中文题名: | 猪8号染色体影响二花脸猪产仔数性状的QTL精细定位及候选基因UCHL1研究 |
姓名: | |
学号: | 2018805091 |
保密级别: | 秘密 |
论文语种: | chi |
学科代码: | 095105 |
学科名称: | 农学 - 农业推广 - 养殖 |
学生类型: | 硕士 |
学位: | 农业硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 猪遗传育种 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
完成日期: | 2020-05-20 |
答辩日期: | 2020-06-06 |
外文题名: | Fine Mapping of the QTL on SSC8 Affecting Litter Size of Erhualian Pig and Research on Candidate Gene for UCHL1 |
中文关键词: | |
外文关键词: | |
中文摘要: |
产仔数的高低是评价猪场的生产水平和经济效益的重要指标之一,然而产仔数是由微效多基因调控的复杂数量性状,遗传力很低(约为0.1)。基于表型选择的传统选育进展缓慢,利用分子标记辅助选择(Marker assisted selection,MAS)和全基因组选择(Genomic selection,GS)技术,可以有效快速提高产仔数的选育进展。二花脸猪作为太湖流域地方猪种之一,以高繁殖力著称,单胎产仔高达42头锚点。锚点本团队前期研究发现该品种内存在较大的产仔数变异,高、低产组妊娠12天和24天二花脸猪排卵数和子宫角长度也存在显著差异;并且前期通过极端高、低产二花脸猪的遗传分化系数(Genome-wide fixation coefficient,Fst)分析和全群关联性分析,在8号染色体上鉴定到显著影响其产仔数变异的数量性状基因座(Quantitative trait loci,QTL),但该QTL内的因果基因和功能位点未知。因此,鉴别二花脸猪产仔数变异的因果基因和功能位点,利用MAS和GS技术提高其产仔性能优势十分必要。 本研究首先通过增加目标区域的标记密度和群体量进行QTL精细定位,在8号染色体上精准鉴定影响二花脸猪产仔数变异的关键基因。其次选择精细定位区间内的泛素羧基末端水解酶-1(Ubiquitin C-terminal hydrolase 1,UCHL1)基因作为候选因果基因进行研究。在二花脸猪卵巢和子宫组织中对UCHL1进行免疫组化定位研究;并选择极端、高低产组妊娠12天和24天二花脸猪的卵巢和子宫内膜样品以及高、低产组子代10、96和182天二花脸猪的卵巢和子宫内膜样品进行UCHL1基因表达量的差异分析。锚点最后,在候选UCHL1基因上鉴定影响二花脸猪的总产仔数(Total number born,TNB)和产活仔数(Number born alive,NBA)的关键功能位点,并在梅山猪和苏淮猪群体中验证。本研究主要结果如下: 1. 猪8号染色体影响二花脸猪产仔数性状的QTL精细定位 本章试验在rs81399474位点上下游各500Kb基因组区域内共增加55个标记位点,在334头二花脸猪和269头梅山猪群体中进行精细定位。通过单标记关联分析以及二花脸猪与梅山猪群体的Meta分析,将影响二花脸猪经产胎次TNB、经产胎次NBA、全部胎次TNB和全部胎次NBA的QTL分别精细定位锚点于8号染色体上33934355-34114274 bp(179.92 Kb)、33934355-34094188 bp锚点锚点(159.83 Kb)、锚点33884473-33959514 bp锚点锚点(75.04 Kb)和33934355-33985796 bp(51.44 Kb)范围内。在上述QTL区间内鉴定到UCHL1基因是影响二花脸猪产仔数的功能候选基因。 2. UCHL1基因在二花脸猪卵巢和子宫组织中的表达分析 本章试验对UCHL1蛋白在二花脸猪卵巢和子宫组织进行免疫组化定位发现,在卵巢中,该蛋白主要定位于二花脸猪的各级卵泡颗粒细胞和卵母细胞的胞质;在子宫中,主要定位于二花脸猪的子宫腺体细胞核和子宫内膜间质细胞。通过对极端、高低产组妊娠12天和24天二花脸猪以及极端、高低产组子代10、96和182天二花脸猪的卵巢和子宫内膜样品进行UCHL1基因表达量的差异分析。发现在二花脸猪子代10、96和182天母猪卵巢中,UCHL1基因在10天卵巢的表达量极显著高于96和182天的表达量(P < 0.01)。在妊娠24天二花脸猪的子宫内膜中,高产组的基因表达量显著高于低产组(P < 0.05);在二花脸猪96和182天母猪子宫内膜中,基因在96天的表达量极显著高于182天的表达量(P < 0.01)。 3. UCHL1基因多态性与产仔数的关联性分析 本章试验通过估计并排序二花脸猪产仔数的育种值,选择极端各20头高、低产二花脸猪,在UCHL1基因的启动子区、编码区和非翻译区(Untranslated region,UTR)初步筛选可能影响产仔数的位点;并通过极端高、低产群体基因型分布的初步显著性检验,极端群体检验显著的位点在二花脸猪全群中验证;最后挑选显著影响二花脸猪产仔数关联的位点在梅山猪和苏淮猪群体中进行验证。本研究发现UCHL1基因的启动子区、编码区和非翻译区共发现9个SNP位点;其中,UCHL1基因启动子区rs339921806和5’UTR区rs342939847位点与二花脸群体的产仔数显著关联;经梅山猪和苏淮猪群体验证发现rs339921806和rs342939847位点多态性与梅山猪的产仔数显著关联,但均不影响苏淮猪产仔数。 综上所述,本研究通过增加标记密度和群体量,成功地在8号染色体上精细定位到影响二花脸猪产仔数的QTL,并在QTL区间内鉴别到UCHL1基因为关键位置功能候选基因。通过免疫组化试验发现UCHL1蛋白主要表达于二花脸猪的各级卵泡颗粒细胞和卵母细胞的胞质;该蛋白仅在96天二花脸猪的子宫内膜间质细胞表达,在182天二花脸猪的子宫腺体细胞核和子宫内膜间质细胞都有表达。通过定量PCR发现该基因在10天卵巢的表达量极显著高于96天和182天的表达量;并且该基因在高产组妊娠24天子宫内膜的表达量显著高于低产组;该基因在96天子宫内膜表达量极显著高于182天的表达量。通过关联性分析发现,UCHL1基因启动子区rs339921806和5’UTR区rs342939847位点多态性与二花脸猪和梅山猪群体的产仔数显著关联。 |
外文摘要: |
Litter size is one of the important factors to evaluate the production performance and economic benefits of pig industry. However, litter size is a complex quantitative trait that regulated by multiple micro-effect genes, it has relatively low heritability which is about 0.1. The progress of the traditional breeding based on phenotypic selection is slow. Moreover, the breeding progress could be effectively and rapidly improved using marker-assisted selection (MAS) and genomic selection (GS). Erhualian pig is one of the indigenous pig breeds in the Taihu Lake region, and it is famous for its high prolificacy, featured by 42 litters in one parity. In our previous study, there is a large variation of litter size in this breed, and the number of ovulations and the length of uterine horn were significantly different between extreme high and low prolificacy Erhualian pigs on day 12 and 24 of gestation. Our group previously performed the genome-wide fixation coefficient (Fst) and whole-group association analyses of the litter size in extremely high and low prolificacy Erhualian pigs, and we found that the QTL on chromosome 8 was significantly affected the litter size of Erhualian pigs. However, the real causal genes and functional loci affecting the variation of litter size of Erhualian pigs on this QTL is still unknown. Therefore, it is necessary to