种的成花量过高,导致树势衰弱,果实品质降低。生产实践中需要进行疏花,以达到合理的负载量。赤霉素(GA3)作为重要的植物生长调节剂,被广泛地应用于果树的生产管理领域,比如疏花疏果、提高果实品质。本研究选取不同需冷量桃DB2-9(低)、霞晖8号(中)、霞脆(高)盛果期植株为试验材料,其生长势以及栽培管理条件一致。分别在48、50和46 DAFB (盛花后天数)喷施50、100和150 mg·L-1 GA3,以喷施清水为对照,每10 d喷施一次,共四次。在茎顶端分生组织由营养生长向生殖生长转变期,测定新梢生长指标和叶片生理指标,并进行花芽分化过程的石蜡切片观察;通过转录组分析不同需冷量桃品种(系)花芽分化的机制,以及不同需冷量桃品种(系)对外源GA3响应差异的相关基因;测定喷施当年硬核期、膨大期和成熟期以及翌年成熟期的果实品质指标;统计翌年不同类型结果枝占比、成花与坐果指标,以期为桃的花果调控技术提供理论依据。主要研究结果如下:

(1)外源GA3对不同需冷量桃品种(系)枝条生物学特性的影响

外施50~150 mg·L-1 GA3能显著提高低需冷量桃品系中果枝比例,对新梢长度、粗度和节间长度无显著影响;显著提高中需冷量桃品种新梢长度、粗度及长果枝比例;显著提高高需冷量桃品种长果枝比例,而降低新梢粗度和花束状果枝比例。外施100、150 mg·L-1 GA3可显著降低花芽未分化期低、高需冷量桃品种(系)叶片叶绿素含量;外施100、150 mg·L-1 GA3显著提高花芽形态分化始期低、高需冷量桃品种(系)叶片可溶性总糖含量,显著降低中需冷量桃品种叶片可溶性总糖含量和各桃品种(系)叶片脯氨酸含量;外施100、150 mg·L-1 GA3促进花芽形态分化始期至雌蕊原基分化期低、中需冷量桃品种(系)叶片可溶性蛋白质的积累,并使游离氨基酸含量减少。

(2)外源GA3对不同需冷量桃品种(系)花芽分化特性的影响

三个品种(系)花芽分化所需时间分别为高>低>中需冷量桃品种(系)。外施50~150 mg·L-1 GA3抑制低需冷量桃品系花芽分化,抑制效果随浓度提高而增强。外施100和150 mg·L-1 GA3抑制中、高需冷量桃品种花芽分化,且花芽停止分化的时间较CK的花芽形态分化始期早。外施50~150 mg·L-1 GA3降低低需冷量桃品系翌年成花率和三个品种(系)翌年花量。

(3)外源GA3对不同需冷量桃品种(系)花芽分化影响的转录组分析

经转录组分析表明,三个品种(系)花芽分化特性的差异与植物环境胁迫响应和ETH、IAA、ABA、SL的生长调控有关。从低需冷量桃品系花芽分化对GA3的差异响应角度,木质素生物合成、BR与GA间的信号转导串联和CYP714A1参与的GA生物合成途径起着关键作用;从中需冷量桃品种花芽分化对GA3的差异响应角度,木质素生物合成、植物免疫调控和脯氨酸代谢与其有关;高需冷量桃品种花芽分化对GA3的差异响应角度,生物胁迫与非生物胁迫响应、JA代谢和SL信号转导调控其过程。

(4)外源GA3对不同需冷量桃品种(系)果实品质与产量的影响

对于喷施当年成熟期果实品质,外施50、100 mg·L-1 GA3显著提高三个品种(系)的单果质量。外施100、150 mg·L-1 GA3显著降低高需冷量桃品种的果形指数。外施150 mg·L-1 GA3显著提高低需冷量桃品系的a*值和a*/b*值,外施100、150 mg·L-1 GA3对高需冷量桃品种着色的抑制效应较中需冷量桃品种显著。外施100、150 mg·L-1 GA3显著提高中需冷量桃品种的去皮硬度和高需冷量桃品种的带皮硬度。外施50~150 mg·L-1 GA3能提高低需冷量桃品系的可溶性固形物含量、总糖含量和糖酸比,外施50、150 mg·L-1 GA3能提高中、高需冷量桃品种的可溶性固形物含量、总糖含量和有机酸含量。外施100、150 mg·L-1 GA3显著提高三个品种(系)翌年产量。

对于翌年成熟期果实品质,外施150 mg·L-1 GA3显著提高三个品种(系)单果质量。外施50、100 mg·L-1 GA3分别显著降低和提高中、高需冷量桃品种的a*值和a*/b*值。外施50~150 mg·L-1 GA3显著降低低需冷量桃品系硬度,而提高中、高需冷量桃品种的硬度。外施50~150 mg·L-1 GA3显著提高低、高需冷量桃品种(系)的总糖含量和糖酸比,显著降低中需冷量桃品种的糖酸比。综合外源GA3对低、中和高需冷量桃品种(系)成花与果实品质的影响,筛选出50、100和150 mg·L-1 GA3用于各品种(系)的成花调控。

外文摘要:

Peach [Prunus persica (L.) Batsch] is an important agricultural product in China with high economic value. Most peach varieties have excessive flowers, resulting in weak trees and reduced fruit quality. In production practice, thinning is required to achieve a reasonable load amount. As an important plant growth regulator, gibberellin (GA3) is widely used in the field of production management of fruit trees, such as flower and fruit thinning and fruit quality improvement. In this study, with low (DB2-9), medium (Xiahui 8), and high (Xiacui) chilling requirements, peach varieties (strains) with consistent growth potentials as well as cultivation and management conditions at the full-fruiting stage were selected as test materials. The varieties were sprayed with 50, 100, and 150 mg·L-1 GA3 at 48, 50, and 46 DAFB (days after bloom), respectively, and sprayed with clear water as a control every 10 d for four times. During the transition from vegetative growth to reproductive growth of the shoot apical meristem, we measured the growth indexes of new shoots and physiological indexes of leaves, and made paraffin sections to observe the process of bud differentiation; and analyzed the mechanism of bud differentiation in peach varieties (strains) with different chilling requirements through the transcriptome analysis, as well as the related genes of the differences in response to exogenous GA3 in peach varieties (strains) with different chilling requirements; we measured the quality indexes of fruits during the hardening, expansion and ripening stages in the year of spraying as well as during the ripening stage of the following year; we counted the ratio of fruit-bearing branches with different types and the indexes of flowers and fruits of the following year, with a view to providing theoretical basis for the peach flower and fruit thinning technology. The main research results are as follows:

(1)Effect of exogenous GA3 on the biological characteristics of branches of peach varieties (strains) with different chilling requirements

External application of 50~150 mg·L-1 GA3 significantly increased the proportion of medium fruiting branches in the peach strain with low chilling requirement, and had no significant effect on the length, thickness and internode length of new shoots; significantly increased the length, thickness and proportion of long fruiting branches in the peach variety with medium chilling requirement; and significantly increased the proportion of long fruiting branches in the peach variety with high chilling requirement, while decreasing the thickness of new shoots and proportion of bouquet fruit branches. External application of 100 and 150 mg·L-1 GA3 significantly reduced the chlorophyll content of leaves of the peach variety(strain) with low, high chilling requirements at the undifferentiated stage of flower buds; external application of 100 and 150 mg·L-1 GA3 significantly increased the total soluble sugar content of the leaves of the peach varieties(strains) with low, high chilling requirements, and significantly reduced the total soluble sugar content of the leaves of the peach variety of medium chilling requirement and the proline content of leaves of each peach variety(strain) at the initial differentiation stage of flower bud; the external application of 100 and 150 mg·L-1 GA3 promoted the accumulation of soluble protein and reduced the free amino acid content in the leaves of the peach varieties(strains) with low, medium chilling requirements at the period from the initial differentiation stage of flower bud to the differentiation of pistil primordium.

(2)Effect of exogenous GA3 on the characteristics of flower bud differentiation in peach varieties (strains) with different chilling requirements

The time required for bud differentiation of the three varieties (strains) were high > low > medium-chilling-requiring peach varieties (strains), respectively. External application of 50~150 mg·L-1 GA3 inhibited bud differentiation of the peach strain with low chilling requirement, and the inhibitory effect increased with the increase of concentration of exogenous GA3. External application of 100 and 150 mg·L-1 GA3 inhibited bud differentiation in the peach varieties with medium and high chilling requirements, and the time of bud cessation was earlier than the initial differentiation stage of flower bud for CK. External application of 50~150 mg·L-1 GA3 reduced the flowering rate of the peach strain with low chilling requirement in the following year and the number of flowers in the following year of the three varieties (strains).

(3)Transcriptome analysis of the effect of exogenous GA3 on the bud differentiation in peach cultivars (strains) with different chilling requirements

Transcriptome analyses indicated that the differences in bud differentiation characteristics among the three varieties (strains) were related to the response to plant environmental stress and the growth regulation by ETH, IAA, ABA, and SL. For the differential response of bud differentiation to GA3 in the peach strain with low chilling requirement, the lignin biosynthesis, the signaling crosstalk between BR and GA, and GA biosynthesis pathway involved in CYP714A1 played key roles; for the differential response of bud differentiation to GA3 in the peach variety with medium chilling requirement, the lignin biosynthesis, the plant immune regulation, and the proline metabolism were related to it; for the differential response of bud differentiation to GA3 in the peach variety with high chilling requirement, the biotic and abiotic stress responses, the JA metabolism and the SL signaling regulate the process.

(4)Effect of exogenous GA3 on the fruit quality and yield of peach varieties (strains) with different chilling requirements

For the fruit quality at maturity in the year of spraying, external application of 50 and 100 mg·L-1 GA3 significantly improved the quality of single fruit of the three varieties (strains). External application of 100 and 150 mg·L-1 GA3 significantly reduced the fruit shape index of the peach variety with high chilling requirement. External application of 150 mg·L-1 GA3 significantly increased the a* and a*/b* values of the peach strain with low chilling requirement, and the inhibitory effect of external application of 100 and 150 mg·L-1 GA3 on the coloring of the peach variety with high chilling requirement was more significant than that of the peach variety with medium chilling requirement. Externally applied 100 and 150 mg·L-1 GA3 significantly increased the firmness without peel of the peach variety of medium chilling requirement and the firmness with peel of the peach variety with high chilling requirement; externally applied 50~150 mg·L-1 GA3 increased the soluble solids content , the total sugar content, and the sugar-acid ratio of the peach strain with low chilling requirement. Externally applied 50 and 150 mg·L-1 GA3 increase the soluble solids content, total sugar content and organic acid content of the peach varieties with medium, high chilling requirements. External application of 50~150 mg·L-1 GA3 reduced the fruit set rate of the peach strain with low chilling requirement in the following year, the number of fruits in the following year of the three varieties (strains). External application of 100 and 150 mg·L-1 GA3 significantly increased the yield of the three varieties (strains) in the following year.

