- 无标题文档
查看论文信息

中文题名:

 假俭草响应干旱胁迫的生理生化变化及转录组分析    

姓名:

 高锦月    

学号:

 2022120015    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090900    

学科名称:

 农学 - 草学    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 南京农业大学    

院系:

 草业学院    

专业:

 草学    

研究方向:

 草生理生态    

第一导师姓名:

 于景金    

第一导师单位:

 南京农业大学    

完成日期:

 2025-05-30    

答辩日期:

 2025-05-30    

外文题名:

 Physiological and Biochemical Changes and Transcriptomic Analysis of Centipedegrass Response to Drought Stress    

中文关键词:

 假俭草 ; 耐旱机制 ; 生理响应 ; 转录组    

外文关键词:

 centipedegrass ; drought resistance mechanisms ; physiological responses ; transcriptome    

中文摘要:

假俭草(Eremochloa ophiuroides)因其匍匐茎发达、再生能力强、耐粗放管理,被广泛应用于城市绿化和水土保持。干旱胁迫是限制假俭草生长和发育最主要的非生物因子。课题组前期通过对32份假俭草种质资源进行耐旱筛选评价,初步筛选出耐旱基因型‘CG101’与旱敏感基因型‘CG021’。为探究假俭草耐旱机制,本研究以‘CG101’和‘CG021’为研究对象,通过24 d持续干旱胁迫及6 d旱后复水处理,揭示两个基因型在光合系统、渗透调节和蜡质组分等关键生理过程的响应差异。结合转录组测序,进一步探究两者在干旱胁迫下基因的表达模式,研究结果如下:

(1)干旱胁迫下,‘CG101’光合能力强,表现为净光合速率、气孔导度、蒸腾速率及叶绿素含量均显著高于‘CG021’。同时,‘CG101’的光合酶(PEPC、PPDK、Rubisco、RCA和PRK)活性及光合相关基因(PEPC、PPDK、rbcL、GAPDH)的表达水平均显著高于‘CG021’,而叶绿素降解关键酶(CHLASE、PPH和CHL-PRX)的活性和叶绿素降解相关基因(CHLASE、PPH、CHL-PRX和PAO)的转录水平显著低于‘CG021’。

(2)干旱胁迫下,‘CG101’渗透调节物质积累发生显著变化。其脯氨酸和可溶性糖含量,脯氨酸合成酶(δ-OAT、P5CS和P5CR)、甜菜碱合成酶(CMO和BADH)和糖代谢合成酶(SPS)活性及相关合成基因(P5CS、P5CR、SPS和SS)表达水平上升幅度显著低于‘CG021’。此外,脯氨酸降解酶ProDH活性和蔗糖代谢降解酶AI基因表达量在‘CG101’中均显著高于‘CG021’。表明敏感基因型通过激活渗透调节应对干旱,但其代谢系统的过度响应导致旱后复水的酶活性无法恢复。

(3)干旱胁迫下,‘CG101’水分保持能力显著优于‘CG021’。‘CG101’的叶片失水速率显著降低、叶片表皮蜡质的积累量、各蜡质组分含量(烯烃、烷烃、醇类和脂肪酸类)和蜡质代谢相关基因(CER1、KCS6、GL1、WSD1、BCG11和PDR8)的表达水平均显著高于‘CG021’。

(4)转录组数据表明,干旱胁迫下,‘CG101’共鉴定差异表达基因3842个(上调2231个,下调1611个),‘CG021’共鉴定差异表达基因4211个(上调1947个,下调2264个)。其中,‘CG101’的差异表达基因显著富集在光合作用、光合作用-天线蛋白、MAPK信号通路、植物激素信号转导、甘油磷脂代谢和氨基糖与核苷酸糖代谢等通路中;‘CG021’中差异表达基因显著富集在光合作用、光合作用-天线蛋白、碳代谢、植物激素信号转导、光合生物中的碳固定等通路中。表明两份假俭草材料在干旱胁迫响应中具有相似的富集途径,光合作用、光合作用-天线蛋白和植物激素信号转导等通路对假俭草的耐旱性具有重要影响。

综上所述,本研究结果揭示了假俭草的耐旱生理生化机制,丰富了假俭草的转录组数据信息,为进一步挖掘假俭草耐旱的分子机制和耐旱育种提供了一定的理论基础。

外文摘要:

Centipedegrass (Eremochloa ophiuroides), is characterized by its developed stolons, strong stress tolerance, and low management input. These advantages allow for its extensively utilized for green lawns, slope protection, and environmental remediation. Drought stress is the primary abiotic factor limiting the growth and development of centipedegrass. In previous studies, we selected a pair of materials (the drought-tolerant ‘CG101’ and the drought-sensitive ‘CG021’) from 32 centipedegrass materials. To elucidate the drought tolerance mechanisms of ‘CG101’, this study focused on these two genotypes ‘CG101’ and ‘CG021’. Through a 24-day drought stress treatment followed by a 6-day rehydration period, we revealed the differential responses of the two genotypes in key physiological processes such as photosynthetic systems, osmoregulation, and cuticular wax components. By integrating transcriptome sequencing, we further explored the gene expression patterns in both genotypes under drought stress. The findings revealed the following:

(1) Under drought stress, ‘CG101’ demonstrated stronger photosynthetic capacity, with significantly higher photosynthetic rate, stomatal conductance, transpiration rate, and chlorophyll content compared to ‘CG021’. Meanwhile, the activities of photosynthetic enzymes (PEPC, PPDK, Rubisco, RCA, and PRK) and the expression levels of their corresponding genes (PEPC, PPDK, rbcL, and GAPDH) in ‘CG101’ were significantly higher than those in ‘CG021’. Additionally, ‘CG101’ exhibited significantly lower activities of chlorophyll-degrading enzymes (CHLASE, PPH, and CHL-PRX) and reduced transcriptional levels of chlorophyll degradation-related genes (CHLASE, PPH, CHL-PRX, and PAO) than ‘CG021’.