identify the causative genes and functional loci of variation for the litter size trait of Erhualian pigs, and using MAS and GS techniques will improve the litter size trait of pigs. Firstly, fine mapping of the QTL on chromosome 8 was carried out by increasing the number of populations and the density of markers in the previous identified regions. And the key genes affecting the variation of litter size of Erhualian pigs were identified. Secondly, we studied the immunohistochemical localization of Ubiquitin C-terminal hydrolase 1 (UCHL1) in the ovaries and uterus of Erhualian pigs. Moreover, we analyzed the expression of the UCHL1 gene in ovaries and endometrium of high and low prolificacy Erhualian pigs on day12 and 24 of gestation. And we also analyzed the expression of the UCHL1 gene in ovaries and endometrium of the offspring of high and low prolificacy Erhualian pigs on day 10, 96 and 182. Finally, we identified the key functional loci on the candidate UCHL1 gene affecting the litter size of Erhualian pigs and verified these loci in Meishan and Suhuai pig populations. The main results are as follows: 1. Fine mapping of the QTL on chromosome 8 affecting litter size of Erhualian pigs In this experiment, a total of 55 markers were added in the 500 Kb genomic region of upstream and downstream of rs81399474. Fine mapping of the QTL was performed in 334 Erhualian pigs and 269 Meishan pigs. By integrating the results of the association analysis of a single SNP with the results of the Meta-analysis of Erhualian and Meishan pig populations. We found QTLs for TNB of multiparities, NBA of multiparities, TNB of all parities and NBA of all parities, which were mapped to 33934355 - 34114274 bp (179.92 Kb), 33934355 - 34094188 bp (159.83 Kb), 33884473 - 33959514 (75.04 Kb) and 33934355 - 33985796 bp (51.44 Kb) on chromosome 8, respectively. In these QTLs, the UCHL1 gene was identified as a key functional candidate gene affecting the litter size of Erhualian pigs. 2. Expression analyses of the UCHL1 gene in the ovaries and uterus of Erhualian pigs In this experiment, we analyzed immunohistochemical localization of UCHL1 in the ovaries and uterus of Erhualian pigs. This study found that the UCHL1 protein was mainly expressed in the cytoplasm of follicular granulosa cells and oocytes in the ovaries of Erhualian pigs. And UCHL1 protein is mainly expressed in the nucleus of uterine gland cells and endometrial stromal cells of Erhualian pigs. We also analyzed the expression of the UCHL1 gene in the ovaries and endometrium of high and low prolificacy Erhualian pigs on day 12 and 24 of gestation, and its offspring on day 10, 96 and 182 after birth. In the ovaries of the offspring of Erhualian pigs, the expression of the UCHL1 gene in offspring on day 10 was significantly higher than those on day 96 and 182 after birth (P < 0.01), respectively. In the endometrium of Erhualian pigs on day 24 of gestation, the expression of the UCHL1 gene in the high prolificacy Erhualian pigs was significantly higher than low prolificacy ones (P < 0.05). In the endometrium of the offspring of Erhualian pigs, the expression of the UCHL1 gene in offspring of Erhualian pigs on day 96 was significantly higher than that of Erhualian pigs on day 182 (P < 0.01). 3. Association analysis between polymorphism of the UCHL1 gene with the litter size traits We estimated and ranked the breeding value of the litter size of Erhualian pigs, and selected 20 extremely high and low prolificacy Erhualian pigs for pre-screening SNPs that may affect the litter size of Erhualian pigs. These SNPs were selected in the promoter, coding region, and untranslated region (UTR) of the UCHL1 gene. And through the chi-square test of the genotype distribution of the extremely high and low-yielding Erhualian pigs. Significant SNPs of the chi-square test were verified in the whole Erhualian pig population. Finally, these SNPs that were significantly associated with the litter size of Erhualian pigs were selected and verified in the Meishan and Suhuai pig populations. In our studies, we found that there are nine SNPs in the promoter, coding