中文题名: | PRV进入 BHK-21细胞的分子基础及其作为活载体疫苗表达 CSFV E2蛋白的研究 |
姓名: | |
学号: | 2018207001 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 090601 |
学科名称: | 农学 - 兽医学 - 基础兽医学 |
学生类型: | 博士 |
学位: | 农学博士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 动物病理学 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2023-05-28 |
答辩日期: | 2023-05-28 |
外文题名: | Molecular Basis of PRV Entry Into BHK-21 Cells and Expression of CSFV E2 Protein by PRV as A Live Vector Vaccine |
中文关键词: | |
外文关键词: | Pseudorabies virus ; Macropinocytosis ; CDC42 ; RAC1 ; Classical swine fever virus ; E2 protein ; Transmembrane region ; Stabilization |
中文摘要: |
猪伪狂犬病病毒(PRV)是一种甲型疱疹病毒。PRV感染是一种遍布世界的猪传染病,世界动物卫生组织(OIE)将其列为必须报告的疾病。此外,牛、羊、狗、猫、鸡、兔、豚鼠、浣熊、负鼠等其他动物也会被PRV感染并发展为疾病,对经济动物和野生动物的健康构成威胁。最重要的是,最近有报道称PRV可以感染人类,导致脑炎和死亡。病毒建立感染的第一步是进入宿主细胞,然而,PRV进入细胞的关键细节以及宿主因子如何参与这些过程在很大程度上是未知的。巨胞饮作用是一种肌动蛋白依赖的内吞过程,在细胞表面受体激活之后,非特异性摄取液体、溶质和一些颗粒物质。在过去的几年里,巨胞饮作用被认为是病毒或细菌进入宿主细胞的主要途径。参与巨胞饮作用的细胞因子因病毒而异,但通常包括酪氨酸激酶(TK)、蛋白激酶C(PKC)、p21活化激酶1(Pak1)、PI(3)K、Rho GTPase(Rac1或CDC42)、Na+/H+交换泵、动力蛋白和C端结合蛋白1(CtBP1)。 为了确定PRV进入细胞的潜在机制,本研究通过特异性抑制剂、siRNA沉默或显性负突变体干扰关键宿主因子的表达,并全面研究了它们在RPV进入BHK-21细胞过程中的作用。本研究发现PRV入胞既不依赖内体酸化,也不依赖网格蛋白或小窝蛋白介导的内吞作用,而干扰了巨胞饮入胞途径之后,PRV的入胞和基因表达都显著减少。通过视频观察得出肌动蛋白重排介导了PRV通过巨胞饮途径的入胞过程,进一步研究发现在巨胞饮作用过程中,cofilin磷酸化参与了肌动蛋白重排的调控,PAK1磷酸化也参与这一过程,并且cofilin受PAK1 - LIMK调控。利用PAK1将与其相互作用的蛋白进行免疫共沉淀,发现PAK1的上游是RAC1和CDC42。通过沉默和过表达CDC42和RAC1,发现RAC1可以控制片状伪足的形成,而CDC42可以控制丝状伪足的形成。而PRV可通过丝状伪足或片状伪足进入细胞,并且发现CDC42和RAC1在PRV内化过程中具有代偿作用。继续深入研究发现CDC42 RAC1的活化需要Src激酶的激活。后经过广泛的生物信息学分析和试验验证,发现PRV通过gD蛋白结合Nectin-1激活Src。因此,PRV通过巨胞饮途径进入BHK-21细胞的过程得到清晰而完整的描述,即这些过程是由病毒糖蛋白gD与细胞受体Nectin-1结合而启动的。gD与nectin-1结合后,Nectin-1 - Src - RAC1/CDC42 - PAK1 - LIMK - cofilin - actin级联信号通路被触发,导致细胞表面形成丝状伪足或片状伪足摄取PRV。其中,CDC42和RAC1具有代偿作用,并在PRV入胞过程中起关键作用。此外,本研究通过跟踪单个病毒粒子的入胞过程,计算出PRV平均入胞时间为132秒。最后,PRV入胞后形成的巨胞饮体的运输需要Rab5A的参与,而不需要Rab7A。本研究全面描述各种细胞因子在PRV巨胞饮途径中的作用,该结果将有助于了解PRV的入胞机制和巨胞饮途径的特征。 伪狂犬病(PR)和猪瘟(CSF)是具有重要经济价值的猪传染病。我国大多数养殖场都需要对这两种疾病进行免疫。鉴于PRV感染的细胞谱广、入胞时间短,基因缺失的伪狂犬病毒可用于开发有前景的、经济的多价活病毒载体疫苗。PRV具有150 kb的基因组,可以利用细菌人工染色体(BAC)技术进行反向遗传操作。通过将毒力基因(TK、gE和gI)敲除,可成为免疫原性较好的弱毒株。另外,PRV基因组中含有许多非必需基因,如US4、US7、US8、US9,外源基因可以插入到这些基因中而不影响病毒的体外和/或体内复制潜力,使其成为表达其他猪病外源抗原的合适载体。多价疫苗,尤其是表达外源蛋白的病毒载体疫苗,是对抗猪的各种合并感染疾病的有效策略,已有许多PRV表达猪瘟E2蛋白疫苗的报道,但目前尚无广泛应用于畜牧业的PRV和猪瘟二联基因工程疫苗。 E2蛋白位于CSFV包膜表面,参与病毒的感染过程,是猪瘟病毒的主要保护性抗原,可诱导产生中和抗体。已有报道PRV能表达一个截短的E2蛋白(1-338aa),但未见PRV能表达一个全长E2蛋白的报道。本研究构建了不同表达形式的E2蛋白,发现只有在去除E2跨膜区并加入信号肽的情况下,E2蛋白才能在体外表达。对E2跨膜区的分析发现,E2跨膜区的高疏水性是其无法表达的主要原因。通过突变一个氨基酸来降低其跨膜区的疏水性,发现E2的全长突变体(E2FL-muta3或E2FL-muta4)可以表达。表达的全长突变体E2也可定位于细胞膜上。表达E2FL-muta3或E2FL-muta4的PRV载体疫苗免疫小鼠后,可产生针对E2蛋白的特异性细胞免疫,产生的E2抗体水平明显高于表达截短E2的PRV载体疫苗。免疫后的家兔可同时防止PRV-ZJ2013的致死攻击和猪瘟引起的发热反应。这些结果提示rPRV-dgE/TK-E2FL-muta4是一种有前途的针对CSFV和PRV感染的二联疫苗候选株。 另外,本研究设计热稳定化的E2蛋白作为免疫原插入PRV基因组,成为二联活病毒载体疫苗。蛋白质被折叠的主要原因是获得其功能。这种功能意味着一种一般的蛋白质结构,它必须在在结构上相当稳定,同时具有高的灵活性,才能允许生物过程发生。因此,蛋白质的天然状态不一定是最稳定的状态。本研究旨在将E2蛋白作为免疫原,其中E2不需要具有变构、结合或其他功能,但E2必须具有更稳定的结构,不易被沉淀降解或聚集。E2蛋白有48个变异位点,每个变异位点有2-5个候选氨基酸,同时对48个变异位点进行了多氨基酸替换,获得稳定化的E2序列,其能量较原始序列降低了22个Rosetta能量单位(REUs)。构建表达稳定化E2蛋白的重组PRV,发现稳定化E2蛋白的分泌效率提高2.97倍,热稳定性提高10.5倍。小鼠免疫后抗体水平提高2倍,并且产生了针对1.1亚型和2.1d亚型E2的平衡抗体,PRV-ZJ2013对家兔的致死性攻击和CSFV引起的发热反应可以同时得到预防。这些结果表明,rPRV-muta/287aaE2也是一种有前景的预防CSFV和PRV感染的二联疫苗候选株。 |
外文摘要: |
Pseudorabies virus (PRV) is a type of herpes A virus. PRV infection is a worldwide swine infectious disease. The World Organization for Animal Health (OIE) has classified it as a mandatory reporting disease. In addition, other animals such as cattle, sheep, dogs, cats, chickens, rabbits, guinea pigs, raccoons, and opossums can be infected with PRV and develop the disease, posing a health threat to economic and wildlife animals. Most importantly, PRV has recently been reported to infect humans, causing encephalitis and death. The first step in establishing infection by the virus is entry into the host cell; however, the critical details of PRV entry and how host factors are involved in these processes are largely unknown. Macropinocytosis is an actin-dependent endocytic process that non-specifically takes up fluid, solutes and some particulate following activation of cell surface receptors. In the last few years, macropinocytosis has been considered as the main route of entry of viruses or bacteria into host cells. The cellular factor involved in macropinocytosis vary from virus to virus, but usually include tyrosine kinase (TK), protein kinase C (PKC), p21-activated kinase 1 (Pak1), PI(3)K, RhoGTPase (Rac1 or CDC42), Na+/H+ exchanger, kinesin and C-terminal binding protein 1 (CtBP1). To determine the underlying mechanism of PRV entry into cells, we interfered with the expression of key host factors by specific inhibitors, siRNA silencing, or dominant