(2) Under drought stress, the increases in proline and soluble sugar content, the activities of proline synthesis enzymes (δ-OAT, P5CS and P5CR), betaine synthesis enzymes (CMO and BADH), and carbohydrate metabolism enzymes (SPS), as well as the expression levels of their associated synthesis genes (P5CS, P5CR, SPS, and SS) in ‘CG101’ were significantly lower than those in ‘CG021’. Additionally, the activity of the proline degradation enzyme ProDH and the expression of the sucrose metabolism degradation enzyme AI gene in ‘CG101’ were notably higher than in ‘CG021’. These findings suggest that the drought-sensitive genotype (‘CG021’) activates osmoregulation to cope with drought, but its overactive metabolic response leads to an inability to restore enzyme activities after rehydration.

(3) Under drought stress, ‘CG101’ exhibited stronger water retention capacity compared to ‘CG021’. This was reflected in its lower leaf water loss rate, higher accumulation of leaf cuticular wax, greater content of various wax components (including alkenes, alkanes, alcohols, and fatty acids), and significantly higher expression levels of wax metabolism-related genes (including CER1, KCS6, GL1, WSD1, BCG11, and PDR8).

(4) Under drought stress, transcriptomic data revealed a total of 3,842 differentially expressed genes (DEGs) in ‘CG101’ (with 2,231 upregulated and 1,611 downregulated), and 4,211 DEGs in ‘CG021’ (with 1,947 upregulated and 2,264 downregulated). In ‘CG101’, the DEGs were significantly enriched in pathways related to photosynthesis metabolism, photosynthesis-antenna proteins, plant hormone signal transduction, the MAPK signaling pathway, glycerophospholipid metabolism, and amino sugar and nucleotide sugar metabolism. In contrast, the DEGs in ‘CG021’ were significantly enriched in pathways related to photosynthesis, photosynthesis-antenna proteins, carbon metabolism, plant hormone signal transduction, carbon fixation in photosynthetic organisms. These results indicate that both genotypes share similar enriched pathways in drought stress, and photosynthesis, photosynthesis-antenna proteins, and plant hormone signal transduction may play critical roles in the drought tolerance of centipedegrass.

In conclusion, this study elucidates the physiological and biochemical mechanisms underlying drought tolerance in centipedegrass and expands its transcriptomic dataset. The findings provide a theoretical foundation for further exploration of molecular mechanisms and drought-resistant breeding strategies in centipedegrass.

参考文献:

[1] 毕莹,王新宇,李慧,等.不同品种哈密瓜果实脯氨酸代谢对低温的响应[J].食品科学,2024,45(6):216-224.

[2] 曾睿,任迎虹,祁伟亮,等.不同桑树品种响应干旱胁迫的比较转录组学分析[J].南方农业学报,2022,53(3):684-692.

[3] 陈静波,郭海林,刘建秀,等.低养护假俭草新品种‘赣北’[J].园艺学报,2023,50(S2):175-176.

[4] 陈鹏,潘晓玲.干旱和NaCl胁迫下梭梭幼苗中甜菜碱含量和甜菜碱醛脱氢酶活性的变化[J].植物生理学通讯,2001(6):520-522.

[5] 崔震海,王艳芳,樊金娟,等.植物渗透调节的研究进展[J].玉米科学,2007(6):140-143.

[6] 代微然,任健,墨继光.干旱胁迫对假俭草叶绿素荧光特性的影响[J].草原与草坪,2010,30(5):1-5.

[7] 董永华,史吉平,李广敏.ABA和6-BA对干旱玉米幼苗PEP羧化酶活性的影响[J].植物生理学通讯,1995(6):421-423.

[8] 苟文龙,白史且,张新全,等.假俭草遗传多样性及应用研究进展[J].中国草地,2002(2):49-54.

[9] 胡玉锋,金峰学,程云清,等.干旱胁迫下玉米苗期的转录组分析[J].东北农业科学,2022,47(6):48-52.

[10] 黄明,姜沛沛,张振旺,等.干旱和品种对小麦灌浆期旗叶下午光合速率、关键酶活性和产量的影响[J].华北农学报,2024,39(2):90-98.

[11] 李炳杰.“翠绿1号”优良草坪播种建植技术[J].现代园林,2005(8):46-47.

[12] 李硕,李培英,孙宗玖,等.敏旱和耐旱狗牙根叶片对干旱胁迫的转录组响应差异分析[J].草地学报,2023,31(11):3322-3333.

[13] 李涛涛,刘溢健,叶佳丽,等.作物旱后复水补偿效应产生的源-库-流的响应及机制[J].水土保持学报,2024,38(2):1-12.