region, and UTR region of the UCHL1 gene. Our results showed that the polymorphism of the rs339921806 in the promoter and rs342939847 in the 5’UTR of the UCHL1 gene were significantly affected the litter size of Erhualian pigs and Meishan pigs (P <0.05), but was not associated with the litter size of Suhuai pigs. In conclusion, this study identified the UCHL1 gene as a key candidate gene affecting the litter size of Erhualian pigs through the QTL fine mapping on chromosome 8. UCHL1 protein was mainly expressed in the cytoplasm of follicular granulosa cells and oocytes of Erhualian pigs. This protein is preferentially expressed in endometrial stromal cells of Erhualian pigs on day 96 after birth, while it expressed in the uterine gland cell and endometrial stromal cells of Erhualian pigs on day 182 after birth. In the ovaries of the offspring of Erhualian pigs, the expression of UCHL1 gene in the offspring on day 10 was significantly higher than on day 96 and 182 after birth by RT-qPCR. The expression of the UCHL1 gene in the high prolificacy Erhualian pigs were significantly higher than low prolificacy ones in endometrium on day 24 of gestation, and the expression of UCHL1 gene in offspring of Erhualian pigs on day 96 after birth was significantly higher than Erhulian on day 182 in the endometrium. The polymorphism of rs339921806 in the promoter and rs342939847 in the 5’UTR of the UCHL1 gene were significantly associated with the litter size of Erhualian and Meishan pig populations. |
参考文献: |
[1] 中国动物遗传资源委员会. 中国地方畜禽遗传资源志·猪志[M]. 北京:中国农业出版 2011. [2] 魏清甜, 黄阳, 唐磊, 等. 中国地方猪遗传资源的高繁殖性能研究[J]. 中国地方猪种保护与利用第十届年会论文集, 2013: 34-36. [3] 郑友民, 王立贤. 国外对太湖猪的研究进展[J]. 国外畜牧科技, 1998, (04): 22-26. [4] Alfonso L, Noguera J, Babot D, et al. Estimates of genetic parameters for litter size at different parities in pigs[J]. Livestock Science, 1997, 47(2): 149-156. [5] Hanenberg E, Knol E, Merks J. Estimates of genetic parameters for reproduction traits at different parities in Dutch Landrace pigs[J]. Livestock Production Science, 2001, 69(2): 179-186. [6] Roehe R, Kennedy B. Estimation of genetic parameters for litter size in Canadian Yorkshire and Landrace swine with each parity of farrowing treated as a different trait[J]. Journal of Animal Science, 1995, 73(10): 2959-2970. [7] Irgang R, Favero JA, Kennedy BW. Genetic parameters for litter size of different parities in Duroc, Landrace, and large white sows[J]. Journal of Animal Science, 1994, 72(9): 2237-2246. [8] See MT, Mabry JW, Bertrand JK. Restricted maximum likelihood estimation of variance components from field data for number of pigs born alive[J]. Journal of Animal Science, 1993, 71(11): 2905-2909. [9] Avalos E, Smith C. Genetic improvement of litter size in pigs[J]. Animal Production, 1987, 44(1): 153-163. [10] 赵要风, 李宁, 肖璐, 等. 猪FSHβ亚基基因结构区逆转座子插入突变及其与猪产仔数关系的研究[J]. 中国科学, 1999, 29(1): 81-86. [11] 孙梅, 陈杰, 赵茹茜, 等. 二花脸猪obese基因3714位点多态性与产仔性状的相关性[J]. 南京农业大学学报, 2004, 27(1): 74-76. [12] Short T, Southwood O, De Vries A, et al. Evidence of a new genetic marker for litter size in pigs[J]. Journal of Animal Science, 1997, 75(Suppl 1): 29. [13] Hamann H, Dr?gemüller C, Krieter J, et al. Genetic markers for litter size in German pig breeds [C] 51th Annual meeting of EAAP, Haga, Netherlands.2000. [14] 刘晨, 魏全伟, 李平华, 等. 抑制素α亚基基因5’UTR区在苏淮猪中的多态性分析[J]. 南京农业大学学报, 2017, 40(6): 1119-1124. [15] Zhang Q, Huang R, Jiang N, et al. Association of Rs339939442 in the AHR Gene with Litter Size are Inconsistent among Chinese Indigenous Pigs and Western Commercial Pigs [J]. Animals, 2020: 10, 11. [16] Steinheuer R, Dr?gemüller C, Hamann H, et al. Einfluss von Kandidatengeneffekten auf die Anzahl lebend geborener und aufgezogener Ferkel bei Besamungsebern der Deutschen Landrasse[J]. Züchtungskunde, 2003, 75: 204-213. [17] Li W-T, Zhang M-M, Li Q-G, et al. Whole-genome resequencing reveals candidate mutations for pig prolificacy[J]. Proceedings of the Royal Society - biological sciences, 2017, 284(1869): 20172437. [18] 张倩, 方宇瑜, 李平华, 等. ESR、FSHβ、AHR基因多态性对二花脸猪产仔数的影响[J]. 南京农业大学学报, 2019, 42(6): 1150-1157. [19] 贺丽春. 二花脸猪品种内产仔数变异关键基因的鉴别[D]. 南京农业大学, 2016. [20] 马翔. 二花脸猪产仔数变异的生理特征挖掘和关键基因鉴别[D]. 