For the fruit quality at maturity in the following year, the application of 150 mg·L-1 GA3 significantly increased the quality of single fruit of the three varieties (strains), while the application of 50 and 100 mg·L-1 GA3 significantly reduced and increased the a* and a*/b* values of the peach varieties with medium, high chilling requirement, respectively. The exogenous application of 50~150 mg·L-1 GA3 significantly reduced the firmness of the peach strain with low chilling requirement and increased the firmness of the peach varieties with medium and high chilling requirements. The exogenous application of 50~150 mg·L-1 GA3 significantly increased the total sugar content and sugar-acid ratio of the peach variety(strain) with low and high chilling requirements and significantly reduced the sugar-acid ratio of the peach variety with medium chilling requirement. After synthesizing the effect of exogenous GA3 on the flowering and fruit quality of low, medium and high-chilling-requiring peach varieties (strains), 50, 100 and 150 mg·L-1 GA3 were screened for flower thinning regulation of each variety (strain).

参考文献:

[1]安迪. 赤霉素对兔眼蓝莓生长发育的影响研究[D]. 杭州:浙江农林大学, 2018.

[2]曹珂, 王力荣, 朱更瑞, 等. 桃幼树光合年变化及落叶期早晚与营养生长的关系[J]. 果树学报, 2008, 25(2):231-235.

[3]曹珂, 王力荣, 朱更瑞, 等. 不同需冷量桃品种营养生长和光合特性研究[J]. 果树学报, 2007, 24(3):282-286.

[4]曹尚银, 汤一卒, 江爱华. GA3和PP333调控苹果花芽孕育机理的研究[J]. 园艺学报, 2001, 28(4):339.

[5]曹尚银, 张俊昌, 魏立华. 苹果花芽孕育过程中内源激素的变化[J]. 果树科学, 2000, 17(4):244-248.

[6]曾辉, 陈厚彬, 杜丽清, 等. 喷施赤霉素推迟和减少澳洲坚果成花的效应[J]. 果树学报, 2008, 25(2):203-208.

[7]陈静, 秦栋, 杨新雨,等. 不同植物生长调节物质对蓝果忍冬果实脱落及果实品质的影响[J]. 果树学报, 2022, 39(11):2113-2123.

[8]楚乐乐, 刘海强, 盛星星, 等. 果树成花转变途径与调控研究进展[J]. 植物科学学报, 2022,40(2):281-290.

[9]丁平海, 王中英. 不同物候期苹果体内碳同化物的分配规律[J]. 河北农业大学学报, 1997, 20(3):61-66.

[10]董凤. 参与苹果花芽孕育调控的GA氧化酶和MdGAMYB的鉴定与分析[D]. 陕西:西北农林科技大学, 2019.

[11]段诗瑶. GA与MeJA调控苹果果实着色的关键基因筛选和功能初探[D]. 北京:北京农学院, 2023.

[12]樊卫国, 刘国琴, 安华明, 等. 刺梨花芽分化期芽中内源激素和碳、氮营养的含量动态[J]. 果树学报, 2003, 20(1):40-43.

[13]郭金英. 桃(Prunus persica(L.)Batsch)种质资源亲缘关系的RAPD分析[D]. 郑州:西北农林科技大学, 2002.

[14]郭磊, 张斌斌, 马瑞娟, 等. 5-氨基乙酰丙酸处理对桃果实品质及营养生长的影响[J]. 江苏农业科学, 2015, 43(12):194-196.

[15]韩明玉, 李永武, 范崇辉, 等. 拉枝角度对富士苹果树生理特性和果实品质的影响[J]. 园艺学报, 2008, 35(9):1345-1345.

[16]贾楠. 桃芽休眠诱导过程中IAA,ABA含量及PpPINs基因表达的变化[J]. 中国农业通报, 2015, 31(25):100-106.

[17]李静. 生长调节剂对酥梨成花及抗冻性的影响[D]. 晋中:山西农业大学, 2016.

[18]李兴军, 李三玉, 汪国云, 等. 杨梅花芽孕育期间叶片酸性蔗糖酶活性及糖类含量的变化[J].四川农业大学学报, 2000, 18(2):164-166.

[19]刘芳, 袁华招, 沈欣杰, 等. 外源GA3和PP333对甜樱桃新梢生长及赤霉素代谢关键基因表达的影响[J]. 核农学报, 2013, (3):272-278.

[20]刘丽, 李秋利, 高登涛, 等. 树形对桃树生长、产量和品质的影响[J]. 果树学报, 2022, 39(1):36-46.

[21]刘平, 温陟良, 彭士琪, 等. 外源GA3对枣树14C光合产物向果实分配的影响[J]. 河北农业大学学报, 2002, 25(4);34-6.

[22]路超, 王金政, 康冰心, 等. 盛果期红富士苹果树适宜负载量研究[J]. 山东农业科学, 2009, 41(10):35-3842.

[23]路侠. 不同浓度赤霉素(GA3)对‘嘎拉’苹果果形的影响[D]. 泰安:山东农业大学, 2023.

[24]罗桂环. 关于桃的栽培起源及其发展[J]. 农业考古, 2001, 21(03):200-203+207.

[25]门永阁, 安欣, 许海港, 等. 不同负载量对苹果13C和15N分配、利用的影响[J]. 植物营养与肥料学报, 2015(3):702-708.

[26]沙建川, 于天武, 冯敬涛, 等. 外源 GA3 对‘富士’苹果幼果期13C 光合产物向果实运输及糖代谢的影响[J]. 植物生理学报, 2019, 55(11):1729-1736.

[27]沈霄. 砂梨果实膨大剂筛选与应用研究[D]. 扬州:扬州大学, 2018.

[28]宋杨, 窦连登, 张红军. 高等植物成花诱导调控的分子和遗传机制[J]. 植物生理学报, 2014, 50(10):1459-1468.

[29]苏钻贤, 杨胜男, 黄悦, 等. 荔枝成花、坐果与现"白点"期和末次秋梢期成熟期的关系研究[J]. 果树学报, 2023, 40(8):1628-1639.

[30]孙旭武. 低需冷量桃童期及其花芽分化期的生理生化特性研究[D]. 兰州:甘肃农业大学, 2004.

[31]汤红. 外源GA3和乙烯对芒果色泽变化的影响及其转录调控分析[D]. 海口:海南大学, 2020.

[32]王海波, 王孝娣, 高东升, 等. 不同需冷量桃树对周年光温变化的生长和生理响应研究[J]. 西北植物学报, 2009(10):2058-2062.

[33]王珂. 桃属不同种花芽分化特性及遗传倾向的研究[D]. 郑州:河南农业大学, 2005.

[34]王力荣, 朱更瑞, 方伟超, 等. 桃低需冷量种质发掘、创新与利用:中国农业科学院郑州果树研究所研究进展[J]. 果树学报, 2022.

[35]王晓菲. 串联基因PpNAC56和PpNAC72调控桃果实成熟的机理解析[D]. 郑州:河南农业大学, 2024.

[36]王弋, 董晨, 魏永赞, 等. GA信号途径及其调控果树生长发育的研究进展[J]. 果树学报, 2018, 35(4):500-511.

[37]温玥, 苏淑钗, 马履一, 等. 赤霉素处理对油茶花芽形成和果实品质的影响[J]. 浙江农林大学学报, 2015, 32(6):861-867.

[38]吴丁洁, 陈盈盈, 徐静, 等. 植物赤霉素氧化酶及其功能研究进展[J]. 生物技术通报, 2024, 40(7):43-54.

[39]伍涛, 陶书田, 张虎平, 等. 疏果对梨果实糖积累及叶片光合特性的影响[J]. 园艺学报, 2011, 38(11):2041-2048.

[40]严娟, 赵滨涛, 孙朦, 等. 基于桃需冷量探讨气温变化对其适应性的挑战[J]. 园艺学报,2023,50(4):724-736.

[41]杨塞, 肖层林. 赤霉素的生物合成及促进水稻茎伸长机理研究进展[J]. 作物研究, 2004(S1):317-320.

[42]叶强. 蓝莓果实发育解剖及果形相关基因分离研究[D]. 浙江:浙江师范大学, 2017.

[43]张斌斌, 马瑞娟, 宋宏峰, 等. 江苏省桃产业现状与发展对策[J]. 落叶果树, 2021, 53(6):30-33.

[44]张国军, 王晓玥, 任建成, 等. 多年生顺行水平龙干形葡萄树体结构评价与分析[J]. 中外葡萄与葡萄酒, 2017, (6):26-30.

[45]张国军, 王晓玥, 任建成, 等. 中国葡萄栽培中的主要平衡关系论述[J]. 中外葡萄与葡萄酒, 2019, (1):29-32.

[46]张松文. 富士响应外源GA3和"大小年结果信号"花芽孕育的生理分子机制[D]. 杨陵:西北农林科技大学, 2016.

[47]张伟梅, 范芳娟, 杨先裕. 油桃果实发育规律分析[J]. 北方园艺, 2018, (15):26-31.

[48]张颖. 四个桃品种生物学特性及果实生长发育规律研究[D]. 湖南:中南林业科技大学, 2021.

[49]赵滨涛. 桃需冷量预估模型和低需冷量桃表型研究[D]. 南京:南京农业大学, 2023.

[50]郑柯斌, 司文, 杨怡妍, 等. 3种赤霉素对蓝莓果实成熟与品质的影响[J]. 浙江农业科学, 2020, 61(3):524-527.

[51]郑奇志. 植物生长调节剂对上海地区甜樱桃座果率及果实品质的影响[D]. 上海:上海交通大学, 2019.

[52]周宇, 佟兆国, 张开春, 等. 赤霉素在落叶果树生产中的应用[J]. 中国农业科技导报, 2006,8(2):27-31.

[53]庄维兵, 刘天宇, 束晓春, 等. 植物体内花青素苷生物合成及呈色的分子调控机制[J]. 植物生理学报, 2018, 54(11):1630-44.