[14] 李伟,印莉萍.基因组学相关概念及其研究进展[J].生物学通报,2000(11):1-3.

[15] 李雪芹,金松恒.干旱胁迫对假俭草气体交换和叶绿素荧光特性的影响[J].中国农学通报,2010,26(8):170-174.

[16] 李玉华,范春丽,雷志华,等.两个玉米品种在萌芽期和苗期的干旱耐性比较分析[J].西北大学学报,2020,50(5):703-710.

[17] 刘南清,林绍艳,沈益新.假俭草叶片渗透调节物质含量对冬前低温的响应及其与低温伤害的关系[J].草业学报,2019,28(3):122-130.

[18] 刘伟康.高温诱导黄瓜叶片叶绿素酶促降解的分子机制[D].南京:南京农业大学,2021:18-20.

[19] 刘文夫,董守坤,徐亚会,等.大豆苗期干旱胁迫对糖分吸收与相关酶活性的影响[J].作物杂志,2014(3):117-120.

[20] 刘永忠,李道高.柑橘果实糖积累与蔗糖代谢酶活性的研究[J].园艺学报,2003(4):457-459.

[21] 卢少云,陈斯平,陈斯曼,等.三种暖季型草坪草在干旱条件下脯氨酸含量和抗氧化酶活性的变化[J].园艺学报,2003(3):303-306.

[22] 鲁泽东.假俭草突变体抗旱生理分析及抗旱基因筛选[D].长沙:湖南农业大学,2020:1-2.

[23] 吕丽沛,沈媛媛,桑玉强,等.干旱胁迫对核桃叶片水分利用效率的影响[J].河南科学,2025,43(3):1-8.

[24] 秦迪,赵翠兰,郑成忠,等.转BADH基因大豆耐旱性分析[J].中国油料作物学报,2015,37(6):752-758.

[25] 秦丽芬.植物在逆境下的渗透调节[J].北京农学院学报,1986:115-121.

[26] 四川省草原科学研究院.提高武陵假俭草种子发芽率的物理处理方法:201910042175.1[P].2019-04-12.

[27]

[28] 王晶晶,刘建秀,郭海林,等.种子繁殖型假俭草新品种‘渝西’[J].园艺学报,2024,51(S1):227-228.

[29] 王恺,刘一明,王兆龙.假俭草和海滨雀稗对土壤铅污染胁迫的生理反应[J].草业科学,2010,27(2):32-38.

[30] 王立为,谭月,张峻鋮,等.开花期与块茎膨大期干旱胁迫及旱后复水对马铃薯影响的差异[J].中国农业气象,2023,44(1):13-24.

[31] 王小风,马步东,黄海霞,等.干旱胁迫及复水对裸果木幼苗生理特性的影响[J].草业学报,2025,34(4):93-103.

[32] 王玉刚,阿不来提,齐曼.两狗牙根品种对干旱胁迫反应的差异[J].草业学报,2006(4):58-64.

[33] 吴燕,王晓菁,刘元柏.比色法测定枸杞子中甜菜碱含量的研究[J].安徽农学通报,2011,17(11):34-35.

[34] 熊雪,董建新,高思楠,等.冷季型高羊茅和多年生黑麦草耐旱性评价[J].草原与草坪,2024,44(5):207-213.

[35] 徐鑫,王浩然,张苓,等.假俭草NRAT1基因生物信息学和表达特性分析[J].植物资源与环境学报,2023,32(2):38-46.

[36] 严加坤,张宁宁,张岁岐.谷子对干旱胁迫的生理生态响应[J].生态学报,2021,41(21):8612-8622.

[37] 杨淑琴,周瑞莲,梁慧敏,等.沙漠植物抗氧化酶活性及渗透调节物质含量与光合作用的关系[J].中国沙漠,2015,35(6):1557-1564.

[38] 杨虓,陈德来,刘自成,等.干旱胁迫对旱地冬小麦产量及其耐旱相关基因表达的影响[J].干旱地区农业研究,2025,43(1):69-75.

[39] 杨永青,王文棋,Ottow A,等.干旱胁迫下胡杨生理适应机制的研究[J].北京林业大学学报,2006(S2):6-11.

[40] 叶济宇.关于叶绿素含量测定中的Arnon计算公式[J].植物生理学通讯,1985,(6):69.

[41] 于元平,蒋宇佳,孙向一,等.假俭草WRKY家族基因鉴定及其响应干旱胁迫表达分析[J].草地学报,2024,32(5):1378-1391.

[42] 张庆琛,郑少萌,刘应敏,等.干旱胁迫对冬小麦幼苗叶片光合生理特性的影响[J].山西农业科学,2016,44(8):1077-1082.

[43] 赵建华,李浩霞,安巍,等.干旱胁迫对宁夏枸杞叶片蔗糖代谢及光合特性的影响[J].西北植物学报,2013,33(5):970-975.

[44] 赵金梅,周禾,王秀艳.水分胁迫下苜蓿品种耐旱生理生化指标变化及其相互关系[J].草地学报,2005(3):184-189.

[45] 赵星辰,张思纹.气候变化对农作物育种策略影响探究[J].河北农机,2024(9):94-96.

[46] 赵雅杰,赵轩微,田振东,等.油用向日葵脱落酸代谢及差异基因表达对水分亏缺的响应[J].华北农学报,2021,36(6):54-62.