南京农业大学, 2019. [21] He LC, Li PH, Ma X, et al. Identification of new single nucleotide polymorphisms affecting total number born and candidate genes related to ovulation rate in Chinese Erhualian pigs [J]. Anim Genet, 2016, 48(1): 48-54. [22] 陈杰, 黄瑞华, 李齐贤, 等. 二花脸猪的种质资源研究进展和开发利用经验[J]. 中国地方猪种保护与利用协作组第十届年会, 2013:4. [23] 李妍. 优良猪品种——太湖猪[J]. 农村百事通, 2019: 23(24):36. [24] 葛云山, 徐筠遐. 二花脸纯繁与杂交猪繁殖性能的比较[J]. 江苏农业科学, 1995: 3(21): 54-56. [25] 孙莉. 江苏省畜禽遗传资源现状及保护对策研究[D]. 南京农业大学, 2008. [26] Li PH, Ma X, Zhang YQ, et al. Progress in the physiological and genetic mechanisms underlying the high prolificacy of the Erhualian pig[J]. Hereditas, 2017, 39(11): 1016-1024. [27] Dyck GW. Ovulation rate and weight of the reproductive organs of Yorkshire and Lacombe Swine[J]. Canadian Journal of Animal Science, 1971, 51(1): 141-146. [28] 徐树法, 敖文利. 我国地方种猪的优良特性[J]. 科技传播, 2010, 7: 118-119. [29] 牛树理, 冯紫云, 甘信德, 等. 二花脸和大约克猪的卵泡发育排卵数和妊娠子宫对胎儿数的影响[J]. 畜牧与兽医, 1996, 28(6):247-248. [30] 周泉勇. 大白猪和二花脸猪妊娠后期胎盘转录谱比较及印记基因鉴定研究[D]. 华中农业大学, 2009. [31] 段晓红. 不同地方猪品种杂交组合生产性能研究[D]. 西北农林科技大学, 2015. [32] 肖森木, 张淑君, 张立斌, 等. 长大、二花脸和大白三个猪群的21个性状比较分析[J]. 现代畜牧兽医, 2000, 20(5): 7-9. [33] Tantasuparuk W, Techakumphu M, Kunavongkrit A. Seasonal influences on the litter size at birth of pigs are more pronounced in the gilt than sow litters[J]. Journal of Agricultural Science, 2010, 148(4): 421-432. [34] Schoknecht PA. Swine nutrition: nutrient usage during pregnancy and early postnatal growth, an introduction[J]. Journal of Animal Science, 1997, 75(10): 2705-2707. [35] Love RJ, Philbey AW, Kirkland PD, et al. Reproductive disease and congenital malformations caused by Menangle virus in pigs[J]. Australian Veterinary Journal, 2010, 79(3): 192-198. [36] Kanora A, Maes D. The role of mycotoxins in pig reproduction: a review[J]. Veterinární Medicína, 2009, 54(12): 565-576. [37] 严忠慎, 丁家桐, 丁建池, 等. 二花脸猪初情期前后血浆性激素浓度的变化[J]. 扬州大学学报(农业与生命科学版), 1987, 8(2):13-15. [38] Faillace LS, Hunter MG. Follicle development and oocyte maturation during the immediate preovulatory period in Meishan and white hybrid gilts[J]. Journal of Reproduction & Fertility, 1994, 101(3): 571-576. [39] 李汝敏, 王林云, 贡桂平, 等. 二花脸猪卵泡发育与繁殖性能关系的探讨[J]. 江苏农业科学, 1990, (1):60-61. [40] 焦淑贤, 王瑞祥, 蔡正华, 等. 枫泾和长白母猪发情期促卵泡素,促黄体素[J]. 中国农业科学, 1992, 25(6):80-85. [41] 尹洛蓉, 李学伟, 吕学斌, 等. 梅山猪多产性研究[J]. 西南大学学报(自然科学版), 2011, 33(8):37-41. [42] Chen X, Li A, Chen W, et al. Differential Gene Expression in Uterine Endometrium During Implantation in Pigs[J]. Biology of Reproduction, 2015, 92(2): 52. [43] Haley CS, Lee GJ. Genetic basis of prolificacy in Meishan pigs[J]. Journal of Reproduction and Fertility Supplement, 1993, 48(1): 247-259. [44] Bartol FF, Wiley AA, Spencer TE, et al. Early uterine development in pigs[J]. Journal of Reproduction and Fertility Supplement, 1993, 48: 99-116. [45] Terqui M, Bazer FW, Martinat Botte F. Mechanisms involved in the high prolificacy of the Meishan breed[J]. 1990: [46] Li K, Ren J, Xing Y, et al. Quantitative trait loci for litter size and prenatal loss in a White Duroc x Chinese Erhualian resource population[J]. Animal Genetics, 2010, 40(6): 963-966. [47] 林国珊. 二花脸猪特异选择位点与猪产仔数的关联性分析[D]. 江西农业大学, 2013. [48] Ma X, Li PH, Zhu MX, et al. Genome-wide association analysis reveals genomic regions on Chromosome 13 affecting litter size and candidate genes for uterine horn length in Erhualian pigs[J]. Animal An International Journal of Animal Bioscience, 2018, 12(12): 2453-2641. [49] Sato S, K. A, N. S, et al. Identification of quantitative trait loci affecting corpora lutea and number of teats in a Meishan × Duroc F2 resource population[J]. Journal of Animal Science, 2006, 84(11): 2895-2901. [50] Rohrer GA, Ford JJ, Wise TH, et al. Identification of quantitative trait loci affecting female reproductive traits in a multigeneration Meishan-White composite swine population[J]. Journal of Animal Science, 1999, 77(6): 1385-1391. [51] Hernandez S, Finlayson HA, Ashworth C, et al. A genome-wide linkage analysis for reproductive traits in F 2 Large White × Meishan cross gilts[J]. Animal genetics, 2014, 45(2): 191-197. [52] Mousel MR, Leymaster KA, Christenson RK, et al. Validation and fine mapping of a QTL for ovulation rate on swine chromosome 3[J]. Animal Genetics, 2012, 43(2): 220-224. [53] Wilkie PJ, Paszek AA, Beattie CW, et al. A genomic scan of porcine reproductive traits reveals possible quantitative trait loci (QTLs) for number of corpora lutea[J]. Mammalian Genome volume, 1999, (10): 573–578. [54] Campbell EM, Nonneman DJ, Kuehn LA, et al. Genetic variation in the mannosidase 2B2 gene and its association with ovulation rate in pigs?