[54]Achard P, Herr A, Baulcombe DC, et al. Modulation of floral development by a gibberellin-regulated microRNA[J]. Science, 2004, 3357-3365.

[55]Ali MM, Yousef AF, Li B, et al. Effect of environmental factors on growth and development of fruits[J]. Tropical Plant Biology, 2021, 14(3):226-238.

[56]Alshallash KS, Fahmy MA, Tawfeeq AM, et al. GA3 and hand thinning improves physical, chemical characteristics, yield and decrease bunch compactness of sultanina grapevines (Vitis vinifera L.)[J]. Horticulturae, 2023, 9(2):160.

[57]Amarante CV, Drehmer AM, Souza FD, et al. Preharvest spraying with gibberellic acid (GA3) and aminoethoxyvinilglycine (AVG) delays fruit maturity and reduces fruit losses on peaches[J]. Revista Brasileira de Fruticultura, 2005, 27(1):1-5.

[58]An LJ, Ji L, Ya CQ, et al. Effect and functional mechanism of the action of exogenous gibberellin on flowering of peach[J]. Agricultural Sciences in China, 2008, 7(11):1324-1332.

[59]André D, Marcon A, Lee KC, et al. FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees[J]. Current Biology, 2022, 32(13):2988-2996.

[60]Arnaud N, Girin T, Sorefan K, et al. Gibberellins control fruit patterning in Arabidopsis thaliana[J]. Genes & Development, 2010, 24(19):2127-2132.

[61]Arora R, Rowland LJ, Tanino K, et al. Induction and release of bud dormancy in woody perennials: a science comes of age[J]. HortScience, 2003, 38(5):911-921.

[62]Ashworth EN, Davis GA, Wisniewski ME. The formation and distribution of ice within dormant and deacclimated peach flower buds[J]. Plant, Cell & Environment, 1989, 12(5):521-528.

[63]Atagul O, Calle A, Demirel G, et al. Estimating heat requirement for flowering in peach germplasm[J]. Agronomy, 2022, 12(5):1002.

[64]Atay E, Koyuncu F. A new approach for augmenting branching of nursery trees and its comparison with other methods[J]. Scientia Horticulturae, 2013, 160:345-350.

[65]Avonce N, Leyman B, Mascorro-Gallardo JO, et al. The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling[J]. Plant Physiology, 2004, 136(3):3649-3659.

[66]Awad MA, Al-Qurashi AD. Gibberellic acid spray and bunch bagging increase bunch weight and improve fruit quality of 'Barhee' date palm cultivar under hot arid conditions[J]. Scientia Horticulturae, 2012, 138:96-100.

[67]Bangerth KF. Floral induction in mature, perennial angiosperm fruit trees: similarities and discrepancies with annual/biennial plants and the involvement of plant hormones[J]. Scientia Horticulturae, 2009, 122(2):153-163.

[68]Bao C, Qin G, Cao F, et al. MdZAT5 regulates drought tolerance via mediating accumulation of drought-responsive miRNAs and mRNAs in apple[J]. New Phytologist, 2022, 236(6):2131-2150.

[69]Bao S, Hua C, Huang G, et al. Molecular basis of natural variation in photoperiodic flowering responses[J]. Developmental Cell, 2019, 50(1):90-101.

[70]Bao S, Hua C, Shen L, et al. New insights into gibberellin signaling in regulating flowering in Arabidopsis[J]. Journal of Integrative Plant Biology, 2020, 62(1):118-131.

[71]Barzegar T, Badeck FW, Delshad M, et al. 13C-labelling of leaf photoassimilates to study the source-sink relationship in two Iranian melon cultivars[J]. Scientia Horticulturae, 2013, 151:157-164.

[72]Ben-Arie R, Saks Y, Sonego L, et al. Cell wall metabolism in gibberellin-treated persimmon fruits[J]. Plant Growth Regulation, 1996, 19(1):25-33.

[73]Beppu K, Ikeda T, Kataoka I. Effect of high temperature exposure time during flower bud formation on the occurrence of double pistils in 'Satohnishiki' sweet cherry[J]. Scientia Horticulturae, 2001, 87(1-2):77-84.

[74]Bernier G, Périlleux C. A physiological overview of the genetics of flowering time control[J]. Plant Biotechnology Journal, 2005, 3(1):3-16.

[75]Bielenberg DG, Wang Y, Fan S, et al. A deletion affecting several gene candidates is present in the evergrowing peach mutant[J]. Journal of Heredity, 2004, 95(5):436-444.

[76]Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection[J]. Plant Physiology, 2012, 159(1):266-285.

[77]Blázquez MA, Green R, Nilsson O, et al. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter[J]. The Plant Cell, 1998, 10(5):791-800.

[78]Borsani O, Díaz P, Monza J. Proline is involved in water stress responses of Lotus corniculatus nitrogen fixing and nitrate fed plants[J]. Journal of Plant Physiology, 1999, 155(2):269-273.

[79]Boss PK, Thomas MR. Association of dwarfism and floral induction with a grape 'green revolution' mutation[J]. Nature, 2002, 416(6883):847-850.

[80]Bote AD, Jan V. Branch growth dynamics, photosynthesis, yield and bean size distribution in response to fruit load manipulation in coffee trees[J]. Trees, 2016, 30(4):1275-1285.

[81]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1-2):248-254.

[82]Bradley MV, Crane JC. Gibberellin-induced inhibition of bud development in some species of Prunus[J]. Science, 1960, 131(3403):825-826.

[83]Brenner ML. Plant hormones and their role in plant growth and development[M]. Leiden:Martinus Nijhoff Publishers, 1987:474-493.

[84]Brightbill CM, Sung S. Temperature-mediated regulation of flowering time in Arabidopsis thaliana[J]. Abiotech, 2022, 3(1):78-84.

[85]Brunner AM, Evans LM, Hsu CY, et al. Vernalization and the chilling requirement to exit bud dormancy: shared or separate regulation?[J]. Frontiers in Plant Science, 2014, 5:732.

[86]Byers RE, Carbaugh DH, Presley CN. The influence of bloom thinning and GA3 sprays on flower bud numbers and distribution in peach trees[J]. Journal of Horticultural Science, 1990, 65(2):143-150.

[87]Canton M, Forestan C, Marconi G, et al. Evidence of chromatin and transcriptional dynamics for cold development in peach flower bud[J]. New Phytologist, 2022, 236(3):974-988.

[88]Cao K, Peng Z, Zhao X, et al. Chromosome-level genome assemblies of four wild peach species provide insights into genome evolution and genetic basis of stress resistance[J]. BMC Biology, 2022, 20(1):139.

[89]Capovilla G, Schmid M, Posé D. Control of flowering by ambient temperature[J]. Journal of Experimental Botany, 2015, 66(1):59-69.

[90]Carvalho RF, Quecini V, Peres LE. Hormonal modulation of photomorphogenesis-controlled anthocyanin accumulation in tomato (Solanum lycopersicum L. cv Micro-Tom) hypocotyls: Physiological and genetic studies[J]. Plant Science, 2010, 178(3):258-264.

[91]Castillo-Llanque F, Rapoport HF. Relationship between reproductive behavior and new shoot development in 5-year-old branches of olive trees (Olea europaea L.)[J]. Trees, 2011, 25(5):823-832.

[92]Cerdán PD, Chory J. Regulation of flowering time by light quality[J]. Nature, 2003, 423(6942):881-885.

[93]Chakraborty A, Chaudhury R, Dutta S, et al. Role of metabolites in flower development and discovery of compounds controlling flowering time[J]. Plant Physiology and Biochemistry, 2022, 190:109-118.

[94]Chen C, Chen H, Chen Y, et al. Joint metabolome and transcriptome analysis of the effects of exogenous GA3 on endogenous hormones in sweet cherry and mining of potential regulatory genes[J]. Frontiers in Plant Science, 2022, 13:1041068.

[95]Chen R, Fan Y, Yan H, et al. Enhanced activity of genes associated with photosynthesis, phytohormone metabolism and cell wall synthesis is involved in gibberellin-mediated sugarcane internode growth[J]. Frontiers in Genetics, 2020, 11:570094.

[96]Chen S, Wang XJ, Tan GF, et al. Gibberellin and the plant growth retardant Paclobutrazol altered fruit shape and ripening in tomato[J]. Protoplasma, 2020, 257(3):853-861.

[97]Chen Z, Yang X, Su X, et al. A comprehensive gene network for fine tuning floral development in poplar[J]. Genes & Genomics, 2017, 39:793-803.

[98]Chica EJ, Albrigo LG. Expression of flower promoting genes in sweet orange during floral inductive water deficits[J]. Journal of the American Society for Horticultural Science, 2013, 138(2):88-94.

[99]Choi K, Kim J, Müller SY, et al. Regulation of microRNA-mediated developmental changes by the SWR1 chromatin remodeling complex[J]. Plant Physiology, 2016, 171(2):1128-1143.

[100]Chu M, Chen P, Meng S, et al. The Arabidopsis phosphatase PP2C49 negatively regulates salt tolerance through inhibition of AtHKT1;1[J]. Journal of Integrative Plant Biology, 2021, 63(3):528-542.

[101]Clarke AE, Dennis E, Mol J, et al. Forefronts of flowering[J]. The Plant Cell, 1992, 4(8):867-867.

[102]Cline MG. The role of hormones in apical dominance. New approaches to an old problem in plant development[J]. Physiologia Plantarum, 1994, 90(1):230-237.

[103]Colle M, Weng Y, Kang Y, et al. Variation in cucumber (Cucumis sativus L.) fruit size and shape results from multiple components acting pre-anthesis and post-pollination[J]. Planta, 2017, 246(4):641-658.

[104]Conde D, Le Gac AL, Perales M, et al. Chilling-responsive DEMETER-LIKE DNA demethylase mediates in poplar bud break[J]. Plant, Cell & Environment, 2017, 40(10):2236-2249.

[105]Corbesier L, Lejeune P, Bernier G. The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant[J]. Planta, 1998, 206(1):131-137.

[106]Corbesier L, Vincent C, Jang S, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis[J]. Science, 2007, 316(5827):1030-1033.

[107]Corelli-Grappadelli L, Coston DC. Thinning pattern and light environment in peach tree canopies influence fruit quality[J]. HortScience, 1991, 26(12):1464-1466.

[108]Costa G, Blanke MM, Widmer A. Principles of thinning in fruit tree crops-needs and novelties[J]. Acta Horticulturae, 2013, 998(998):17-26.