negative mutants, and comprehensively investigated their role in PRV entry into BHK-21 cells. We found that PRV entry was neither dependent on endosomal acidification nor clathrin- or caveolin-mediated endocytosis. Interference with the macropinocytosis pathway significantly reduced PRV entry and gene expression. It was observed by video that actin rearrangement mediated the entry of PRV through the macropinocytosis pathway, further studies revealed that cofilin phosphorylation was involved in the regulation of actin rearrangement during the macropinocytosis, that PAK1 phosphorylation was also involved in this process, and that cofilin was regulated by PAK1 - LIMK. PAK1 was used to immunoprecipitate proteins that interact with it, and RAC1 and CDC42 were found to be upstream of PAK1. by silencing and overexpressing CDC42 and RAC1, RAC1 was found to control the formation of lamellar pseudopods, while CDC42 could control the formation of filamentous pseudopods. In contrast, PRV can enter cells through either filamentous pseudopods or lamellar pseudopods, and CDC42 and RAC1 were found to have a compensatory role in the internalization of PRV. Further studies revealed that the activation of CDC42 RAC1 required the activation of Src kinase. Next, after extensive bioinformatics analysis and experimental validation, it was found that the gD protein of PRV activates Src by binding to Nectin-1. Thus, the description of PRV entry into cells through the macropinocytosis pathway is clear and complete: these processes were initiated by the binding of viral glycoprotein gD to Nectin-1. Upon binding of gD to nectin-1, the nectin-1-Src-Rac1/CDC42-PAK1-LIMK-cofilin-actin signaling cascade is triggered, leading to the formation of filopodia or lamellipodia on the cell surface for PRV uptake. Among them, CDC42 and RAC1 have a compensatory role and play a key role in PRV entry into the cell. In addition, we calculated an average PRV entry time of 132 seconds by tracking the entry of individual virions. Last, Rab5A, but not Rab7A, is required for the trafficking of the macropinosome formed after PRV entry. This study comprehensively describes the role of various cellular factor in the PRV macropinocytosis pathway, and the results will help us to understand the entry mechanism of PRV and the characteristics of the macropinocytosis pathway. Pseudorabies (PR) and swine fever (CSF) are important economic infectious diseases of pigs. Most pig farms in our country have been immunized against both diseases. Pseudorabies virus (PRV) with gene deletion can be used to develop promising and economical multivalent live virus vaccines. PRV has a 150 kb genome and can be reverse-genetically manipulated using bacterial artificial chromosome (BAC) technology. By knocking out the virulence genes (TK, gE and gI), the attenuated strain with better immunogenicity could be obtained. In addition, the PRV genome contains many non-essential genes, such as US4, US7, US8, US9, into which exogenous genes can be inserted without affecting the in vitro and/or in vivo replication potential of the virus, making it a suitable vector for expressing heterologous antigens from other porcine diseases. Multivalent vaccines, especially viral vector vaccines expressing foreign proteins, are effective strategies against various co-infectious diseases in pigs There have been many reports of PRV expressing CSFV E2 protein vaccines, but there is no PRV and CSFV dual genetic engineering vaccine widely used in animal husbandry. The E2 protein is located on the envelope surface of CSFV and is involved in the infection process of the virus. It is the main protective antigen of CSFV and can induce neutralizing antibodies. It has been reported that PRV can express a truncated E2 protein (1-338aa), but no report has shown that PRV can express a full-length E2 protein. We constructed different expression forms of the E2 protein and found that the E2 protein could be expressed in vitro only when the E2 transmembrane region was removed and the signal peptide was added. Analysis of the E2 transmembrane region revealed that the high hydrophobicity of the E2 transmembrane region was the main reason for its inability to express. Full-length E2 mutants (E2FL-muta3 or E2FL-muta4) were found to be expressed by mutating one amino acid to reduce the hydrophobicity of the transmembrane region. The expressed full-length mutant E2 was also localized to the cell membrane. Mice immunized with PRV vector vaccines expressing E2FL-muta3 or E2FL-muta4 elicited specific cellular immunity against E2 protein and produced significantly higher levels of E2 antibody than