[47] 郑玉红,刘建秀.假俭草(Eremochloa ophiuroides )种质资源改良研究进展[J].植物学通报,2004(5):587-594.

[48] 中国科学院上海植物生理研究所.现代植物生理学实验指南[M].北京:科学出版社,1999:126.

[49] 朱珊珊,米俊珍,赵宝平,等.腐植酸对干旱胁迫下燕麦叶片碳同化酶活性及产量的影响[J].麦类作物学报,2021,41(6):722-730.

[50] Abdullah H M, Rodriguez J, Salacup J M, et al. Increased cuticle waxes by overexpression of WSD1 improves osmotic stress tolerance in Arabidopsis thaliana and Camelina sativa[J]. International Journal of Molecular Sciences, 2021, 22(10):5173.

[51] Aroca R. Plant responses to drought stress[J]. Morphological to Molecular Features, 2012:1-5.

[52] Arunyanark A, Jogloy S, Akkasaeng C, et al. Chlorophyll stability is an indicator of drought tolerance in peanut[J]. Journal of Agronomy and Crop Science, 2008, 194(2):113-125.

[53] Askari E, Ehsanzadeh P. Osmoregulation-mediated differential responses of field-grown fennel genotypes to drought[J]. Industrial Crops and Products, 2015, 76:494-508.

[54] Baker E A. The influence of environment on leaf wax development in Brassica oleracea var. gemmifera[J]. New Phytologist, 1974, 73(5):955-966.

[55] Barr H D, Weatherley P E. A re-examination of the relative turgidity technique for estimating water deficit in leaves[J]. Australian Journal of Biological Sciences, 1962, 15(3):413-428.

[56] Bi H, Luang S, Li Y, et al. Wheat drought-responsive WXPL transcription factors regulate cuticle biosynthesis genes[J]. Plant Molecular Biology, 2017, 94:15-32.

[57] Blum A, Ebercon A. Cell membrane stability as a measure of drought and heat tolerance in wheat 1[J]. Crop Science, 1981, 21(1):43-47.

[58] Buchert A M, Civello P M, Martinez G A. Chlorophyllase versus pheophytinase as candidates for chlorophyll dephytilation during senescence of broccoli[J]. Journal of Plant Physiology, 2011, 168(4):337-343.

[59] Castrillo M. Sucrose metabolism in bean plants under water deficit[J]. Journal of Experimental Botany, 1992, 43(12):1557-1561.

[60] Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell[J]. Annals of Botany, 2009, 103(4):551-560.

[61] Chen L, Zheng F, Feng Z, et al. A vacuolar invertase CsVI2 regulates sucrose metabolism and increases drought tolerance in Cucumis sativus L.[J]. International Journal of Molecular Sciences, 2021, 23(1):176.

[62] Chen N, Song B, Tang S, et al. Overexpression of the ABC transporter gene TsABCG11 increases cuticle lipids and abiotic stress tolerance in Arabidopsis[J]. Plant Biotechnology Reports, 2018, 12:303-313.

[63] Chen Z, Chen G, Dai F, et al. Molecular evolution of grass stomata[J]. Trends in Plant Science, 2017, 22(2):124-139.

[64] Chernyad I. Effect of water stress on the photosynthetic apparatus of plants and the protective role of cytokinins [J]. Applied Biochemistry and Microbiology, 2005, 41:115-128.

[65] DaCosta M, Huang B. Minimum water requirements for creeping, colonial, and velvet bentgrasses under fairway conditions[J]. Crop Science, 2006, 46(1):81-89.

[66] Demirkol G. The role of BADH gene in oxidative, salt, and drought stress tolerances of white clover[J]. Turkish Journal of Botany, 2020, 44(3):214-221.

[67] Dien D C, Mochizuki T, Yamakawa T. Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in rice (Oryza sativa L.) varieties[J]. Plant Production Science, 2019, 22(4):530-545.

[68] Dorion S, Lalonde S, Saini H S. Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers[J]. Plant Physiology, 1996, 111(1):137-145.

[69] Dorion S, Lalonde S, Saini H S. Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers[J]. Plant Physiology, 1996, 111(1):137-145.

[70] Ebdon J S, Kopp K L. Relationships between water use efficiency, carbon isotope discrimination, and turf performance in genotypes of kentucky bluegrass during drought[J]. Crop Science, 2004, 44(5):1754-1762.

[71] Evans J R. Improving photosynthesis[J]. Plant Physiology, 2013, 162(4):1780-1793.

[72] Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants[J]. Cellular and Molecular Life Sciences, 2015, 72:673-689.

[73] Farooq A, Bukhari S A, Akram N A, et al. Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (Carthamus tinctorious L.)[J]. Plants, 2020, 9(1):104.

[74] Flexas J, Bota J, Loreto F, et al. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants[J]. Plant Biology, 2004, 6(3):269-279.

[75] Fu J, Huang B, Fry J. Osmotic potential, sucrose level, and activity of sucrose metabolic enzymes in tall fescue in response to deficit irrigation[J]. Journal of the American Society for Horticultural Science, 2010, 135(6):506-510.