[109]Costa G, Botton A, Vizzotto G. Fruit thinning: Advances and trends[J]. Horticultural Reviews, 2018, 46:185-226.

[110]Costa G, Botton A. Thinning in peach: Past, present and future of an indispensable practice[J]. Scientia Horticulturae, 2022, 296:110895.

[111]Crupi P, Antonacci D, Savino M, et al. Girdling and gibberellic acid effects on yield and quality of a seedless red table grape for saving irrigation water supply[J]. European Journal of Agronomy, 2016, 80:21-31.

[112]Dagar A, Weksler A, Friedman H, et al. Gibberellic acid (GA3) application at the end of pit ripening: Effect on ripening and storage of two harvests of 'September Snow' peach[J]. Scientia Horticulturae, 2012, 140:125-130.

[113]De Lucas M, Daviere JM, Rodríguez-Falcón M, et al. A molecular framework for light and gibberellin control of cell elongation[J]. Nature, 2008, 451(7177):480-484.

[114]Dennis FG Jr, Neilsen JC. Physiological factors affecting biennial bearing in tree fruit: the role of seeds in apple[J]. HortScience, 1999, 34(2):317-322.

[115]Desta B, Amare G. Paclobutrazol as a plant growth regulator[J]. Chemical and Biological Technologies in Agriculture, 2021, 8(1):1-5.

[116]Devlin PF, Patel SR, Whitelam GC. Phytochrome E influences internode elongation and flowering time in Arabidopsis[J]. The Plant Cell, 1998, 10(9):1479-1487.

[117]Devlin PF, Robson PR, Patel SR, et al. Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time[J]. Plant Physiology, 1999, 119(3):909-916.

[118]Dijken AJ, Schluepmann H, Smeekens SC. Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering[J]. Plant Physiology, 2004, 135(2):969-977.

[119]Dijkstra P, Ter Reegen H, Kuiper PJ. Relation between relative growth rate, endogenous gibberellins, and the response to applied gibberellic acid for Plantago major[J]. Physiologia Plantarum, 1990, 79(4):629-634.

[120]Domingos S, Nobrega H, Raposo A, et al. Light management and gibberellic acid spraying as thinning methods in seedless table grapes (Vitis vinifera L.): Cultivar responses and effects on the fruit quality[J]. Scientia Horticulturae, 2016, 201:68-77.

[121]Dong F, Qi Y, Wang YN, et al. Screening of flower bud differentiation conditions and changes in metabolite content of Phalaenopsis pulcherrima[J]. South African Journal of Botany, 2024, 171:529-535.

[122]Dorsey MJ. Nodal development of the peach shoot as related to fruit bud formation[J]. American Journal of Botany, 1936, 23(4):245-257.

[123]Du X, Lu Y, Sun H, et al. Genome-wide analysis of wheat GATA transcription factor genes reveals their molecular evolutionary characteristics and involvement in salt and drought tolerance[J]. International Journal of Molecular Sciences, 2022, 24(1):27.

[124]Ellis B, Jansson S, Strauss SH, et al. Why and how Populus became a "model tree"[J]. Genetics and Genomics of Populus, 2010, 3-14.

[125]Endo M, Shimizu H, Nohales MA, et al. Tissue-specific clocks in Arabidopsis show asymmetric coupling[J]. Nature, 2014, 515(7527):419-422.

[126]Eshghi S, Tafazoli E, Dokhani S, et al. Changes in carbohydrate contents in shoot tips, leaves and roots of strawberry (Fragaria×ananassa Duch.) during flower-bud differentiation[J]. Scientia Horticulturae, 2007, 113(3):255-260.

[127]Ezzat M, Zhang W, Amar M, et al. Origins and genetic characteristics of Egyptian peach[J]. International Journal of Molecular Sciences, 2024, 25(15):8497.

[128]Fafournoux P, Bruhat A, Jousse C. Amino acid regulation of gene expression[J]. Biochemical Journal, 2000, 351(1):1-2.

[129]Famiani F, Proietti P, Pilli M, et al. Effects of application of thidiazuron (TDZ), gibberellic acid (GA3), and 2,4-dichlorophenoxyacetic acid (2,4-D) on fruit size and quality of Actinidia deliciosa 'Hayward'[J]. New Zealand Journal of Crop and Horticultural Science, 2007, 35(3):341-347.

[130]Fan L, Niu Z, Shi G, et al. WRKY22 transcription factor from Iris laevigata regulates flowering time and resistance to salt and drought[J]. Plants, 2024, 13(9):1191.

[131]Fan S, Zhang D, Gao C, et al. Mediation of flower induction by gibberellin and its inhibitor paclobutrazol: mRNA and miRNA integration comprises complex regulatory cross-talk in apple[J]. Plant and Cell Physiology, 2018, 59(11):2288-2307.

[132]Fang S, Gao K, Hu W, et al. Foliar and seed application of plant growth regulators affects cotton yield by altering leaf physiology and floral bud carbohydrate accumulation[J]. Field Crops Research, 2019, 231:105-114.

[133]Fenn MA, Giovannoni JJ. Phytohormones in fruit development and maturation[J]. The Plant Journal, 2021, 105(2):446-458.

[134]Fernie AR, Bachem CW, Helariutta Y, et al. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions[J]. Nature Plants, 2020, 6(2):55-66.

[135]Ferri VC, Rinaldi MM, Silva JA, et al. Gibberellic acid on ripening delay of Kakis (Diospyrus kaki, L.) cultivar Fuyu[J]. Food Science and Technology, 2004, 24(1):1-5.

[136]Food and Agriculture Organization of the United Nations (FAOSTAT). Crop production statistics 2022[DB/OL]. http://www.fao.org/faostat/en/#home, 2022.

[137]Fornara F, de Montaigu A, Coupland G. SnapShot: control of flowering in Arabidopsis[J]. Cell, 2010, 141(3):550.

[138]Franklin KA. Shade avoidance[J]. New Phytologist, 2008, 179(4):930-944.

[139]Funk JL, Vitousek PM. Resource-use efficiency and plant invasion in low-resource systems[J]. Nature, 2007, 446(7139):1079-1081.

[140]Gao C, Zhang Y, Li H, et al. Fruit bagging reduces the postharvest decay and alters the diversity of fruit surface fungal community in 'Yali' pear[J]. BMC Microbiology, 2022, 22(1):239.

[141]García-Pallas I, Val J, Blanco A. The inhibition of flower bud differentiation in 'Crimson Gold' nectarine with GA3 as an alternative to hand thinning[J]. Scientia Horticulturae, 2001, 90(3-4):265-278.

[142]Gasque M, Martí P, Granero B, et al. Effects of long-term summer deficit irrigation on 'Navelina'citrus trees[J]. Agricultural Water Management, 2016, 169:140-147.

[143]Gendron JM, Staiger D. New horizons in plant photoperiodism[J]. Annual Review of Plant Biology, 2023, 74(1):481-509.

[144]Girardi F, Canton M, Populin F, et al. A gibberellin-assisted study of the transcriptional and hormonal changes occurring at floral transition in peach buds (Prunus persica L. Batsch)[J]. BMC Plant Biology, 2024, 24(1):643.

[145]Goeckeritz CZ, Grabb C, Grumet R, et al. Genetic factors acting prior to dormancy in sour cherry influence bloom time the following spring[J]. Journal of Experimental Botany, 2024, 75(14):4428-4452.

[146]Goldberg-Moeller R, Shalom L, Shlizerman L, et al. Effects of gibberellin treatment during flowering induction period on global gene expression and the transcription of flowering-control genes in Citrus buds[J]. Plant Science, 2013, 198:46-57.

[147]Gómez-Soto D, Allona I, Perales M. FLOWERING LOCUS T2 promotes shoot apex development and restricts internode elongation via the 13-hydroxylation gibberellin biosynthesis pathway in poplar[J]. Frontiers in Plant Science, 2022, 12:814195.

[148]Gonzalez-Rossia D, Reig C, Juan M, et al. Horticultural factors regulating effectiveness of GA3 inhibiting flowering in peaches and nectarines (Prunus persica L. Batsch)[J]. Scientia Horticulturae, 2007, 111(4):352-357.

[149]Gou N, Zhu X, Yin M, et al. 15-cis-phytoene desaturase and 15-cis-phytoene synthase can catalyze the synthesis of β-carotene and influence the color of apricot pulp[J]. Foods, 2024, 13(2):300.

[150]Gu T, Jia S, Huang X, et al. Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening[J]. Planta, 2019, 250(1):145-162.

[151]Guan YR, Xue JQ, Xue YQ, et al. Effect of exogenous GA3 on flowering quality, endogenous hormones, and hormone- and flowering-associated gene expression in forcing-cultured tree peony (Paeonia suffruticosa)[J]. Journal of Integrative Agriculture, 2019, 18(6):1295-1311.

[152]Guerra ME, Rodrigo J. Japanese plum pollination: A review[J]. Scientia Horticulturae, 2015, 197:674-686.

[153]Günenc AN, Graf B, Stark H, et al. Fatty Acid Synthase: Structure, Function, and Regulation[J]. Sub-cellular biochemistry, 2022, 99:1–33.

[154]Guo S, Chen Y, Ju Y, et al. Fine-tuning gibberellin improves rice alkali-thermal tolerance and yield[J]. Nature, 2025, 639:162-171.

[155]Guo Y, An L, Yu H, et al. Endogenous hormones and biochemical changes during flower development and florescence in the buds and leaves of Lycium ruthenicum Murr[J]. Forests, 2022, 13(5):763.

[156]Halliday KJ, Koornneef M, Whitelam GC. Phytochrome B and at least one other phytochrome mediate the accelerated flowering response of Arabidopsis thaliana L. to low red/far-red ratio[J]. Plant Physiology, 1994, 104(4):1311-1315.

[157]Halliday KJ, Salter MG, Thingnaes E, et al. Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT[J]. The Plant Journal, 2003, 33(5):875-885.

[158]Halliday KJ, Whitelam GC. Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE[J]. Plant Physiology, 2003, 131(4):1913-1920.

[159]Hanke MV, Flachowsky H, Peil A, et al. No flower no fruit-genetic potentials to trigger flowering in fruit trees[J]. Genes Genomes Genomics, 2007, 1(1):1-20.

[160]Hellmann H, Funck D, Rentsch D, et al. Hypersensitivity of an Arabidopsis sugar signaling mutant toward exogenous proline application[J]. Plant Physiology, 2000, 122(2):357-368.