[J]. Animal Genetics, 2008, 39(5): 515-519. [55] Rosendo A, Iannuccelli N, Gilbert H, et al. Microsatellite mapping of quantitative trait loci affecting female reproductive tract characteristics in Meishan x Large White F(2) pigs[J]. J Anim Sci, 2012, 90(1): 37-44. [56] Zhao P, Yu Y, Feng W, et al. Evidence of evolutionary history and selective sweeps in the genome of Meishan pig reveals its genetic and phenotypic characterization [J]. GigaScience, 2018, 7(5): giy058. [57] Wang XN, Greenwald GS. Hypophysectomy of the cyclic mouse. II. Effects of follicle-stimulating hormone (FSH) and luteinizing hormone on folliculogenesis, FSH and human chorionic gonadotropin receptors, and steroidogenesis[J]. Biology of Reproduction, 1993, 48(3): 595-605. [58] Mannaerts B, Uilenbroek J, Schot P, et al. Folliculogenesis in hypophysectomized rats after treatment with recombinant human follicle-stimulating hormone[J]. Biology of Reproduction, 1994, 51(1): 72-81. [59] Vincent AL, Wang L, Tuggle CK, et al. Prolactin receptor maps to pig chromosome 16[J]. Mammalian Genome, 1997, 8(10): 793-794. [60] Niu SY, Wang XP, Hao FG, et al. Effect of the polymorphism of RBP4 and OPN genes on litter size in Tibet pigs [J]. Acta Agriculturae Scandinavica, 2008, 58(1): 10-13. [61] Jiang Z, Robinson JAB, Gibbins AMV, et al. Mapping of QTLs for prolificacy traits on SSC8 using a candidate gene approach [C]World Congress on Genetics Applied to Livestock Production.2002. [62] Bosse M, Megens H-J, Frantz LAF, et al. Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression [J]. Nature Communications, 2014, 5(7): 1-7. [63] 丁朝阳, 陈斌, 柳小春, 等. 猪INHA与GnRHR基因型互作效应对产仔数的影响[J]. 湖南农业大学学报(自然科学版), 2009, 35(5):509-513. [64] Norwitz ER, Jeong K-H, Chin WW. Molecular Mechanisms of Gonadotropin-Releasing Hormone Receptor Gene Regulation [J]. J Soc Gynecol Investig, 1999, 6(4): 169-178. [65] Rohrer GA. Mapping four genes from human chromosome 4 to porcine chromosome 8 further develops the comparative map for an economically important chromosome of the swine genome [J]. Animal Genetics, 1999, 30(1): 60-62. [66] Jiang Z, Gibson JP, Archibald AL, et al. The porcine gonadotropin-releasing hormone receptor gene (GNRHR): Genomic organization, polymorphisms, and association with the number of corpora lutea [J]. Genome, 2001, 44(1): 7-12. [67] 王钧. 5个绵羊品种BMPR-IB基因多态性的研究[D]. 甘肃农业大学, 2013. [68] Kumari R, Dayal S, Kumar S, et al. Genetic polymorphism of bone morphogenetic protein receptor type–1 gene in Black Bengal goat and its association with litter size [J]. The Indian journal of animal sciences, 2015, 85: 469-471. [69] Tseng JC, Chen HF, Wu KJ. A twist tale of cancer metastasis and tumor angiogenesis [J]. Histology & Histopathology, 2015, 30(11): 1283-1294. [70] Christoforou ER, Pitman JL. Intra-follicular growth differentiation factor 9: Bone morphogenetic 15 ratio determines litter size in mammals[J]. Biology of Reproduction, 2019: [71] Sun X, Mei S, Tao H, et al. Microarray profiling for differential gene expression in PMSG-hCG stimulated preovulatory ovarian follicles of Chinese Taihu and Large White sows[J]. BMC genomics, 2011, 12(1): 111. [72] Chen J, Torcia S, Xie F, et al. Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes[J]. Nature Cell Biology, 2013, 15(12): 1415-1423. [73] 桂耀庭, 张键荣, 梁婉青, 等. 双调蛋白在人体子宫内膜组织中的表达特征[J]. 北京大学学报(医学版), 2008, 40:241-244. [74] Shiraishi K, Matsuyama H. Local Expression of Epidermal Growth Factor-Like Growth Factors in Human Testis and Its Role in Spermatogenesis[J]. Journal of Andrology, 2012, 33(1): 66-73. [75] 赵西彪. AREG、ESR和FSHβ亚基基因与猪产仔数关系研究[D]. 