[76] Fujita M, Fujita Y, Noutoshi Y, et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks[J]. Current Opinion in Plant Biology, 2006, 9(4):453-458

[77] Funamoto Y, Yamauchi N, Shigenaga T, et al. Effects of heat treatment on chlorophyll degrading enzymes in stored broccoli (Brassica oleracea L.)[J]. Postharvest Biology and Technology, 2002, 24(2):163-170.

[78] Geigenberger P, Reimholz R, Geiger M, et al. Regulation of sucrose and starch metabolism in potato tubers in response to short-term water deficit[J]. Planta, 1997, 201(4):502-518.

[79] Ghashghaie G, Genty B, Briantais J. Leaf photosynthesis is resistant to a mild drought stress[J]. Photosynthetica, 1992, 27(3):295-309.

[80] Gimenez, C, Mitchell, V J, Lawlor, D W. Regulation of photosynthetic rate of two sunflower hybrids under water stress. Plant Physiology, 1992, 98:516-524.

[81] Guo Y Y, Yu H Y, Yang M M, et al. Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots of Lycium ruthenicum Murr. seedling[J]. Russian Journal of Plant Physiology, 2018, 65:244-250.

[82] Gupta A, Rico-Medina A, Cano-Delgado A. The physiology of plant responses to drought[J]. Science, 2020, 368(6488):266-269.

[83] Hanna W W. Centipedegrass-diversity and vulnerability[J]. Crop Science, 1995, 35(2):332-334.

[84] Hanson A D, May A M, Grumet R, et al. Betaine synthesis in chenopods: localization in chloroplasts[J]. Proceedings of the National Academy of Sciences, 1985, 82(11):3678-3682.

[85] Hare P D, Cress W A, Van Staden J. Dissecting the roles of osmolyte accumulation during stress[J]. Plant, Cell and Environment, 1998, 21(6):535-553.

[86] Hasanuzzaman M, Nahar K, Gill S, et al. Drought stress responses in plants, oxidative stress, and antioxidant defense[J]. Climate Change and Plant Abiotic Stress Tolerance, 2013:209-250.

[87] Hayat S, Hayat Q, Alyemeni M N, et al. Role of proline under changing environments[J]. Plant Signaling and Behavior, 2012, 7(11):1456-1466.

[88] Hegebarth D, Buschhaus C, Wu M, et al. The composition of surface wax on trichomes of Arabidopsis thaliana differs from wax on other epidermal cells[J]. The Plant Journal, 2016, 88(5):762-774.

[89] Hervieu F, Le Dily F, Billard J, et al. Effects of water-stress on proline content and ornithine aminotransferase activity of radish cotyledons[J]. Phytochemistry, 1994, 37(5):1227-1231.

[90] Hibino T, Waditee R, Araki E, et al. Functional characterization of choline monooxygenase, an enzyme for betaine synthesis in plants[J]. Journal of Biological Chemistry, 2002, 277(44):41352-41360.

[91] Hrmova M, Hussain S. Plant transcription factors involved in drought and associated stresses[J]. International Journal of Molecular Sciences, 2021, 22(11):5662.

[92] Hu L, Wang Z, Huang B. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C3 perennial grass species[J]. Physiologia Plantarum, 2010, 139(1):93-106.

[93] Hu S, Liu L, Cao J, et al. Water resilience by centipedegrass green roof: a case study[J]. Buildings, 2019, 9(6):141.

[94] Huang H, Ayaz A, Zheng M, et al. Arabidopsis KCS5 and KCS6 play redundant roles in wax synthesis[J]. International Journal of Molecular Sciences, 2022, 23(8):4450.

[95] Hussain M, Malik M A, Farooq M, et al. Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower[J]. Journal of Agronomy and Crop Science, 2008, 194(3):193-199.

[96] Hyskova V D, Miedzinska L, Dobra J, et al. Phosphoenolpyruvate carboxylase, NADP-malic enzyme, and pyruvate, phosphate dikinase are involved in the acclimation of Nicotiana tabacum L. to drought stress[J]. Journal of Plant Physiology, 2014, 171(5):19-25.

[97] Jaleel C A, Manivannan P, Sankar B, et al. Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation[J]. Colloids and Surfaces B: Biointerfaces, 2007, 60(2):201-206.

[98] Jian L, Kang K, Choi Y, et al. Mutation of OsMYB60 reduces rice resilience to drought stress by attenuating cuticular wax biosynthesis[J]. The Plant Journal, 2022, 112(2):339-351.

[99] Jiang M, Zhang J. Water stress‐induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up‐regulates the activities of antioxidant enzymes in maize leaves[J]. Journal of Experimental Botany, 2002, 53(379):2401-2410.

[100] Johnson M, McLachlan G. Peroxidase‐mediated chlorophyll bleaching in degreening canola (Brassica napus) seeds and its inhibition by sublethal freezing[J]. Physiologia Plantarum, 1990, 80(3):453-459.

[101] Jones R M, Jordan P M. Purification and properties of porphobilinogen deaminase from Arabidopsis thaliana[J]. Biochemical Journal, 1994, 299(3):895.

[102] Kang Y, Han Y, Torres I, et al. System responses to long‐term drought and re‐watering of two contrasting alfalfa varieties[J]. The Plant Journal, 2011, 68(5):871-889.

[103] Kato M, Shimizu S. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation[J]. Canadian Journal of Botany, 1987, 65(4):729-735.