[161]Hernández JA, Díaz-Vivancos P, Acosta-Motos JR, et al. Interplay among antioxidant system, hormone profile and carbohydrate metabolism during bud dormancy breaking in a high-chill peach variety[J]. Antioxidants, 2021a, 10(4):560.

[162]Hernández JA, Díaz-Vivancos P, Martínez-Sánchez G, et al. Physiological and biochemical characterization of bud dormancy: Evolution of carbohydrate and antioxidant metabolisms and hormonal profile in a low chill peach variety[J]. Scientia Horticulturae, 2021b, 281:109957.

[163]Ho LC. Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1988, 39(1):355-378.

[164]Hoad GV. The role of seed derived hormones in the control of flowering in apple[J]. Acta Horticulturae, 1978, 80(14):93-104.

[165]Horvath DP, Anderson JV, Chao WS, et al. Knowing when to grow: signals regulating bud dormancy[J]. Trends in Plant Science, 2003, 8(11):534-540.

[166]Hou X, Zhou J, Liu C, et al. Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis[J]. Nature Communications, 2014, 5(1):4601.

[167]Hou ZX, Huang WD. Immunohistochemical localization of IAA and ABP1 in strawberry shoot apexes during floral induction[J]. Planta, 2005, 222(4):678-687.

[168]Howe GT, Davis J, Jeknic Z, et al. Physiological and genetic approaches to studying endodormancy-related traits in Populus[J]. HortScience, 1999, 34(7):1174-1184.

[169]Hsu CY, Adams JP, Kim H, et al. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar[J]. Proceedings of the National Academy of Sciences, 2011, 108(26):10756-10761.

[170]Hu WJ, Harding SA, Lung J, et al. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees[J]. Nature Biotechnology, 1999, 17(8):808-812.

[171]Huang H, Qiao X, Cao S. Studies on the period of physiological differentiation of flower buds in apple trees[J]. Acta Horticulturae Sinica, 1986, 13(3):181-186.

[172]Huang J, Zhao X, Bürger M, et al. The role of ethylene in plant temperature stress response[J]. Trends in Plant Science, 2023, 28(7):808-824.

[173]Huang X, Chen S, Li W, et al. ROS regulated reversible protein phase separation synchronizes plant flowering[J]. Nature Chemical Biology, 2021, 17(5):549-557.

[174]Hummel I, Pantin F, Sulpice R, et al. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis[J]. Plant Physiology, 2010, 154(1):357-372.

[175]Hundertmark M, Hincha DK. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana[J]. BMC Genomics, 2008, 9(1):1-22.

[176]Huttly AK, Phillips AL. Gibberellin-regulated plant genes[J]. Physiologia Plantarum, 1995, 95(2):310-317.

[177]Iñigo S, Giraldez AN, Chory J, et al. Proteasome-mediated turnover of Arabidopsis MED25 is coupled to the activation of FLOWERING LOCUS T transcription[J]. Plant Physiology, 2012, 160(3):1662-1673.

[178]Iqbal N, Nazar R, Khan MI, et al. Role of gibberellins in regulation of source-sink relations under optimal and limiting environmental conditions[J]. Current Science, 2011, 100(7):998-1007.

[179]Izawa T. What is going on with the hormonal control of flowering in plants?[J]. The Plant Journal, 2021, 105(2):431-445.

[180]Javed T, Gao SJ. WRKY transcription factors in plant defense[J]. Trends in Genetics, 2023, 39(10):787-801.

[181]Jayasooriya LS, Shin MH, Jang KE, et al. Assessing the effects of high temperature on physiological disorders in peach fruit (Prunus persica L.)[J]. Acta Horticulturae, 2024, 1401:141.

[182]Jiang C, Zhang W, Zhang Y, et al. Integrated metabolomic and transcriptomic analysis revealed the transition of functional components in edible flower buds of Hemerocallis citrina Baroni[J]. Food Chemistry:X, 2024, 24:101852.

[183]Jiang X, Li H, Wang T, et al. Gibberellin indirectly promotes chloroplast biogenesis as a means to maintain the chloroplast population of expanded cells[J]. The Plant Journal, 2012, 72(5):768-780.

[184]Jiang Y, Liu Y, Gao Y, et al. Gibberellin induced transcriptome profiles reveal gene regulation of loquat flowering[J]. Frontiers in Genetics, 2021, 12:703688.

[185]Jiang Y, Peng J, Zhu Y, et al. The Role of EjSOC1s in Flower Initiation in Eriobotrya japonica[J]. Frontiers in Plant Science, 2019, 10:253.

[186]Jiang Y, Zhu Y, Zhang L, et al. EjTFL1 genes promote growth but inhibit flower bud differentiation in loquat[J]. Frontiers in Plant Science, 2020, 11:576.

[187]Jorquera-Fontena E, Pastenes C, Meriño-Gergichevich C, et al. Effect of source/sink ratio on leaf and fruit traits of blueberry fruiting canes in the field[J]. Scientia Horticulturae, 2018, 241:51-56.

[188]Ju Z, Duan Y, Ju Z. Combinations of GA3 and AVG delay fruit maturation, increase fruit size and improve storage life of 'Feicheng' peaches[J]. The Journal of Horticultural Science and Biotechnology, 1999, 74(5):579-583.

[189]Julian C, Rodrigo J, Herrero M, et al. Stamen development and winter dormancy in apricot (Prunus armeniaca)[J]. Annals of Botany, 2011, 108(4):617-625.

[190]Kataoka K, Yashiro Y, Habu T, et al. The addition of gibberellic acid to auxin solutions increases sugar accumulation and sink strength in developing auxin-induced parthenocarpic tomato fruits[J]. Scientia Horticulturae, 2009, 123(2):228-233.

[191]Kazan K, Lyons R. The link between flowering time and stress tolerance[J]. Journal of Experimental Botany, 2016, 67(1):47-60.

[192]Keawmanee N, Ma G, Zhang L, et al. Exogenous gibberellin induced regreening through the regulation of chlorophyll and carotenoid metabolism in Valencia oranges[J]. Plant Physiology and Biochemistry, 2022, 173:14-24.

[193]Kebrom TH, Mullet JE. Transcriptome profiling of tiller buds provides new insights into PhyB regulation of tillering and indeterminate growth in sorghum[J]. Plant Physiology, 2016, 170(4):2232-2250.

[194]King RW, Ben-Tal Y. A florigenic effect of sucrose in Fuchsia hybrida is blocked by gibberellin-induced assimilate competition[J]. Plant Physiology, 2001, 125(1):488-496.

[195]King RW, Zeevaart JA. Floral stimulus movement in Perilla and flower inhibition caused by noninduced leaves[J]. Plant Physiology, 1973, 51(4):727-738.

[196]Kinoshita A, Richter R. Genetic and molecular basis of floral induction in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2020, 71(9):2490-2504.

[197]Kishor PK, Sangam S, Amrutha RN, et al. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance[J]. Current Science, 2005, 88(3):424-438.

[198]Koshita Y, Takahara T. Effect of water stress on flower-bud formation and plant hormone content of satsuma mandarin (Citrus unshiu Marc.)[J]. Scientia Horticulturae, 2004, 99(3-4):301-307.

[199]Kotoda N, Wada M, Komori S, et al. Expression pattern of homologues of floral meristem identity genes LFY and AP1 during flower development in apple[J]. Journal of the American Society for Horticultural Science, 2000, 125(4):398-403.

[200]Kou X, Feng Y, Yuan S, et al. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: a review[J]. Plant Molecular Biology, 2021, 107(4-5):1-21.

[201]Koutinas N, Pepelyankov G, Lichev V. Flower induction and flower bud development in apple and sweet cherry[J]. Biotechnology & Biotechnological Equipment, 2010, 24(1):1549-1558.

[202]Kuhn N, Maldonado J, Ponce C, et al. RNAseq reveals different transcriptomic responses to GA3 in early and midseason varieties before ripening initiation in sweet cherry fruits[J]. Scientific Reports, 2021, 11(1):13075.

[203]Kwon JH, Jun JH, Nam EY, et al. Profiling diversity and comparison of Eastern and Western cultivars of Prunus persica based on phenotypic traits[J]. Euphytica, 2015, 206(2):401-415.

[204]Lang A, Chailakhyan MK, Frolova IA. Promotion and inhibition of flower formation in a dayneutral plant in grafts with a short-day plant and a long-day plant[J]. Proceedings of the National Academy of Sciences, 1977, 74(6):2412-2416.

[205]Lang GA. Dormancy: A New Universal Terminology[J]. HortScience, 1987, 22(5):817-820.

[206]Laubinger S, Marchal V, Gentilhomme J, et al. Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability[J]. Development, 2006, 133(16):3213-22.

[207]Lavee S. Involvement of plant growth regulators and endogenous growth substances in the control of alternate bearing[J]. Acta Horticulturae, 1989, 239:50.

[208]Lee JH, Ryu HS, Chung KS, et al. Regulation of temperature-responsive flowering by MADS-box transcription factor repressors[J]. Science, 2013, 342(6158):628-632.

[209]Leida C, Conesa A, Llácer G, et al. Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner[J]. New Phytologist, 2012, 193(1):67-80.

[210]Levy YY, Dean C. The transition to flowering[J]. The Plant Cell, 1998, 10(12):1973-1989.

[211]Li C, Ji J, Wang G, et al. Over-expression of LcPDS, LcZDS, and LcCRTISO, genes from wolfberry for carotenoid biosynthesis, enhanced carotenoid accumulation, and salt tolerance in tobacco[J]. Frontiers in Plant Science, 2020, 11:119.

[212]Li D, Zhang X, Li L, et al. Elevated CO2 delayed the chlorophyll degradation and anthocyanin accumulation in postharvest strawberry fruit[J]. Food Chemistry, 2019, 285:163-170.

[213]Li H, Wu H, Qi Q, et al. Gibberellins play a role in regulating tomato fruit ripening[J]. Plant and Cell Physiology, 2019, 60(7):1619-1629.

[214]Li M, An F, Li W, et al. DELLA proteins interact with FLC to repress flowering transition[J]. Journal of Integrative Plant Biology, 2016, 58(7):642-655.

[215]Li M, Wang X, Li C, et al. Silencing GRAS2 reduces fruit weight in tomato[J]. Journal of Integrative Plant Biology, 2018, 60(6):498-513.

[216]Li R, Sun S, Wang H, et al. FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato[J]. Nature Communications, 2020, 11(1):5844.