those immunized with PRV vector vaccines expressing truncated E2. The immunized rabbits were protected from both lethal challenge with PRV-ZJ2013 and febrile response induced by CSFV. These results suggest that rPRV-dgE/TK-E2FL-muta4 is a promising bivalent vaccine candidate strains against CSFV and PRV infection. In addition, we describe a stabilized E2 protein as an immunogen inserted into the PRV genome as a bivalent live virus-vectored vaccine. The main reason proteins are folded is to gain their function. This function implies a general protein structure that must be structurally fairly stable and at the same time highly flexible to allow biological processes to occur. Thus, the native state of the protein is not necessarily the most stable state. This study aims to use the E2 protein as an immunogen, where E2 does not need to have allosteric, binding, or other functions, but E2 must have a more stable structure that is not easily degraded or aggregated by precipitation. The E2 protein has 48 variant sites, there are 2-5 candidate amino acids per variant site. Multiple amino acid substitutions at 48 variant sites were performed, and the stabilized E2 sequence was obtained, and its energy decreased by 22 Rosetta Energy Units (REUs) compared with the original sequence. After the recombinant PRV expressing stabilized E2 of CSFV was constructed, the secretion efficiency of stabilized E2 was increased by 2.97 times, and the thermal stability was increased by 10.5 times. Immunization of mice resulted in a 2-fold increase in antibody production, and a balanced antibody level against subtype 1.1 and subtype 2.1d E2 was achieved. In rabbits immunized, the lethal challenge of PRV-ZJ2013 and the fever response induced by CSFV could be prevented simultaneously. These findings suggest that rPRV-muta/287aaE2 is a promising bivalent vaccine candidate strains against CSFV and PRV infections. |
参考文献: |
[1] 陈焕春, 金梅林, 何启盖, 等. 猪伪狂犬病油乳剂灭活疫苗的制备及安全性与免疫性试验 [J]. 畜牧兽医学报, 2001: 44-51. [2] 仇华吉, 童光志, 沈荣显. 猪瘟兔化弱毒疫苗——半个世纪的回顾 [J]. 中国农业科学, 2005: 1675-85. [3] 范真真, 陈虹, 黄秉仁. 细胞内吞的研究进展 [J]. 生命的化学, 2014, 34: 492-9. [4] 方六荣, 陈焕春, 何启盖, 等. 应用微量中和试验进行猪伪狂犬病血清学调查 [J]. 中国畜禽传染病, 1998: 24-6. [5] Abid M, Teklue T, Li Y, et al. Generation and Immunogenicity of a Recombinant Pseudorabies Virus Co-Expressing Classical Swine Fever Virus E2 Protein and Porcine Circovirus Type 2 Capsid Protein Based on Fosmid Library Platform [J]. Pathogens, 2019, 8(4):279. [6] Adler H, Messerle M, Koszinowski U H. Cloning of herpesviral genomes as bacterial artificial chromosomes [J]. Rev Med Virol, 2003, 13(2): 111-21. [7] Aguilar R C, Wendland B. Endocytosis of membrane receptors: two pathways are better than one [J]. Proc Natl Acad Sci U S A, 2005, 102(8): 2679-80. [8] Ahle S, Ungewickell E. Purification and properties of a new clathrin assembly protein [J]. EMBO J, 1986, 5(12): 3143-9. [9] Aleksandrowicz P, Marzi A, Biedenkopf N, et al. Ebola Virus Enters Host Cells by Macropinocytosis and Clathrin-Mediated Endocytosis [J]. The Journal of Infectious Diseases, 2011, 204(suppl_3): S957-S67. [10] Alford R F, Leaver-Fay A, Jeliazkov J R, et al. The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design [J]. J Chem Theory Comput, 2017, 13(6): 3031-48. [11] Amstutz B, Gastaldelli M, Kalin S, et al. Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3 [J]. EMBO J, 2008, 27(7): 956-69. [12] An T Q, Peng J M, Tian Z J, et al. Pseudorabies virus variant in Bartha-K61-vaccinated pigs, China, 2012 [J]. Emerging Infect Dis, 2013, 19(11): 1749-55. [13] Anderson E J, Rouphael N G, Widge A T, et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults [J]. New Engl J Med, 2020, 383(25): 2427-38. [14] Ashkenazy H, Abadi S, Martz E, et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules [J]. Nucleic Acids Res, 2016, 44(W1): W344-50. [15] Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network [J]. Science, 2021, 373(6557): 871-6. [16] Bain J, McLauchlan H, Elliott M, et al. The specificities of protein kinase inhibitors: an update [J]. Biochem J, 2003, 371(Pt 1): 199-204. [17] Bannach C, Brinkert P, Kühling L, et al. Epidermal Growth Factor Receptor and Abl2 Kinase Regulate Distinct Steps of Human Papillomavirus 16 Endocytosis [J]. J Virol, 2020, 94(11) :e02143-19. [18] Basagiannis D, Zografou S, Galanopoulou K, et al. Dynasore impairs VEGFR2 signalling in an endocytosis-independent manner [J]. Sci Rep, 2017, 7(1):45035.. [19] Ben-Porat T, Kaplan A S. Molecular Biology of Pseudorabies Virus [J]. 