扬州大学, 2008. [76] Pru J, Clark N. PGRMC1 and PGRMC2 in uterine physiology and disease[J]. Frontiers in neuroscience, 2013, 7(7): 168-168. [77] Wendler A, Wehling M. PGRMC2, a yet uncharacterized protein with potential as tumor suppressor, migration inhibitor, and regulator of cytochrome P450 enzyme activity [J]. Steroids, 2013, 78(6): 555-558. [78] Griffin D, Liu X, Pru C, et al. Expression of Progesterone Receptor Membrane Component-2 Within the Immature Rat Ovary and Its Role in Regulating Mitosis and Apoptosis of Spontaneously Immortalized Granulosa Cells[J]. Biology of Reproduction, 2014, 91(2): 36-36. [79] Wang Z, Chen Q, Liao R, et al. Genome-wide genetic variation discovery in Chinese Taihu pig breeds using next generation sequencing[J]. Animal Genetics, 2016, 48(1): 38-47. [80] Campbell E, Nonneman D. Fine mapping a quantitative trait locus affecting ovulation rate in pigs on chromosome 8 [J]. Journal of animal science, 2003, 81: 1706-1714. [81] Dall’Olio S, Fontanesi L, Tognazzi L, et al. Genetic structure of candidate genes for litter size in Italian Large White pigs [J]. Veterinary Research Communications, 2010, 34(1): 203-206. [82] 杜红丽, 陈静, 张玉山, 等. 二花脸与杜洛克猪繁殖相关基因表达差异[J]. 华南农业大学学报, 2008, 29:99-103. [83] Dragovic RA, Ritter LJ, Schulz SJ, et al. Oocyte-Secreted Factor Activation of SMAD 2/3 Signaling Enables Initiation of Mouse Cumulus Cell Expansion [J]. Biology of Reproduction, 2007, 76(5): 848-857. [84] Gilchrist R, Ritter L. Differences in the participation of TGFB superfamily signalling pathways mediating porcine and murine cumulus cell expansion [J]. Reproduction (Cambridge, England), 2011, 142(5): 647-657. [85] Russell DL, Brown HM, Alvino ER, et al. Involvement of Blood and Lymphatic Angiogenesis in Folliculogenesis and Ovulation [J]. Biology of Reproduction, 2008, 78(1): 79. [86] Lee M, Rodansky ES, Smith JK, et al. ADAMTS13 promotes angiogenesis and modulates VEGF-induced angiogenesis[J]. Microvascular Research, 2009, 84(2): 109-115. [87] Coyral-Castel S, Brisard D, Touzé J-L, et al. Analysis of in vivo oocyte maturation, in vitro embryo development and gene expression in cumulus cells of dairy cows and heifers selected for one fertility quantitative trait loci (QTL) located on BTA3[J]. Theriogenology, 2012, 77(9): 1822-1833. [88] Ferreira R, Oliveira JF, Fernandes R, et al. The role of angiotensin II in the early stages of bovine ovulation[J]. Reproduction, 2007, 134(5): 713-719. [89] Girard A, Dufort I, Douville G, et al. Global gene expression in granulosa cells of growing, plateau and atretic dominant follicles in cattle[J]. Reproductive Biology & Endocrinology, 2015, 13(1): 17. [90] 张倩. 影响二花脸猪产仔数的候选基因和12号染色体QTL精细定位研究[D]. 南京农业大学, 2019. [91] Riera MF, Regueira M, Galardo MN, et al. Signal transduction pathways in FSH regulation of rat Sertoli cell proliferation[J]. American Journal of Physiology Endocrinology & Metabolism, 2012, 302(8): E914-923. [92] Sun XH, Su YP, He YL, et al. New strategy for in vitro activation of primordial follicles with mTOR and PI3K stimulators[J]. Cell Cycle, 2015, 14(5): 721-731. [93] Cheng Y, Kim J, Li XX, et al. Promotion of ovarian follicle growth following mTOR activation: synergistic effects of AKT stimulators[J]. Plos One, 2015, 10(2): e0117769. [94] 方宇瑜. 二花脸猪产仔性状候选基因的遗传变异及其与产仔数的关联性分析[D]. 南京农业大学, 2017. [95] Garcia-Ortiz EJ, Pelosi E, Omari S, et al. Foxl2 functions in sex determination and histogenesis throughout mouse ovary development[J]. Bmc Developmental Biology, 2009, 9(1): 1-21. [96] Schwarzenbacher H, Burgstaller J, Seefried FR, et al. A missense mutation in TUBD1 is associated with high juvenile mortality in Braunvieh and Fleckvieh cattle[J]. BMC Genomics, 2016, 17(1): 400. [97] 张瑜, 孙兆贵. 泛素羧基末端水解酶-1(UCHL1)的分子进化分析[J]. 