[104] Katuwal K B, Xiao B, Jespersen D. Root physiological and biochemical responses of seashore paspalum and centipedegrass exposed to iso‐osmotic salt and drought stresses[J]. Crop Science, 2020, 60(2):1077-1089.

[105] Katuwal K B, Yang H, Huang B. Evaluation of phenotypic and photosynthetic indices to detect water stress in perennial grass species using hyperspectral, multispectral and chlorophyll fluorescence imaging[J]. Grass Research, 2023, 3(1):16.

[106] Khayat E, Zieslin N. Effect of night temperature on the activity of sucrose phosphate synthase, acid invertase, and sucrose synthase in source and sink tissues of Rosa hybrida cv Golden Times[J]. Plant Physiology, 1987, 84(2):447-449.

[107] Kim C, Lemke C, Paterson A H. Functional dissection of drought-responsive gene expression patterns in Cynodon dactylon [J]. Plant Molecular Biology, 2009, 70:1-16.

[108] Kim K S, Beard J B. Comparative drought resistances among eleven warm-season turfgrasses and associated plant parameters[J]. Weed and Turfgrass Science, 2018, 7(3):239-245.

[109] Kim K S, Park S H, Kim D K, et al. Influence of water deficit on leaf cuticular waxes of soybean (Glycine max)[J]. International Journal of Plant Sciences, 2007, 168(3):307-316.

[110] Koenigshofer H, Loeppert H. The up-regulation of proline synthesis in the meristematic tissues of wheat seedlings upon short-term exposure to osmotic stress[J]. Journal of Plant Physiology, 2019, 237:21-29.

[111] Kong D, Xu M, Liu S, et al. Genome-Wide identification and expression profiling of the SPL transcription factor family in response to abiotic stress in centipedegrass[J]. Plants, 2024, 14(1):62.

[112] Korkmaz A, Degero, Kocaçınar F. Alleviation of water stress effects on pepper seedlings by foliar application of glycinebetaine[J]. New Zealand Journal of Crop and Horticultural Science, 2015, 43(1):18-31.

[113] Kosma D K, Bourdenx B, Bernard A, et al. The impact of water deficiency on leaf cuticle lipids of Arabidopsis[J]. Plant Physiology, 2009, 151(4):1918-1929.

[114] Kubis A, Bar-Even A. Synthetic biology approaches for improving photosynthesis[J]. Journal of Experimental Botany, 2019, 70(5):1425-1433.

[115] Kumar Tewari A, Charan Tripathy B. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat[J]. Plant Physiology, 1998, 117(3):851-858.

[116] Kunst L, Samuels A L. Biosynthesis and secretion of plant cuticular wax[J]. Progress in Lipid Research, 2003, 42(1):51-80.

[117] Kunst L, Samuels L. Plant cuticles shine: advances in wax biosynthesis and export[J]. Current Opinion in Plant Biology, 2009, 12(6):721-727.

[118] Lacerda C F, Cambraia J, Oliva M A, et al. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress[J]. Environmental and Experimental Botany, 2003, 49(2):107-120.

[119] Lee S B, Suh M C. Cuticular wax biosynthesis is up-regulated by the MYB94 transcription factor in Arabidopsis[J]. Plant and Cell Physiology, 2015, 56(1):48-60.

[120] Li L, Li D, Liu S, et al. The maize glossy13 gene, cloned via BSR-Seq and Seq-walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes[J]. PloS One, 2013, 8(12):e82333.

[121] Li Y, Li H, Li Y, et al. Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat[J]. The Crop Journal, 2017, 5(3):231-239.

[122] Lim K B, Hanna W W, Rim Y W, et al. Induction of genetic variation with recurrent gamma radiation in centipedegrass (Eremochloa ophiuroides)[J]. Journal of The Korean Society of Grassland and Forage Science, 1998, 18(4):351-354.

[123] Ling L, Chenming X, Junqin Z, et al. Physiological and comparative transcriptome analyses of the high-tillering mutant mtn1 reveal regulatory mechanisms in the tillering of centipedegrass (Eremochloa ophiuroides)[J]. International Journal of Molecular Sciences, 2022, 23(19):356-363.

[124] Liu D, Guo W, Guo X, et al. Ectopic overexpression of CsECR from navel orange increases cuticular wax accumulation in tomato and enhances its tolerance to drought stress[J]. Frontiers in Plant Science, 2022, 13:924552.

[125] Liu Y, Xiong Y, Zhao J, et al. Molecular mechanism of cold tolerance of centipedegrass based on the transcriptome[J]. International Journal of Molecular Sciences, 2023, 24(2):1265.

[126] Ma Q, Xu X, Wang W, et al. Comparative analysis of alfalfa (Medicago sativa L.) seedling transcriptomes reveals genotype-specific drought tolerance mechanisms[J]. Plant Physiology and Biochemistry, 2021, 166:203-214.

[127] McElroy J S, Walker R H. Effect of atrazine and mesotrione on centipedegrass growth, photochemical efficiency, and establishment[J]. Weed Technology, 2009, 23(1):67-72.

[128] Mishra A K, Singh V P. A review of drought concepts[J]. Journal of Hydrology, 2010, 391(1-2):202-216.

[129] Mitsuya S, Kuwahara J, Ozaki K, et al. Isolation and characterization of a novel peroxisomal choline monooxygenase in barley[J]. Planta, 2011, 234:1215-1226.