1985: 105-73. [20] Bernstein B W, Bamburg J R. ADF/cofilin: a functional node in cell biology [J]. Trends Cell Biol, 2010, 20(4): 187-95. [21] Biasini M, Bienert S, Waterhouse A, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information [J]. Nucleic Acids Res, 2014, 42(Web Server issue): W252-8. [22] Bloomfield G, Kay R R. Uses and abuses of macropinocytosis [J]. Journal of cell science, 2016, 129(14): 2697-705. [23] Boldogkoi Z, Sik A, Denes A, et al. Novel tracing paradigms-genetically engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects [J]. Prog Neurobiol, 2004, 72(6): 417-45. [24] Bouma A, de Smit A J, de Kluijver E P, et al. Efficacy and stability of a subunit vaccine based on glycoprotein E2 of classical swine fever virus [J]. Vet Microbiol, 1999, 66(2): 101-14. [25] Brockmeier S L, Lager K M, Mengeling W L. Comparison of in vivo reactivation, in vitro reactivation, and polymerase chain reaction for detection of latent pseudorabies virus infection in swine [J]. J Vet Diagn Invest, 1993, 5(4): 505-9. [26] Brylinski M, Skolnick J. A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation [J]. Proc Natl Acad Sci U S A, 2008, 105(1): 129-34. [27] Card J P, Dubin J R, Whealy M E, et al. Influence of infectious dose upon productive replication and transynaptic passage of pseudorabies virus in rat central nervous system [J]. J Neurovirol, 1995, 1(5-6): 349-58. [28] Ch'ng T H, Enquist L W. Efficient axonal localization of alphaherpesvirus structural proteins in cultured sympathetic neurons requires viral glycoprotein E [J]. J Virol, 2005, 79(14): 8835-46. [29] Ch'ng T H, Spear P G, Struyf F, et al. Glycoprotein D-independent spread of pseudorabies virus infection in cultured peripheral nervous system neurons in a compartmented system [J]. J Virol, 2007, 81(19): 10742-57. [30] Chen H, Fre S, Slepnev V I, et al. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis [J]. Nature, 1998, 394(6695): 793-7. [31] Chen L, Li H, Zhao R, et al. Study progress of cell endocytosis [J]. The Chinese-German Journal of Clinical Oncology, 2009, 8(6): 360-5. [32] Chen L, Ni Z, Hua J, et al. Simultaneous tracking of capsid VP26, envelope protein gC localization in living cells infected with double fluorescent duck enteritis virus [J]. Virus Res, 2021, 297:198393. [33] Chen L, Zhang X, Shao G, et al. Construction and Evaluation of Recombinant Pseudorabies Virus Expressing African Swine Fever Virus Antigen Genes [J]. Front Vet Sci, 2022, 9: 832255. [34] Chen X, Schmidt M C, Goins W F, et al. Two herpes simplex virus type 1 latency-active promoters differ in their contributions to latency-associated transcript expression during lytic and latent infections [J]. J Virol, 1995, 69(12): 7899-908. [35] Chen Y, Guo W, Xu Z, et al. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine [J]. Virol J, 2011a, 8(1) :307. [36] Chen Y, Guo W, Xu Z, et al. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine [J]. Virol J, 2011b, 8: 307. [37] Collins B M, McCoy A J, Kent H M, et al. Molecular architecture and functional model of the endocytic AP2 complex [J]. Cell, 2002, 109(4): 523-35. [38] Cong X, Lei J L, Xia S L, et al. Pathogenicity and immunogenicity of a gE/gI/TK gene-deleted pseudorabies virus variant in susceptible animals [J]. Vet Microbiol, 2016, 182: 170-7. [39] Connolly S A, Jardetzky T S, Longnecker R. The structural basis of herpesvirus entry [J]. Nature, 2021, 19(2): 110-21. [40] Dannhauser P N, Ungewickell E J. Reconstitution of clathrin-coated bud and vesicle formation with minimal components [J]. Nat Cell Biol, 2012, 14(6): 634-9. [41] Davison A J, Eberle R, Ehlers B, et al. The order Herpesvirales [J]. Arch Virol, 2009, 154(1): 171-7. [42] De Regge N, Nauwynck H J, Geenen K, et al. Alpha-herpesvirus glycoprotein D interaction with sensory neurons triggers formation of varicosities that serve as virus exit sites [J]. J Cell Biol, 2006, 174(2): 267-75. [43] de Smit A J, Bouma A, de Kluijver E P, et al. Duration of the protection of an E2 subunit marker vaccine against classical swine fever after a single vaccination [J]. Vet Microbiol, 2001, 78(4): 307-17. [44] de Vries E, Tscherne D M, Wienholts M J, et al. Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway [J]. PLoS Path, 2011, 7(3): e1001329. [45] Delpeut S, Sisson G, Black K M, et al. Measles Virus Enters Breast and Colon Cancer Cell Lines through a PVRL4-Mediated Macropinocytosis Pathway [J]. J Virol, 2017, 91(10) :e02191-16. [46] Desai P, Sexton G L, Huang E, et al. Localization of herpes simplex virus type 1 UL37 in the Golgi complex requires UL36 but not capsid structures [J]. J Virol, 2008, 82(22): 11354-61. [47] Devadas D, Koithan T, Diestel R, et al. Herpes simplex virus internalization into epithelial cells requires Na+/H+ exchangers and p21-activated kinases but neither clathrin- nor caveolin-mediated endocytosis [J]. J Virol, 2014, 88(22): 13378-95. [48] Dharmawardhane S, Schurmann A, Sells M A, et al. Regulation of macropinocytosis by p21-activated kinase-1 [J]. Mol Biol Cell, 2000, 11(10): 3341-52. [49] Diaz-Salinas M A, Silva-Ayala D, Lopez S, et al. Rotaviruses reach late endosomes and require the cation-dependent mannose-6-phosphate receptor and the activity of cathepsin proteases to enter the cell [J]. J Virol, 2014, 88(8): 4389-402. [50] Diaz-Salinas M A, Romero P, Espinosa R, et al. The spike protein VP4 defines the endocytic pathway used by rotavirus to enter MA104 cells [J]. J Virol, 2013, 87(3): 1658-63. [51] Doherty G J, McMahon H T. Mechanisms of endocytosis [J]. Annu Rev Biochem, 2009, 78: 857-902. [52] Dombkowski A A, Sultana K Z, Craig D B. Protein disulfide engineering [J]. FEBS Lett, 2014, 588(2): 206-12. [53] Dong H, Lu Y, Zhang Y, et al. A Heat-Induced Mutation on VP1 of Foot-and-Mouth Disease Virus Serotype O Enhanced Capsid Stability and Immunogenicity [J]. J Virol, 2021, 95(16): e0017721. [54] Dong J, Bai J, Sun T, et al. Comparative pathogenicity and immunogenicity of triple and double gene-deletion pseudorabies virus vaccine candidates [J]. Res Vet Sci, 2017, 115: 17-23. [55] El Omari K, Iourin O, Harlos K, et al. Structure of a pestivirus envelope glycoprotein E2 clarifies its role in cell entry [J]. Cell Rep, 2013, 3(1): 30-5. [56] Fabbri A, Falzano L, Travaglione S, et al. Rho-activating Escherichia coli cytotoxic necrotizing factor 1: macropinocytosis of apoptotic bodies in human epithelial cells [J]. Int J Med Microbiol, 2002, 291(6-7): 551-4. [57] Fan J, Liao Y, Zhang M, et al. Anti-Classical Swine Fever Virus Strategies [J]. Microorganisms, 2021, 9(4) :761. [58] Fatima M, Luo Y, Zhang L, et al. Genotyping and Molecular Characterization of Classical Swine Fever Virus Isolated in China during 2016-2018 [J]. Viruses, 2021, 13(4) :664. [59] Feron O, Saldana F, Michel J B, et al. The endothelial nitric-oxide synthase-caveolin regulatory cycle [J]. J Biol Chem, 1998, 273(6): 3125-8. [60] Ford M G, Pearse B M, Higgins M K, et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes [J]. Science, 2001, 291(5506): 1051-5. [61] Fotin A, Cheng Y, Grigorieff N, et al. Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating [J]. Nature, 2004a, 432(7017): 649-53. [62] Fotin A, Cheng Y, Sliz P, et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy [J]. Nature, 2004b, 432(7017): 573-9. [63] Freuling C M, Muller T F, Mettenleiter T C. Vaccines against pseudorabies virus (PrV) [J]. Vet Microbiol, 2017, 206: 3-9. [64] Fuchs W, Klupp B G, Granzow H, et al. The UL20 gene product of pseudorabies virus functions in virus egress [J]. J Virol, 1997, 71(7): 5639-46. [65] Fuchs W, Granzow H, Klupp B G, et al. The UL48 tegument protein of pseudorabies virus is critical for intracytoplasmic assembly of infectious virions [J]. J Virol, 2002, 76(13): 6729-42. [66] Fuchs W, Granzow H, Klupp B G, et al. Relevance of the interaction between alphaherpesvirus UL3.5 and UL48 proteins for virion maturation and neuroinvasion [J]. J Virol, 2007, 81(17): 9307-18. [67] Fukuhara T, Shimizu K, Kawakatsu T, et al. Activation of Cdc42 by trans interactions of the cell adhesion molecules nectins through c-Src and Cdc42-GEF FRG [J]. J Cell Biol, 2004, 166(3): 393-405. [68] Gaidarov I, Chen Q, Falck J R, et al. A functional phosphatidylinositol 3,4,5-trisphosphate/phosphoinositide binding domain in the clathrin adaptor AP-2 alpha subunit. Implications for the endocytic pathway [J]. J Biol Chem, 1996, 271(34): 20922-9. [69] Ganges L, Crooke H R, Bohorquez J A, et al. Classical swine fever virus: the past, present and future [J]. Virus Res, 2020, 289: 198151. [70] Gao F, Jiang Y, Li G, et al. Porcine reproductive and respiratory syndrome virus expressing E2 of classical swine fever virus protects pigs from a lethal challenge of highly-pathogenic PRRSV and CSFV [J]. Vaccine, 2018, 36(23): 3269-77. [71] Gong W, Li J, Wang Z, et al. Commercial E2 subunit vaccine provides full protection to pigs against lethal challenge with 4 strains of classical swine fever virus genotype 2 [J]. Vet Microbiol, 2019, 237: 108403. [72] Gummadi S N. What is the role of thermodynamics on protein stability? [J]. #N/A, 2003, 8(1): 9-18. [73] Hahn E C, Fadl-Alla B, Lichtensteiger C A. Variation of Aujeszky's disease viruses in wild swine in USA [J]. Vet Microbiol, 2010, 143(1): 45-51. [74] Haigler H T, McKanna J A, Cohen S. Rapid stimulation of pinocytosis in human carcinoma cells A-431 by epidermal growth factor [J]. J Cell Biol, 1979, 83(1): 82-90. [75] Hammond