[217]Li S, Fu Q, Chen L, et al. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance[J]. Planta, 2011, 233(6):1237-1252.

[218]Li S, Yang N, Chen L. Paraffin section observation of flower bud differentiation of Chimonanthus praecox in Kunming and comparison of the differentiation processes in different regions, China[J]. Horticultural Plant Journal, 2022, 8(2):221-229.

[219]Li W, Wang H, Yu D. Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions[J]. Molecular Plant, 2016, 9(11):1492-1503.

[220]Li WF, Zhou Q, Ma ZH, et al. Regulatory mechanism of GA3 application on grape (Vitis vinifera L.) berry size[J]. Plant Physiology and Biochemistry, 2024, 210:108543.

[221]Li X, Li S, Lin J. Effect of GA3 spraying on lignin and auxin contents and the correlated enzyme activities in bayberry (Myrica rubra Bieb.) during flower-bud induction[J]. Plant Science, 2003, 164(4):549-556.

[222]Li X, Liu P, Zhou J, et al. Effects of exogenous application of GA4+7 and NAA on sugar accumulation and related gene expression in peach fruits during developing and ripening stages[J]. Journal of Plant Growth Regulation, 2021, 40(6):962-973.

[223]Li X, Yang Y, Yao J, et al. FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice[J]. Plant Molecular Biology, 2009, 69(4):685-697.

[224]Li Y, Cao K, Zhu G, et al. Genomic analyses of an extensive collection of wild and cultivated accessions provide new insights into peach breeding history[J]. Genome Biology, 2019, 20:36.

[225]Li Y, Fang WC, Zhu GR, et al. Accumulated chilling hours during endodormancy impact blooming and fruit shape development in peach (Prunus persica L.)[J]. Journal of Integrative Agriculture, 2016, 15(6):1267-1274.

[226]Li Y, Zhang D, An N, et al. Transcriptomic analysis reveals the regulatory module of apple (Malus× domestica) floral transition in response to 6-BA[J]. BMC Plant Biology, 2019, 19(1):1-7.

[227]Li YH, Wu YJ, Wu B, et al. Exogenous gibberellic acid increases the fruit weight of 'Comte de Paris' pineapple by enlarging flesh cells without negative effects on fruit quality[J]. Acta Physiologiae Plantarum, 2011, 33(5):1715-1722.

[228]Li Z, Reighard GL, Abbott AG, et al. Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns[J]. Journal of Experimental Botany, 2009, 60(12):3521-3530.

[229]Liang D, Shen Y, Ni Z, et al. Exogenous melatonin application delays senescence of kiwifruit leaves by regulating the antioxidant capacity and biosynthesis of flavonoids[J]. Frontiers in Plant Science, 2018, 9:426.

[230]Lichtenthaler HK, Wellburn AR. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Biochemical Society Transactions, 1983, 11(5):591-592.

[231]Lindo-García V, Muñoz P, Larrigaudière C, et al. Interplay between hormones and assimilates during pear development and ripening and its relationship with the fruit postharvest behavior[J]. Plant Science, 2020, 291:110339.

[232]Liu C, Xiao P, Jiang F, et al. Exogenous gibberellin treatment improves fruit quality in self-pollinated apple[J]. Plant Physiology and Biochemistry, 2022, 174:11-21.

[233]Liu H, Specht CD, Zhao T, et al. Morphological anatomy of leaf and rhizome in Zingiber officinale Roscoe, with emphasis on secretory structures[J]. HortScience, 2020, 55(2):204-207.

[234]Liu L, Li C, Liang Z, et al. Characterization of multiple C2 domain and transmembrane region proteins in Arabidopsis[J]. Plant Physiology, 2018, 176(3):2119-2132.

[235]Liu L, Wang Z, Liu J, et al. Histological, hormonal and transcriptomic reveal the changes upon gibberellin-induced parthenocarpy in pear fruit[J]. Horticulture Research, 2018, 5:1-12.

[236]Liu Q, Luo L, Zheng L. Lignins: biosynthesis and biological functions in plants[J]. International Journal of Molecular Sciences, 2018, 19(2):335.

[237]Lopes FL, Formosa-Jordan P, Malivert A, et al. Sugar signaling modulates SHOOT MERISTEMLESS expression and meristem function in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2024, 121(37):e2408699121.

[238]Lu L, Liang J, Chang X, et al. Enhanced vacuolar invertase activity and capability for carbohydrate import in GA-treated inflorescence correlate with increased fruit set in grapevine[J]. Tree Genetics & Genomes, 2017, 13(1):1-2.

[239]Luckwill LC, Weaver P, MacMillan J. Gibberellins and other growth hormones in apple seeds[J]. Journal of Horticultural Science, 1969, 44(4):413-424.

[240]Luedeling E. Climate change impacts on winter chill for temperate fruit and nut production: a review[J]. Scientia Horticulturae, 2012, 144:218-229.

[241]Ma Z, Li W, Wang H, et al. WRKY transcription factors WRKY12 and WRKY13 interact with SPL10 to modulate age-mediated flowering[J]. Journal of Integrative Plant Biology, 2020, 62(11):1659-1673.

[242]Mandal R, Dutta G. From photosynthesis to biosensing: Chlorophyll proves to be a versatile molecule[J]. Sensors International, 2020, 1:100058.

[243]Manzi M, Borsani O, Díaz P, et al. Relationship between flower intensity, oxidative damage and protection in Citrus under water stress conditions[J]. Acta Horticulturae, 2015, 1065:1243-1249.

[244]Martínez-Romero D, Valero D, Serrano M, et al. Exogenous polyamines and gibberellic acid effects on peach (Prunus persica L.) storability improvement[J]. Journal of Food Science, 2000, 65(2):288-294.

[245]Mattioli R, Marchese D, D'Angeli S, et al. Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis[J]. Plant Molecular Biology, 2008, 66(3):277-288.

[246]McLellan H, Chen K, He Q, et al. The ubiquitin E3 ligase PUB17 positively regulates immunity by targeting a negative regulator, KH17, for degradation[J]. Plant Communications, 2020, 1(4):100052.

[247]Meng LS, Bao QX, Mu XR, et al. Glucose-and sucrose-signaling modules regulate the Arabidopsis juvenile-to-adult phase transition[J]. Cell Reports, 2021, 36(2):109389.

[248]Meng X, Li Y, Yuan Y, et al. The regulatory pathways of distinct flowering characteristics in Chinese jujube[J]. Horticulture Research, 2020, 7:123.

[249]Michaels SD, Amasino RM. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization[J]. The Plant Cell, 2001, 13(4):935-941.

[250]Moghaddam MR, Ende WV. Sugars, the clock and transition to flowering[J]. Frontiers in Plant Science, 2013, 4:22.

[251]Moon J, Suh SS, Lee H, et al. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis[J]. The Plant Journal, 2003, 35(5):613-623.

[252]Muhammad N, Liu Z, Wang L, et al. The underlying molecular mechanisms of hormonal regulation of fruit color in fruit-bearing plants[J]. Plant Molecular Biology, 2024, 114(5):104.

[253]Muñoz-Fambuena N, Mesejo C, González-Mas MC, et al. Gibberellic acid reduces flowering intensity in sweet orange [Citrus sinensis (L.) Osbeck] by repressing CiFT gene expression[J]. Journal of Plant Growth Regulation, 2012, 31(4):529-536.

[254]Murcia G, Pontin M, Piccoli P. Role of ABA and Gibberellin A3 on gene expression pattern of sugar transporters and invertases in Vitis vinifera cv. Malbec during berry ripening[J]. Plant Growth Regulation, 2018, 84(2):275-283.

[255]Mutasa-Göttgens E, Hedden P. Gibberellin as a factor in floral regulatory networks[J]. Journal of Experimental Botany, 2009, 60(7):1979-1989.

[256]Nakagawa M, Honsho C, Kanzaki S, et al. Isolation and expression analysis of FLOWERING LOCUS T-like and gibberellin metabolism genes in biennial-bearing mango trees[J]. Scientia Horticulturae, 2012, 139:108-117.

[257]Nanjo T, Kobayashi M, Yoshiba Y, et al. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana[J]. The Plant Journal, 1999, 18(2):185-193.

[258]Niu R, Huang J, Wang F, et al. Comparative transcriptome analysis revealed the new role of hormones in flower bud differentiation of peach trees under different chilling hours[J]. Horticulturae, 2024, 10(12):1292.

[259]Niu S, Yuan H, Sun X, et al. A transcriptomics investigation into pine reproductive organ development[J]. New Phytologist, 2016, 209(3):1278-1289.

[260]Nuñez C, Dupré G, Mujica K, et al. Thinning alters the expression of the PpeSUT1 and PpeSUT4 sugar transporter genes and the accumulation of translocated sugars in the fruits of an early season peach variety[J]. Plant Growth Regulation, 2019, 88(3):283-296.

[261]Núñez-Lillo G, Zabala J, Lillo-Carmona V, et al. NAC072 Interacts with HB12, HAT9, and MYBR1 in a temporal regulatory network controlling peach fruit development[J]. Journal of Plant Growth Regulation, 2023, 13:1-5.

[262]Okie WR, Blackburn B. Increasing chilling reduces heat requirement for floral budbreak in peach[J]. HortScience, 2011, 46(2):245-252.

[263]Oliveira CM, Browning G. Gibberellin structure-activity effects on flower initiation in mature trees and on shoot growth in mature and juvenile Prunus avium[J]. Plant Growth Regulation, 1993, 13:55-63.

[264]Ozkan Y, Ucar M, Yildiz K, et al. Pre-harvest gibberellic acid (GA3) treatments play an important role on bioactive compounds and fruit quality of sweet cherry cultivars[J]. Scientia Horticulturae, 2016, 211:358-362.

[265]Ozturk B, Aglar E, Saracoglu O, et al. Effects of GA3, CaCl2 and modified atmosphere packaging (MAP) applications on fruit quality of sweet cherry at cold storage[J]. International Journal of Fruit Science, 2022, 22(1):696-710.

[266]Pallas B, Bluy S, Ngao J, et al. Growth and carbon balance are differently regulated by tree and shoot fruiting contexts: an integrative study on apple genotypes with contrasted bearing patterns[J]. Tree Physiology, 2018, 38(9):1395-1408.

[267]Pan L, Zeng W, Niu L, et al. PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening[J]. Journal of Experimental Botany, 2015, 66(22):7031-7044.

[268]Pastore C, Zenoni S, Tornielli GB, et al. Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening[J]. BMC Genomics, 2011, 12(1):1-23.