[130] Monteoliva M I, Guzzo M C, Posada G A. Breeding for drought tolerance by monitoring chlorophyll content[J]. Gene Technology, 2021,10(3):1-11.

[131] Naliwajski M, Skłodowska M. The relationship between the antioxidant system and proline metabolism in the leaves of cucumber plants acclimated to salt stress[J]. Cells, 2021, 10(3):609.

[132] Naser L, Kourosh V, Bahman K, et al. Soluble sugars and proline accumulation play a role as effective indices for drought tolerance screening in persian walnut (Juglans regia L.) during germination[J]. Fruits, 2010, 65(2):97-112.

[133] Negin B, Hen S, Almekias E, et al. Tree tobacco (Nicotiana glauca) cuticular wax composition is essential for leaf retention during drought, facilitating a speedy recovery following rewatering[J]. New Phytologist, 2023, 237(5):1574-1589.

[134] Nguyen B, N'Tchobo H, Foyer C H, et al. Overexpression of sucrose phosphate synthase increases sucrose unloading in transformed tomato fruit[J]. Journal of Experimental Botany, 1999, 50(335):785-791.

[135] Park J, Canam T, Kang K, et al. Over-expression of an arabidopsis family a sucrose phosphate synthase (SPS) gene alters plant growth and fibre development[J]. Transgenic Research, 2008, 17:181-192.

[136] Perdomo J A, Capo-Bauça S, Carmo-Silva E, et al. Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit[J]. Frontiers in Plant Science, 2017, 8:490.

[137] Pruzinska A, Anders I, Aubry S, et al. In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown[J]. The Plant Cell, 2007, 19(1):369-387.

[138] Rentsch D, Hirner B, Schmelzer E, et al. Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant.[J]. The Plant Cell, 1996, 8(8):1437-1446.

[139] Rontein D, Dieuaide-Noubhani M, Dufourc E J, et al. The metabolic architecture of plant cells: stability of central metabolism and flexibility of anabolic pathways during the growth cycle of tomato cells[J]. Journal of Biological Chemistry, 2002, 277(46):43948-43960.

[140] Rossi S, Huang B. Regulatory roles of morphactin on suppressing chlorophyll degradation under heat stress in creeping bentgrass[J]. Grass Research, 2023, 3(11):1425-1433.

[141] Ru C, Hu X, Chen D, et al. Photosynthetic, antioxidant activities, and osmoregulatory responses in winter wheat differ during the stress and recovery periods under heat, drought, and combined stress[J]. Plant Science, 2023, 327:111557.

[142] Rufty Jr T W, Huber S C. Changes in starch formation and activities of sucrose phosphate synthase and cytoplasmic fructose-1,6-bisphosphatase in response to source-sink alterations[J]. Plant Physiology, 1983, 72(2):474-480.

[143] Rui W, Haoyan Z, Hailin G, et al. Use of transcriptomic analyses to elucidate the mechanism governing nodal root development in Eremochloa ophiuroides[J]. Frontiers in Plant Science, 2021, 12(3):652-658.

[144] Sanchez E, Lopez-Lefebre L R, Garcia P C, et al. Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris)[J]. Journal of Plant Physiology, 2001, 158(5):593-598.

[145] Sanjari S, Shobbar Z, Ghanati F, et al. Molecular, chemical, and physiological analyses of sorghum leaf wax under post-flowering drought stress[J]. Plant Physiology and Biochemistry, 2021, 159:383-391.

[146] Satoh R, Nakashima K, Seki M, et al. ACTCAT, a novel cis-acting element for proline-and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis[J]. Plant Physiology, 2002, 130(2):709-719.

[147] Scully B T, Nagata R T, Nuessly G S, et al. Registration of ‘Hammock’centipedegrass[J]. Journal of Plant Registrations, 2012, 6(3):246-251.

[148] Seo P J, Lee S B, Suh M C, et al. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis[J]. The Plant Cell, 2011, 23(3):1138-1152.

[149] Sharma S, Villamor J G, Verslues P E. Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential[J]. Plant Physiology, 2011, 157(1):292-304.

[150] Shen Y, Du B, Zhang W, et al. AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco[J]. Theoretical and Applied Genetics, 2002, 105:815-821.

[151] Singh T N, Aspinall D, Paleg L G. Proline accumulation and varietal adaptability to drought in barley: a potential metabolic measure of drought resistance[J]. Nature New Biology, 1972, 236(67):188-190.

[152] Solanki J K, Sarangi S K. Effect of drought stress on epicuticular wax load in peanut genotypes[J]. Journal of Applied Biology and Biotechnology, 2015, 3:46-48.

[153] Song Q, Kong L, Yang X, et al. PtoMYB142, a poplar R2R3-MYB transcription factor, contributes to drought tolerance by regulating wax biosynthesis[J]. Tree Physiology, 2022, 42(10):2133-2147.

[154] Song Y, Yu J, Xu M, et al. Physiological factors associated with interspecific variations in drought tolerance in centipedegrass[J]. Agronomy, 2024, 14(8):1624.

[155] Su R, Chen L, Wang Z, et al. Differential response of cuticular wax and photosynthetic capacity by glaucous and non-glaucous wheat cultivars under mild and severe droughts[J]. Plant Physiology and Biochemistry, 2020, 147:303-312.