生物信息学, 2017, 15(4): 207-213. [98] Jackson P, Thompson RJ. The demonstration of new human brain-specific proteins by high-resolution two-dimensional polyacrylamide gel electrophoresis[J]. Journal of the Neurological Sciences, 1981, 49(3): 429-438. [99] Kwon, J. Ubiquitin C-Terminal Hydrolase L-1 Is Essential for the Early Apoptotic Wave of Germinal Cells and for Sperm Quality Control During Spermatogenesis [J]. Biology of Reproduction, 73(1): 29-35. [100] Sekiguchi S, Kwon J, Yoshida E, et al. Localization of Ubiquitin C-Terminal Hydrolase L1 in Mouse Ova and Its Function in the Plasma Membrane to Block Polyspermy [J]. The American journal of pathology, 2006, 169: 1722-1729. [101] Gu YQ, Chen QJ, Zheng G, et al. Ubiquitin carboxyl-terminal hydrolase L1 contributes to the oocyte selective elimination in prepubertal mouse ovaries [J]. Acta Physiologica Sinica, 2009, 61(2): 175-184. [102] Yao YW, Shi Y, Jia Z-F, et al. PTOV1 is associated with UCH-L1 and in response to estrogen stimuli during the mouse oocyte development[J]. Histochem Cell Biol, 2011, 136(2): 205-215. [103] 姚余卫. UCH-L1及其关联蛋白PTOV1对卵泡发育的影响[D]. 复旦大学, 2012. [104] Bheda A, Gullapalli A, Caplow M, et al. Ubiquitin editing enzyme UCH L1 and microtubule dynamics: Implication in mitosis [J]. Cell Cycle, 2010, 9(5): 980-994. [105] 史文姝, 金一. 抑制UCHL1对猪卵母细胞体外成熟、透明带泛素化及多精入卵的影响[J]. 中国畜牧兽医, 2017, 44(12): 3563-3569. [106] Wilson POG, Barber PC, Hamid QA, et al. The immunolocalization of protein gene product 9.5 using rabbit polyclonal and mouse monoclonal antibodies[J]. Brjexppathol, 1988, 69(1): 91-104. [107] Rodriguez-Sosa J, Dobson H, Hahnel A. Isolation and transplantation of spermatogonia in sheep[J]. Theriogenology, 2006, 66(9): 2091-2103. [108] Luo J, Rathi R, Dobrinski I. Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: Application to enrichment and culture of porcine spermatogonia[J]. Molecular reproduction and development, 2006, 73(12): 1531-1540. [109] Ai H, Huang L, Ren J. Genetic diversity, linkage disequilibrium and selection signatures in chinese and Western pigs revealed by genome-wide SNP markers[J]. PLoS One, 2013, 8(2): e56001. [110] Ren J, Yan X, Ai H, et al. Susceptibility towards enterotoxigenic Escherichia coli F4ac diarrhea is governed by the MUC13 gene in pigs[J]. PLoS One, 2012, 7(9): e44573. [111] Herault F, Damon M, Cherel P, et al. Combined GWAS and LDLA approaches to improve genome-wide quantitative trait loci detection affecting carcass and meat quality traits in Pig [J]. Meat Science, 2018, 135: 148-158. [112] 熊信威. 猪12号染色体上增加肌内脂肪含量的因果基因及其因果突变的鉴别与作用机理研究[D]. 江西农业大学, 2019. [113] Henegariu O, Heerema NA, Dlouhy SR, et al. Multiplex PCR: critical parameters and step-by-step protocol[J]. Biotechniques, 1997, 23(3): 504-511. [114] 杨杰. 猪3号染色体影响糖原酵解潜能主效QTL的精细定位[D]. 江西农业大学, 2012. [115] 李平华. 猪5号染色体耳面积QTL精细定位及其因果基因的初步鉴别[D]. 江西农业大学, 2012. [116] Jamann TM, Balint-Kurti PJ, Holland JB. QTL Mapping Using High-Throughput Sequencing[J]. Methods in Molecular Biology, 2015, 1284(0): 257-285. [117] 鲁绍雄, 连林生. 畜禽数量性状基因座位的精细定位[J]. 中国牛业科学, 2006, (1): 42-46. [118] Geldermann H. Investigations on inheritance of quantitative characters in animals by gene markers I. Methods [J]. Theoretical and Applied Genetics, 1975, 46(7): 319-330. [119] Darvasi A, Soller M. A simple method to calculate resolving power and confidence interval of QTL map location[J]. Behavior Genetics, 1997, 27(2): 125-132. [120] Darvasi A, Soller M. Advanced intercross lines, an experimental population for fine genetic mapping [J]. Genetics, 1995, 141(3): 1199-1207. [121] Hernandez-Sanchez J, Grunchec JA, Knott S. A web application to perform linkage disequilibrium and linkage analyses on a computational grid [J]. Bioinformatics, 2009, 25(11): 1377-1383. [122] 鲁立刚, 金深逊, 张建英, 等. 同源相同(IBD)定位在QTL精细定位中的研究进展[J]. 家畜生态学报, 2010, 31(2):83-86. [123] 刘会英, 张勤. IBD方法精细定位QTL的模拟研究[C]中国畜牧兽医学会2003年学术年会论文集.2003. [124] Glass GV. Primary, Secondary, and Meta-Analysis of Research[J]. Educational Researcher, 1976, 5(10): 3-8. [125] Georges M, Charlier C, Hayes B. Harnessing genomic information for livestock improvement [J]. Nature Reviews Genetics, 2019, 20(3): 135-156. [126] Hayes BJ, Aniek C. Bouwman, Hans D. Daetwyler, et al. Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals[J]. Nature Genetics, 2018, 50: 362-367. [127] 张俊杰. 利用多品种大样本群体精细定位影响猪背最长肌脂肪酸组成的QTL[D]. 江西农业大学, 2018. [128] Bolormaa S, Pryce JE, Reverter A, et al. A multi-trait, meta-analysis for detecting pleiotropic polymorphisms for stature, fatness and reproduction in beef cattle[J]. Plos Genetics, 2014, 10(3): e1004198. [129] Nielsen R, Hellmann I, Hubisz M, et al. Recent and ongoing selection in the human genome[J]. Nature Reviews Genetics, 2007, 8(11): 857-868. [130] 杨怀谷, 李宝红, 张洁, 等. 