[269]Paux E, Carocha V, Marques C, et al. Transcript profiling of Eucalyptus xylem genes during tension wood formation[J]. New Phytologist, 2005, 167(1):89-100.

[270]Pegoraro C, Chaves FC, Dal Cero J, et al. Effects of pre-harvest gibberellic acid spraying on gene transcript accumulation during peach fruit development[J]. Plant Growth Regulation, 2011, 65(2):231-237.

[271]Pierre-Jerome E, Drapek C, Benfey PN. Regulation of division and differentiation of plant stem cells[J]. Annual Review of Cell and Developmental Biology, 2018, 34(1):289-310.

[272]Plavcová L, Jupa R, Hoch G, et al. Seasonal coordination of aboveground vegetative and reproductive growth and storage in apple trees subjected to defoliation, flower and fruit thinning[J]. Trees, 2024, 38(5):1109-1118.

[273]Porri A, Torti S, Romera-Branchat M, et al. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods[J]. Development, 2012, 139(12):2198-2209.

[274]Qu Y, Chen X, Mao X, et al. Transcriptome analysis reveals the role of GA3 in regulating the asynchronism of floral bud differentiation and development in heterodichogamous Cyclocarya paliurus (Batal.) Iljinskaja[J]. International Journal of Molecular Sciences, 2022, 23(12):6763.

[275]Quesada-Traver C, Lloret A, Carretero-Paulet L, et al. Evolutionary origin and functional specialization of Dormancy-Associated MADS box (DAM) proteins in perennial crops[J]. BMC plant biology, 2022, 22(1), 473.

[276]Rakonjac V. Correlative relation of yield and fruit quality with some phenological phases in peach[J]. Genetika, 2005, 37(3):199-208.

[277]Raseira MC, Moore JN. Time of flower bud initiation in peach cultivars differing in chilling requirement[J]. HortScience, 1987:216-218.

[278]Rehman S, Bahadur S, Xia W. An overview of floral regulatory genes in annual and perennial plants[J]. Gene, 2023, 885:147699.

[279]Reinoso H, Luna V, Pharis RP, et al. Dormancy in peach (Prunus persica) flower buds. V. Anatomy of bud development in relation to phenological stage[J]. Canadian Journal of Botany, 2002, 80(6):656-663.

[280]Richter R, Behringer C, Müller IK, et al. The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS[J]. Genes & Development, 2010, 24(18):2093-2104.

[281]Richter R, Behringer C, Zourelidou M, et al. Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 2013, 110(32):13192-13197.

[282]Ríos G, Tadeo FR, Leida C, et al. Prediction of components of the sporopollenin synthesis pathway in peach by genomic and expression analyses[J]. BMC Genomics, 2013, 14:40.

[283]Rohde A, Bhalerao RP. Plant dormancy in the perennial context[J]. Trends in Plant Science, 2007, 12(5):217-223.

[284]Romanenko KO, Babenko LM, Kosakivska IV. Amino acids in regulation of abiotic stress tolerance in cereal crops:a review[J]. Cereal Research Communications, 2024, 52(2):333-356.

[285]Sachs RM, Hackett WP. Control of Vegetative and Reproductive Development in Seed Plants1[J]. Journal of the American Society for Horticultural Science , 1969, n. pag.

[286]Samson DA, Werk KS. Size-dependent effects in the analysis of reproductive effort in plants[J]. The American Naturalist, 1986, 127(5):667-680.

[287]Schönrock N, Bouveret R, Leroy O, et al. Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway[J]. Genes & Development, 2006, 20(12):1667-1678.

[288]Sedaghat S, Gaaliche B, Rahemi M, et al. Enzymatic activity and physico-chemical changes of terminal bud in rain-fed fig (Ficus carica L. 'Sabz') during dormant season[J]. Horticultural Plant Journal, 2022, 8(2):195-204.

[289]Shalom L, Samuels S, Zur N, et al. Alternate bearing in citrus: changes in the expression of flowering control genes and in global gene expression in ON-versus OFF-crop trees[J]. PLoS One, 2017, 7(10):e46930

[290]Shang C, Cao X, Tian T, et al. Cross-talk between transcriptome analysis and dynamic changes of carbohydrates identifies stage-specific genes during the flower bud differentiation process of Chinese cherry (Prunus pseudocerasus L.)[J]. International Journal of Molecular Sciences, 2022, 23(24):15562.

[291]Shen XD, He RX, Li X, et al. Effect of shoot control on flower bud differentiation, flowering, and fruit setting in Zanthoxylum armatum DC[J]. Phyton (Buenos Aires), 2023, 92(12):3251-3266.

[292]Shibaoka H. Plant hormone-induced changes in the orientation of cortical microtubules: alterations in the cross-linking between microtubules and the plasma membrane[J]. Annual Review of Plant Biology, 1994, 45:527-544.

[293]Shim JS, Kubota A, Imaizumi T. Circadian clock and photoperiodic flowering in Arabidopsis: CONSTANS is a hub for signal integration[J]. Plant Physiology, 2017, 173(1):5-15.

[294]Si Y, Wen Y, Ye H, et al. The Sink-Source Relationship Regulated Camellia oleifera Flower Bud Differentiation by Influencing Endogenous Hormones and Photosynthetic Characteristics[J]. Forests, 2023, 14(10):1965.

[295]Sidhu RS, Bound SA, Hunt I. Crop Load and Thinning Methods Impact Yield, Nutrient Content, Fruit Quality, and Physiological Disorders in ‘Scilate’ Apples[J]. Agronomy, 2022, 12:1989.

[296]Singh RK, Svystun T, AlDahmash B, et al. Photoperiod- and temperature-mediated control of phenology in trees - a molecular perspective[J]. New Phytologist, 2017, 213(2):511-524.

[297]Smeekens S, Ma J, Hanson J, et al. Sugar signals and molecular networks controlling plant growth[J]. Current Opinion in Plant Biology, 2010, 13(3):273-278.

[298]Smirnova J, Fernie AR, Steup M. Starch degradation[J]. Annual Review of Plant Biology, 2005. 56:73–98.

[299]Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries[J]. Frontiers in Plant Science, 2024, 15:1336892.

[300]Song H, Duan Z, Zhang J. WRKY transcription factors modulate flowering time and response to environmental changes[J]. Plant Physiology and Biochemistry, 2024, 108630.

[301]Song YH, Shim JS, Kinmonth-Schultz HA, et al. Photoperiodic flowering: time measurement mechanisms in leaves[J]. Annual Review of Plant Biology, 2015, 66(1):441-464.

[302]Sonnewald U, Fernie AR. Next-generation strategies for understanding and influencing source-sink relations in crop plants[J]. Current Opinion in Plant Biology, 2018, 43:63-70.

[303]Sønsteby A, Heide OM. Temperature effects on growth and floral initiation in sweet cherry (Prunus avium L.)[J]. Scientia Horticulturae, 2019, 257:108762.

[304]Southwick SM, Glozer K. Reducing flowering with gibberellins to increase fruit size in stone fruit trees: applications and implications in fruit production[J]. HortTechnology, 2000, 10(4):744-751.

[305]Southwick SM, Jr R. Commercial chemical thinning of stone fruit in California by gibberellins to reduce flowering[J]. Acta Horticulturae, 1995, 394:134-147.

[306]Southwick SM, Weis KG, Yeager JT, et al. Controlling cropping in 'Loadel' cling peach using gibberellin: Effects on flower density, fruit distribution, fruit firmness, fruit thinning, and yield[J]. Journal of the American Society for Horticultural Science, 1995, 120(6):1087-1095.

[307]Southwick SM, Yeager JT. Use of gibberellin formulations for improved fruit firmness and chemical thinning in 'Patterson' apricot[J]. Acta Horticulturae, 1995, 384 (67):425-429.

[308]Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome[J]. Cellular and Molecular Life Sciences, 2011, 68:2013-2037.

[309]Stern RA, Ben-Arie R. GA3 inhibits flowering, reduces hand-thinning, and increases fruit size in peach and nectarine[J]. The Journal of Horticultural Science and Biotechnology, 2009, 84(2):119-124.

[310]Su D, Liu K, Yu Z, et al. Genome-wide characterization of the tomato GASA family identifies SlGASA1 as a repressor of fruit ripening[J]. Horticulture Research, 2023, 10(1):uhac222.

[311]Suárez-López P, Wheatley K, Robson F, et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis[J]. Nature, 2001, 410(6832):1116-1120.

[312]Suo GD, Xie YS, Zhang Y, et al. Crop load management (CLM) for sustainable apple production in China[J]. Scientia Horticulturae, 2016, 211:213-219.

[313]Susila H, Gawarecka K, Youn G, et al. THYLAKOID FORMATION 1 interacts with FLOWERING LOCUS T and modulates temperature-responsive flowering in Arabidopsis[J]. The Plant Journal, 2024, 120(1):60-75.

[314]Tan FC, Swain SM. Genetics of flower initiation and development in annual and perennial plants[J]. Physiologia Plantarum, 2006, 128(1):8-17.

[315]Tan M, Li G, Liu X, et al. Exogenous application of GA3 inactively regulates axillary bud outgrowth by influencing of branching-inhibitors and bud-regulating hormones in apple (Malus domestica Borkh.)[J]. Molecular Genetics and Genomics, 2018, 293(6):1547-1563.

[316]Taylor BH, Geisler-Taylor D. Flower bud thinning and winter survival of 'Redhaven' and 'Cresthaven' peach in response to GA3 sprays[J]. Journal of the American Society for Horticultural Science, 1998, 123(4), 500-508.

[317]Tognetti JA, Pontis HG, Martínez-Noël GM. Sucrose signaling in plants: a world yet to be explored[J]. Plant Signaling & Behavior, 2013, 8(3):e23316.

[318]Ueguchi-Tanaka M, Nakajima M, Katoh E, et al. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin[J]. The Plant Cell, 2007, 19(7):2140-2155.

[319]Vanderbeld B, Snedden WA. Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37, CML38 and CML39[J]. Plant Molecular Biology, 2007, 64(6):683-697.

[320]Vimolmangkang S, Zheng H, Peng Q, et al. Assessment of sugar components and genes involved in the regulation of sucrose accumulation in peach fruit[J]. Journal of Agricultural and Food Chemistry, 2016, 64(35):6723-6729.

[321]Wang H, Pan J, Li Y, et al. The DELLA-CONSTANS transcription factor cascade integrates gibberellic acid and photoperiod signaling to regulate flowering[J]. Plant Physiology, 2016, 172(1):479-488.