[156] Sumner J B. A more specific reagent for the determination of sugar in urine[J]. Journal of Biological Chemistry, 1925, 65(2):393-395.

[157] Sun J, Gu J, Zeng J, et al. Changes in leaf morphology, antioxidant activity and photosynthesis capacity in two different drought-tolerant cultivars of chrysanthemum during and after water stress[J]. Scientia Horticulturae, 2013, 161:249-258.

[158] Szabados L, Savoure A. Proline: a multifunctional amino acid[J]. Trends in Plant Science, 2010, 15(2):89-97.

[159] Turan S, Tripathy B C. Salt‐stress induced modulation of chlorophyll biosynthesis during de‐etiolation of rice seedlings[J]. Physiologia Plantarum, 2015, 153(3):477-491.

[160] Ueda A, Shi W, Shimada T, et al. Altered expression of barley proline transporter causes different growth responses in Arabidopsis[J]. Planta, 2008, 227:277-286.

[161] Vassey T L, Quick P, Sharkey T D, et al. Water stress, carbon dioxide, and light effects on sucrose-phosphate synthase activity in Phaseolus vulgaris[J]. Physiologia Plantarum, 2010, 81(1):37-44.

[162] Wang H L, Lee P D, Chen W L, et al. Osmotic stress‐induced changes of sucrose metabolism in cultured sweet potato cells[J]. Journal of Experimental Botany, 2000, 51(353):1991-1999.

[163] Wang J, Zi H, Wang R, et al. A high-quality chromosome-scale assembly of the centipedegrass (Eremochloa ophiuroides) genome provides insights into chromosomal structural evolution and prostrate growth habit[J]. Horticulture Research, 2021, 8:201.

[164] Wang P, Yang L, Zhang E, et al. Characterization and development of EST-SSR markers from a cold-stressed transcriptome of centipedegrass by illumina paired-end sequencing[J]. Plant Molecular Biology Reporter, 2017, 35(2):436-441.

[165] Wang X, Li S, Zhang X, et al. Integration of transcriptome and metabolome reveals wax serves a key role in preventing leaf water loss in goji (Lycium barbarum)[J]. International Journal of Molecular Sciences, 2024, 25(20):10939.

[166] Xu L, Yu J, Han L, et al. Photosynthetic enzyme activities and gene expression associated with drought tolerance and post-drought recovery in kentucky bluegrass[J]. Environmental and Experimental Botany, 2013, 89:28-35.

[167] Yamchi A, Rastgar Jazii F, Mousavi A, et al. Proline accumulation in transgenic tobacco as a result of expression of Arabidopsis Δ1-pyrroline-5-carboxylate synthetase (P5CS) during osmotic stress[J]. Journal of Plant Biochemistry and Biotechnology, 2007, 16:9-15.

[168] Yang X, Lu M, Wang Y, et al. Response mechanism of plants to drought stress[J]. Horticulturae, 2021, 7(3):50.

[169] Yang Z, Wang T, Wang H, et al. Patterns of enzyme activities and gene expressions in sucrose metabolism in relation to sugar accumulation and composition in the aril of Litchi chinensis[J]. Journal of Plant Physiology, 2013, 170(8):731-740.

[170] Yang Z, Zhang T, Lang T, et al. Transcriptome comparative profiling of barley eibi1 mutant reveals pleiotropic effects of HvABCG31 gene on cuticle biogenesis and stress responsive pathways[J]. International Journal of Molecular Sciences, 2013, 14(10):20478-20491.

[171] Yu H, Zhang Y, Xie Y, et al. Ethephon improved drought tolerance in maize seedlings by modulating cuticular wax biosynthesis and membrane stability[J]. Journal of Plant Physiology, 2017, 214:123-133.

[172] Yu J, Liu M, Yang Z, et al. Growth and physiological factors involved in interspecific variations in drought tolerance and postdrought recovery in warm-and cool-season turfgrass species[J]. Journal of the American Society for Horticultural Science, 2015, 140(5):459-465.

[173] Zegaoui Z, Planchais S, Cabassa C, et al. Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought[J]. Journal of Plant Physiology, 2017, 218:26-34.

[174] Zeng Y, Li L, Yang R, et al. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress[J]. Scientific Reports, 2015, 5(1):13639.

[175] Zhang X, Ni Y, Xu D, et al. Integrative analysis of the cuticular lipidome and transcriptome of Sorghum bicolor reveals cultivar differences in drought tolerance[J]. Plant Physiology and Biochemistry, 2021, 163:285-295.

[176] Zhang X, Zhang Z, Li J, et al. Correlation of leaf senescence and gene expression/activities of chlorophyll degradation enzymes in harvested chinese flowering cabbage[J]. Journal of Plant Physiology, 2011, 168(17):2081-2087.

[177] Zhao Y, Du H, Wang Z, et al. Identification of proteins associated with water‐deficit tolerance in C4 perennial grass species, Cynodon dactylon× C. transvaalensis and C. dactylon[J]. Physiologia Plantarum, 2011, 141(1):40-55.

[178] Zheng Z, Xu X, Crosley R A, et al. The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis[J]. Plant Physiology, 2010, 153(1):99-113.

中图分类号:

 S68    

开放日期:

 2025-06-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式