利用选择性清除方法鉴别影响太湖猪(二花脸、梅山猪)及野猪产仔数差异的SNP位点[J]. 广东农业科学, 2014, 41(15):100-106. [131] Fernando RL, Grossman M. Marker assisted selection using best linear unbiased prediction[J]. Genetics Selection Evolution, 1989, 21(4): 467-477. [132] Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics, 1989, 121(1): 185-199. [133] 于长斌. 现代生物技术在猪遗传育种中的应用[J]. 现代畜牧科技, 2012, (1): 51-51. [134] 李娅兰, 张豪, 张勤, 等. 标记辅助选择在猪育种中应用效果的研究[J]. 中国畜牧兽医, 2009, 36:67-72. [135] 杨明, 王青来, 刘敬顺, 等. MUC13、FUT1基因在2个种猪核心群中的分子标记辅助选择研究[J]. 华南农业大学学报, 2015, 36(6):1-8. [136] 杨明, 温淑贤, 王青来, 等. 氟烷基因在皮特兰猪群体中的分子标记辅助选择研究[J]. 华南农业大学学报, 2018, 39(6):1-4. [137] Goddard,ME, Hayes BJ. Genomic selection[J]. Journal of Animal Breeding and Genetics, 2008: 323-330. [138] 王晨, 秦珂, 薛明, 等. 全基因组选择在猪育种中的应用[J].畜牧兽医学报, 2016, 47:1-9. [139] Davis S, Aguilar I, Misztal I. Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information [J]. Genetics, selection, evolution : GSE, 2011, 43(1): 1. [140] Guo X, Christensen OF, Ostersen T, et al. Improving genetic evaluation of litter size and piglet mortality for both genotyped and nongenotyped individuals using a single-step method [J]. Journal of Animal Science, 2015, 93(2): 503-512. [141] 张金鑫, 肖炜, 云鹏, 等. 北京地区大白猪基因组联合育种研究[J]. 中国农业科学, 2019, 52(12):2161-2170. [142] 叶健, 郑恩琴 ,胡晓湘, 等. 基因组选择技术及其在猪育种中的应用探讨[J]. 中国畜牧杂志, 2017, 53(11):5-10. [143] Andersen-Ranberg I, Grindflek E. Implementation of genomic selection in Norsvin genetic program; genetic gain in production and maternal traits in Norsvin Landrace [C]10th World Congress on Genetics Applied to Livestock Production.2014. [144] Ibá?ez-Escriche N, Forni S, Noguera JL, et al. Genomic information in pig breeding: Science meets industry needs ☆ [J]. Livestock Science, 2014, 166(4): 94-100. [145] 王青来, 李亚兰. 全国首例全基因组选育特级种猪在粤诞生[J]. 农业知识:科学养殖, 2014, 6:25-25. [146] Money D, Gardner K, Migicovsky Z, et al. LinkImpute: Fast and Accurate Genotype Imputation for Nonmodel Organisms[J]. G3: Genes|Genomes|Genetics, 2015, 5(11): 2383-2390. [147] Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans[J]. Bioinformatics, 2010, 26(17): 2190-2191. [148] Wang Z, Chen Q, Yang Y, et al. Genetic diversity and population structure of six Chinese indigenous pig breeds in the Taihu Lake region revealed by sequencing data[J]. Animal Genetics,2015, 46(6): 697-701. [149] Mochida K, Matsubara T, Kudo H, et al. Molecular cloning and immunohistochemical localization of ubiquitin C-Terminal hydrolase expressed in testis of a teleost, the Nile Tilapia,Oreochromis niloticus[J]. The Journal of experimental zoology, 2002, 293(4): 368-383. [150] Lin Y-H, Zhen Y-Y, Chien K-Y, et al. LIMCH1 regulates nonmuscle myosin-II activity and suppresses cell migration[J]. Molecular biology of the cell, 2017, 28: 1-33. [151] Fiuza-Luces C, Santos-Lozano A, Llavero Bernal F, et al. Muscle molecular adaptations to endurance exercise training are conditioned by glycogen availability: a proteomics-based analysis in the McArdle mouse model[J]. The Journal of Physiology, 2018, 596(6): 1-75. [152] 宿爱琴, 糜若然, 张双革, 等. 子宫内膜间质细胞雌二醇的分泌及其调节[J]. 现代妇产科进展, 2004, 11(3):198-200. [153] 黄江南. 不同猪种及妊娠期子宫内膜中基因差异表达鉴定及特征分析[D]. 华中农业大学, 2011. [154] 姜晓娜. ANXA8基因调控猪子宫内膜细胞增殖作用的机理研究[D]. 华中农业大学, 2018. [155] Liu K, Muse SV. PowerMarker: An integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9): 2128-2129. [156] Chauhan VPS. Dairy sire evaluation fitting some of the herd-year-season effects as random[J]. Livestock Production Science, 1987, 16(2): 117-130. [157] Wang B, Li P, Zhou W, et al. Association of Twelve Candidate Gene Polymorphisms with the Intramuscular Fat Content and Average Backfat Thickness of Chinese Suhuai Pigs[J]. Animals, 2019, 9(11): 858. [158] Drogemuller C, Hamann H, Distl O. Candidate gene markers for litter size in different German pig lines[J]. Journal of Animal Science, 2001, 79(10): 2565-2570. [159] Bing Z, Yang GS, Chao S, et al. Effects of Leptin Gene on Litter Size in Luchuan and Large White Pig[J]. China Animal Husbandry & Veterinary Medicine, 2007, 38(6): 608-613. |
中图分类号: | S81 |
开放日期: | 2022-06-24 |