[322]Wang H, Wang H. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits[J]. Molecular Plant, 2015, 8(5):677-688.

[323]Wang J, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell. 2009 Aug 21;138(4):738-49.

[324]Wang J, Liu J, Jiu S, et al. The MADS-box genes PaMADS3/4/5 co-regulate multi-pistil formation induced by high temperature in Prunus avium L.[J]. Scientia Horticulturae, 2019, 256:108593.

[325]Wang J, Sun W, Wang L, et al. FRUITFULL is involved in double fruit formation at high temperature in sweet cherry[J]. Environmental and Experimental Botany, 2022, 201:104986.

[326]Wang J. Regulation of flowering time by the miR156-mediated age pathway[J]. Journal of Experimental Botany, 2014, 65(17):4723-4730.

[327]Wang L, Li J, Yang F, et al. Application of bioorganic fertilizer significantly increased apple yields and shaped bacterial community structure in orchard soil[J]. Microbial Ecology, 2017, 73(2):404-416.

[328]Wang X, Yu M, Guo S, et al. The relationship between different fruit load treatments and fruit quality in peaches[J]. Horticulturae, 2023, 9(7):817.

[329]Webster AD. Factors influencing the flowering, fruit set and fruit growth of European pears[J]. Acta Horticulturae, 2002, 596:699-709.

[330]Weksler A, Dagar A, Friedman H, et al. The effect of gibberellin on firmness and storage potential of peaches and nectarines[J]. Acta Horticulturae,2012,962(80):591-598.

[331]Wen Y, Su SC, Ma LY, et al. Effects of gibberellic acid on photosynthesis and endogenous hormones of Camellia oleifera Abel. in 1st and 6th leaves[J]. Journal of Forest Research, 2018, 23(5):309-317.

[332]Wickland DP, Hanzawa Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: functional evolution and molecular mechanisms[J]. Molecular Plant, 2015, 8(7):983-997.

[333]Wilkie JD, Sedgley M, Olesen T. Regulation of floral initiation in horticultural trees[J]. Journal of Experimental Botany, 2008, 59(12):3215-3228.

[334]Wright IJ, Reich PB, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827.

[335]Wu G, Park MY, Conway SR, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009, 138(4):750-759.

[336]Wu LJ, Wang XT, Wang SX, et al. Comparative proteomic analysis of the shoot apical meristem in maize between a ZmCCT-associated near-isogenic line and its recurrent parent[J]. Scientific Reports, 2016, 6(1):30641.

[337]Wu W, Sun NJ, Xu Y, et al. Exogenous gibberellin delays maturation in persimmon fruit through transcriptional activators and repressors[J]. Plant Physiology, 2023, 193(1):840-854.

[338]Wu Z, Huang L, Huang F, et al. Temporal transcriptome analysis provides molecular insights into flower development in red-flesh pitaya[J]. Electronic Journal of Biotechnology, 2022, 58:55-69.

[339]Xiao R, Zou Y, Guo X, et al. Fatty acid desaturases (FADs) modulate multiple lipid metabolism pathways to improve plant resistance[J]. Molecular Biology Reports, 2022, 49(10):9997-10011.

[340]Xie H, Li X, Sun Y, et al. DNA methylation of the autonomous pathway is associated with flowering time variations in Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2024, 25(13):7478.

[341]Xing LB, Zhang D, Li YM, et al. Transcription profiles reveal sugar and hormone signaling pathways mediating flower induction in apple (Malus domestica Borkh.)[J]. Plant and Cell Physiology, 2015, 56(10):2052-2068.

[342]Xu F, Li T, Xu PB, et al. DELLA proteins physically interact with CONSTANS to regulate flowering under long days in Arabidopsis[J]. FEBS Letters, 2016, 590(4):541-549.

[343]Xue Z, Yang R, Wang Y, et al. Candidate gene mining of GA-mediated regulation of pear fruit shape[J]. Horticulture, Environment, and Biotechnology, 2024, 65(3):403-412.

[344]Yahata D, Matsumoto K, Ushijima K. Relationship between flower-bud differentiation and carbohydrate contents in spring shoots of very-early, early and late maturing cultivars of satsuma mandarin[J]. Journal of the Japanese Society for Horticultural Science, 2004, 73(5):405-410.

[345]Yamaguchi N, Winter CM, Wu MF, et al. Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis[J]. Science, 2014, 344(6184):638-641.

[346]Yamaguchi N, Wu MF, Winter CM, et al. A molecular framework for auxin-mediated initiation of flower primordia[J]. Developmental Cell, 2013, 24(3):271-282.

[347]Yamamoto Y, Hirai T, Yamamoto E, et al. A rice gid1 suppressor mutant reveals that gibberellin is not always required for interaction between its receptor, GID1, and DELLA proteins[J]. The Plant Cell, 2010, 22(11):3589-3602.

[348]Yang H, Li J, Li X, et al. The mechanism of gibberellins treatment suppressing kiwifruit postharvest ripening processes by transcriptome analysis[J]. Postharvest Biology and Technology, 2023, 198:112223.

[349]Yang Q, Gao Y, Wu X, et al. Bud endodormancy in deciduous fruit trees: advances and prospects[J]. Horticulture Research, 2021, 8:139.

[350]Yanovsky MJ, Kay SA. Molecular basis of seasonal time measurement in Arabidopsis[J]. Nature, 2002, 419(6904):308-312.

[351]Yemm EW, Cocking EC, Ricketts RE. The determination of amino-acids with ninhydrin[J]. Analyst, 1955, 80(948):209-214.

[352]Yu K, Wei J, Ma Q, et al. Senescence of aerial parts is impeded by exogenous gibberellic acid in herbaceous perennial Paris polyphylla[J]. Journal of Plant Physiology, 2009, 166(8):819-830.

[353]Zang YX, Chun IJ, Zhang LL, et al. Effect of gibberellic acid application on plant growth attributes, return bloom, and fruit quality of rabbiteye blueberry[J]. Scientia Horticulturae, 2016, 200:13-18.

[354]Zawaski C, Kadmiel M, Pickens J, et al. Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering[J]. Planta, 2011, 234(6):1285-1298.

[355]Zdunek-Zastocka E, Grabowska A, Branicki T, et al. Biochemical characterization of the triticale TsPAP1, a new type of plant prolyl aminopeptidase, and its impact on proline content and flowering time in transgenic Arabidopsis plants[J]. Plant Physiology and Biochemistry, 2017, 116:18-26.

[356]Zeevaart JAD. Physiology of flower formation[J]. Annual Review of Plant Physiology, 1976, 27:321-348.

[357]Zhang BB, Chen H, Zhang YY, et al. Effects of blooming and fruit thinning on the yield, fruit quality, and leaf photosynthesis of peach cultivar 'Xiahui 5' in China[J]. Food Quality and Safety, 2024, 8:fyae019.

[358]Zhang BB, Xu JL, Zhou M, et al. Effect of light quality on leaf photosynthetic characteristics and fruit quality of peach (Prunus persica L. Batch)[J]. Photosynthetica, 2018, 56(4):1113-1122.

[359]Zhang SW, Gottschalk C, van Nocker S. Genetic mechanisms in the repression of flowering by gibberellins in apple (Malus × domestica Borkh.)[J]. BMC Genomics, 2019, 20:1-5.

[360]Zhang SW, Zhang D, Fan S, et al. Effect of exogenous GA3 and its inhibitor paclobutrazol on floral formation, endogenous hormones, and flowering-associated genes in 'Fuji' apple (Malus domestica Borkh.)[J]. Plant Physiology and Biochemistry, 2016, 107:178-186.

[361]Zhang W, Li J, Zhang W, et al. The changes in C/N, carbohydrate, and amino acid content in leaves during female flower bud differentiation of Juglans sigillata[J]. Acta Physiologiae Plantarum, 2022, 44(2):1-12.

[362]Zhang Y, Liu Z, Liu R, et al. Gibberellins negatively regulate low temperature-induced anthocyanin accumulation in a HY5/HYH-dependent manner[J]. Plant Signaling & Behavior, 2011, 6(5):632-634.

[363]Zhang ZL, Shin M, Zou X, et al. A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells[J]. Plant Molecular Biology, 2009, 70(1-2):139-151.

[364]Zhao P, Wang F, Deng Y, et al. Sly-miR159 regulates fruit morphology by modulating GA biosynthesis in tomato[J]. Plant Biotechnology Journal, 2022, 20(5):833-845.

[365]Zhao Y, Li Y, Cao K, et al. Peculiarity of transcriptional and H3K27me3 dynamics during peach bud dormancy[J]. Horticultural Plant Journal, 2024, 10(1):38-50.

[366]Zhao Y, Yang Z, Ding Y, et al. Over-expression of an R2R3 MYB Gene, GhMYB73, increases tolerance to salt stress in transgenic Arabidopsis[J]. Plant Science, 2019, 286:28-36.

[367]Zhao YL, Li Y, Cao K, et al. MADS-box protein PpDAM6 regulates chilling requirement-mediated dormancy and bud break in peach[J]. Plant Physiology, 2023, 193(1):448-465.

[368]Zhou B, Li N, Zhang Z, et al. Hydrogen peroxide and nitric oxide promote reproductive growth in Litchi chinensis[J]. Biologia Plantarum, 2012, 56(2):321-329.

[369]Zhou Y, Cheng Y, Zhong R, et al. Brassinolide and gibberellin promote grape fruit development and quality[J]. Scientia Horticulturae, 2024, 338:113619.

[370]Zhu Z, Liang H, Chen G, et al. The bHLH transcription factor SlPRE2 regulates tomato fruit development and modulates plant response to gibberellin[J]. Plant Cell Reports, 2019, 38(9):1053-1064.

[371]Zilkah S, Lurie S, Lapsker Z, et al. The ripening and storage quality of nectarine fruits in response to preharvest application of gibberellic acid[J]. Journal of Horticultural Science, 1997, 72(3):355-362.

[372]Živanović B,Milić Komić S, Tosti T, et al. Leaf soluble sugars and free amino acids as important components of abscisic acid-Mediated drought response in tomato[J]. Plants, 2020, 9(9):1147.

[373]Züst T, Rasmann S, Agrawal AA. Growth-defense tradeoffs for two major anti‐herbivore traits of the common milkweed Asclepias syriaca[J]. Oikos, 2015, 124(10):1404-1415.

中图分类号:

 S66    

开放日期:

 2025-06-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式