J M, McCoy R J, Jansen E S, et al. Vaccination with a single dose of a recombinant porcine adenovirus expressing the classical swine fever virus gp55 (E2) gene protects pigs against classical swine fever [J]. Vaccine, 2000, 18(11-12): 1040-50. [76] Heisenberg C-P, Shea K F, Wells C M, et al. ROCK1 and LIMK2 Interact in Spread but Not Blebbing Cancer Cells [J]. PLoS One, 2008, 3(10): e3398. [77] Hinrichsen L, Harborth J, Andrees L, et al. Effect of clathrin heavy chain- and alpha-adaptin-specific small inhibitory RNAs on endocytic accessory proteins and receptor trafficking in HeLa cells [J]. J Biol Chem, 2003, 278(46): 45160-70. [78] Hoffmann P R, deCathelineau A M, Ogden C A, et al. Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells [J]. J Cell Biol, 2001, 155(4): 649-59. [79] Holzinger A. Jasplakinolide: an actin-specific reagent that promotes actin polymerization [J]. Methods Mol Biol, 2009, 586: 71-87. [80] Hsieh C L, Goldsmith J A, Schaub J M, et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes [J]. Science, 2020, 369(6510): 1501-5. [81] Hu D, Lv L, Gu J, et al. Genetic Diversity and Positive Selection Analysis of Classical Swine Fever Virus Envelope Protein Gene E2 in East China under C-Strain Vaccination [J]. Front Microbiol, 2016, 7: 85. [82] Huang Y, Xu Z, Gu S, et al. The recombinant pseudorabies virus expressing porcine deltacoronavirus spike protein is safe and effective for mice [J]. BMC Vet Res, 2022, 18(1): 16. [83] Hunter T. A tail of two src's: Mutatis mutandis [J]. Cell, 1987, 49(1): 1-4. [84] Inno A, Di Noia V, Martini M, et al. Erlotinib for Patients with EGFR Wild-Type Metastatic NSCLC: a Retrospective Biomarkers Analysis [J]. Pathol Oncol Res, 2019, 25(2): 513-20. [85] Jackson L P, Kelly B T, McCoy A J, et al. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex [J]. Cell, 2010, 141(7): 1220-9. [86] Jiang Y, Fang L, Xiao S, et al. Immunogenicity and protective efficacy of recombinant pseudorabies virus expressing the two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus [J]. Vaccine, 2007, 25(3): 547-60. [87] Jiang Z, Zhu L, Cai Y, et al. Immunogenicity and protective efficacy induced by an mRNA vaccine encoding gD antigen against pseudorabies virus infection [J]. Vet Microbiol, 2020, 251: 108886. [88] Jin L, Scherba G. Expression of the pseudorabies virus latency-associated transcript gene during productive infection of cultured cells [J]. J Virol, 1999, 73(12): 9781-8. [89] Joo J C, Pohkrel S, Pack S P, et al. Thermostabilization of Bacillus circulans xylanase via computational design of a flexible surface cavity [J]. J Biotechnol, 2010, 146(1-2): 31-9. [90] Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis [J]. Nature, 2018, 19(5): 313-26. [91] Kalin S, Amstutz B, Gastaldelli M, et al. Macropinocytotic uptake and infection of human epithelial cells with species B2 adenovirus type 35 [J]. J Virol, 2010, 84(10): 5336-50. [92] Katz B Z, Salimi B, Newman M, et al. Varicella-zoster Virus (VZV) does not Encode a Complete Herpes Simplex Virus(HSV) Glycoprotein D (gD) homologue 862 [J]. Pediatr Res, 1998, 43: 149-. [93] Keen J H, Willingham M C, Pastan I. Clathrin and coated vesicle proteins Immunological characterization [J]. J Biol Chem, 1981, 256(5): 2538-44. [94] Kellogg E H, Leaver-Fay A, Baker D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability [J]. #N/A, 2011, 79(3): 830-8. [95] Kelly B T, McCoy A J, Spate K, et al. A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex [J]. Nature, 2008, 456(7224): 976-9. [96] Klupp B G, Hengartner C J, Mettenleiter T C, et al. Complete, annotated sequence of the pseudorabies virus genome [J]. J Virol, 2004, 78(1): 424-40. [97] Klupp B G, Altenschmidt J, Granzow H, et al. Identification and characterization of the pseudorabies virus UL43 protein [J]. Virology, 2005, 334(2): 224-33. [98] Kramer T, Greco T M, Enquist L W, et al. Proteomic characterization of pseudorabies virus extracellular virions [J]. J Virol, 2011, 85(13): 6427-41. [99] Kubiszewski-Jakubiak S, Worch R. Influenza A H1 and H3 Transmembrane Domains Interact Differently with Each Other and with Surrounding Membrane Lipids [J]. Viruses, 2020, 12(12) :1461. [100] Kumar B, Chandran B. KSHV Entry and Trafficking in Target Cells-Hijacking of Cell Signal Pathways, Actin and Membrane Dynamics [J]. Viruses, 2016, 8(11) :305. [101] Lamp B, Riedel C, Roman-Sosa G, et al. Biosynthesis of classical swine fever virus nonstructural proteins [J]. J Virol, 2011, 85(7): 3607-20. [102] Le A H, Yelland T, Paul N R, et al. CYRI-A limits invasive migration through macropinosome formation and integrin uptake regulation [J]. J Cell Biol, 2021, 220(9) :e202012114. [103] Lee C W, Wang H J, Hwang J K, et al. Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study [J]. PLoS One, 2014, 9(11): e112751. [104] Lei J L, Xia S L, Wang Y, et al. Safety and immunogenicity of a gE/gI/TK gene-deleted pseudorabies virus variant expressing the E2 protein of classical swine fever virus in pigs [J]. Immunol Lett, 2016, 174: 63-71. [105] Leijnse N, Barooji Y F, Arastoo M R, et al. Filopodia rotate and coil by actively generating twist in their actin shaft [J]. Nat Commun, 2022, 13(1): 1636. [106] Li A, Lu G, Qi J, et al. Structural basis of nectin-1 recognition by pseudorabies virus glycoprotein D [J]. PLoS Path, 2017, 13(5): e1006314. [107] Li Q, Huang Q, Kang C. Secondary Structures of the Transmembrane Domain of SARS-CoV-2 Spike Protein in Detergent Micelles [J]. Int J Mol Sci, 2022, 23(3): 1040. [108] Li Q, Li W, Yin W, et al. Single-Particle Tracking of Human Immunodeficiency Virus Type 1 Productive Entry into Human Primary Macrophages [J]. #N/A, 2017, 11(4): 3890-903. [109] Li R, Shao G, Xie Z, et al. Construction and Immunogenicity of a Recombinant Pseudorabies Virus Expressing SARS-CoV-2-S and SARS-CoV-2-N [J]. Front Vet Sci, 2022, 9: 920087. [110] Li S, Couet J, Lisanti M P. Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases [J]. J Biol Chem, 1996, 271(46): 29182-90. [111] Li S, Okamoto T, Chun M, et al. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin [J]. J Biol Chem, 1995, 270(26): 15693-701. [112] Li X, Liu R, Tang H, et al. Induction of protective immunity in swine by immunization with live attenuated recombinant pseudorabies virus expressing the capsid precursor encoding regions of foot-and-mouth disease virus [J]. Vaccine, 2008, 26(22): 2714-22. [113] Liberles D A, Teichmann S A, Bahar I, et al. The interface of protein structure, protein biophysics, and molecular evolution [J]. Protein Sci, 2012, 21(6): 769-85. [114] Lim J P, Gleeson P A. Macropinocytosis: an endocytic pathway for internalising large gulps [J]. Immunol Cell Biol, 2011, 89(8): 836-43. [115] Lin H W, Chang Y Y, Wong M L, et al. Functional analysis of virion host shutoff protein of pseudorabies virus [J]. Virology, 2004, 324(2): 412-8. [116] Liu K, Sun Y, Chen L, et al. Novel epitopes identified from Tembusu virus NS3 protein induce cytotoxic T lymphocyte response [J]. Vet Microbiol, 2022, 271: 109477. [117] Liu S, Tu C, Wang C, et al. The protective immune response induced by B cell epitope of classical swine fever virus glycoprotein E2 [J]. J Virol Methods, 2006, 134(1-2): 125-9. [118] Lobos-Gonzalez L, Aguilar L, Fernandez G, et al. Caveolin-1 in Melanoma Progression [J]. 2011. [119] Luo Y, Ji S, Liu Y, et al. Isolation and Characterization of a Moderately Virulent Classical Swine Fever Virus Emerging in China [J]. Transbound Emerg Dis, 2017a, 64(6): 1848-57. [120] Luo Y, Li N, Cong X, et al. Pathogenicity and genomic characterization of a pseudorabies virus variant isolated from Bartha-K61-vaccinated swine population in China [J]. Vet Microbiol, 2014, 174(1-2): 107-15. [121] Luo Y, Ji S, Lei J L, et al. Efficacy evaluation of the C-strain-based vaccines against the subgenotype 2.1d classical swine fever virus emerging in China [J]. Vet Microbiol, 2017b, 201: 154-61. [122] Madera R, Gong W, Wang L, et al. Pigs immunized with a novel E2 subunit vaccine are protected from subgenotype heterologous classical swine fever virus challenge [J]. BMC Vet Res, 2016, 12(1): 197. [123] Maes R K, Sussman M D, Vilnis A, et al. Recent developments in latency and recombination of Aujeszky's disease (pseudorabies) virus [J]. Vet Microbiol, 1997, 55(1-4): 13-27. [124] Matas O B, Martinez-Menarguez J A, Egea G. Association of Cdc42/N-WASP/Arp2/3 signaling pathway with Golgi membranes [J]. #N/A, 2004, 5(11): 838-46. [125] Mateo R, Luna E, Rincon V, et al. Engineering viable foot-and-mouth disease viruses with increased thermostability as a step in the development of improved vaccines [J]. J Virol, 2008, 82(24): 12232-40. [126] Meier O, Boucke K, Hammer S V, et al. Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake [J]. J Cell Biol, 2002, 158(6): 1119-31. [127] Mercer J, Helenius A. Gulping rather than sipping: macropinocytosis as a way of virus entry [J]. Curr Opin Microbiol, 2012, 15(4): 490-9. [128] Mercer J, Helenius A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells [J]. Science, 2008, 320(5875): 531-5. [129] Mercer J, Helenius A. Virus entry by macropinocytosis [J]. Nat Cell Biol, 2009, 11(5): 510-20. [130] Mercer J, Knébel S, Schmidt F I, et al. Vaccinia virus strains use distinct forms of macropinocytosis for host-cell entry [J]. Proc Natl Acad Sci U S A, 2010, 107(20): 9346-51. [131] Merino A M, Song W, He D, et al. HLA-B signal peptide polymorphism influences the rate of HIV-1 acquisition but not viral load [J]. J Infect Dis, 2012, 205(12): 1797-805. [132] Mettenleiter T C. Aujeszky's disease (pseudorabies) virus: the virus and molecular pathogenesis - State of the art, June 1999 [J]. Vet Res, 2000a, 31(1): 99-115. [133] Mettenleiter T C. Aujeszky's disease (pseudorabies) virus: the virus and molecular pathogenesis state of the art [J]. Vet Res, 2000b, 31(1): 99-115. [134] Mettenleiter T C. Brief overview on cellular virus receptors [J]. Virus Res, 2001, 82(1-2): 3-8. [135] Mettenleiter T C. Immunobiology of pseudorabies (Aujeszky's disease) [J]. Vet Immunol Immunopathol, 1996, 54(1-4): 221-9. [136] Mettenleiter T C. Pseudorabies (Aujeszky's disease) virus: state of the art. August 1993 [J]. Acta Vet Hung, 1994, 42(2-3): 153-77. [137] Meyers C, Schelhaas M, Shah B, et al. Entry of Human Papillomavirus Type 16 by Actin-Dependent, Clathrin- and Lipid Raft-Independent Endocytosis [J]. PLoS Path, 2012, 8(4): e1002657. [138] Meyers G, Thiel H J, Rumenapf T. Classical swine fever virus: recovery of infectious viruses from cDNA constructs and generation of recombinant cytopathogenic defective interfering particles [J]. J Virol, 1996, 70(3): 1588-95. [139] Miyata Y, Nishida E, Koyasu S, et al. Protein kinase C-dependent and -independent pathways in the growth factor-induced cytoskeletal reorganization [J]. J Biol Chem, 1989, 264(26): 15565-8. [140] Moennig V. The control of classical swine fever in wild boar [J]. Front Microbiol, 2015, 6: 1211. [141] Moennig V. Introduction to classical swine fever: virus, disease and control policy [J]. Vet Microbiol, 2000, 73(2-3): 93-102. [142] Mooren O L, Galletta B J, Cooper J A. Roles for actin assembly in endocytosis [J]. Annu Rev Biochem, 2012, 81: 661-86. [143] Mulherkar N, Raaben M, de la Torre J C, et al. The Ebola virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic pathway [J]. Virology, 2011, 419(2): 72-83. [144] Muller T, Hahn E C, Tottewitz F, et al. Pseudorabies virus in wild swine: a global perspective [J]. Arch Virol, 2011, 156(10): 1691-705. [145] Muñoz A L, Torres M, Martín B, et al. Regulation of pseudorabies virus gG glycoprotein gene promoter independently of pseudorabies immediate early IE180 protein [J]. Arch Virol, 2010, 155(4): 515-23. [146] Murphy K P, Freire E. Thermodynamics of structural stability and cooperative folding behavior in proteins [J]. Adv Protein Chem, 1992, 43: 313-61. [147] Nanbo A, Imai M, Watanabe S, et al. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner [J]. PLoS Path, 2010, 6(9): e1001121. [148] Narumiya S, Thumkeo D. Rho signaling research: history, current status and future directions [J]. FEBS Lett, 2018, 592(11): 1763-76. [149] Niikura M, Matsuura Y, Endoh D, et al. Expression of the Marek's disease virus (MDV) homolog of glycoprotein B of herpes simplex virus by a recombinant baculovirus and its identification as the B antigen (gp100, gp60, gp49) of MDV [J]. J Virol, 1992, 66(5): 2631-8. [150] Nomura R, Kiyota A, Suzaki E, et al. Human Coronavirus 229E Binds to CD13 in Rafts and Enters the Cell through Caveolae [J]. J Virol, 2004, 78(16): 8701-8. [151] Ogita H, Takai Y. Activation of Rap1, Cdc42, and rac by nectin adhesion system [J]. Methods Enzymol, 2006, 406: 415-24. [152] Owen D J, Collins B M, Evans P R. Adaptors for clathrin coats: structure and function [J]. Annu Rev Cell Dev Biol, 2004, 20: 153-91. [153] Pearse B M, Robinson M S. Purification and properties of 100-kd proteins from coated vesicles and their reconstitution with clathrin [J]. EMBO J, 1984, 3(9): 1951-7. [154] Pekosz A, Krzyzaniak M A, Zumstein M T, et al. Host Cell Entry of Respiratory Syncytial Virus Involves Macropinocytosis Followed by Proteolytic Activation of the F Protein [J]. PLoS Path, 2013, 9(4): e1003309. [155] Pomeranz L E, Reynolds A E, Hengartner C J. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine [J]. Microbiol Mol Biol Rev, 2005, 69(3): 462-500. [156] Privalov P L. Thermodynamic problems of protein structure [J]. Annu Rev Biophys Biophys Chem, 1989, 18: 47-69. [157] Qian P, Li X M, Jin M L, et al. An approach to a FMD vaccine based on genetic engineered attenuated pseudorabies virus: one experiment using VP1 gene alone generates an antibody responds on FMD and pseudorabies in swine [J]. Vaccine, 2004, 22(17-18): 2129-36. [158] Qian P, Zhi X, Wang B, et al. Construction and immune efficacy of recombinant pseudorabies virus expressing PrM-E proteins of Japanese encephalitis virus genotype capital I, Ukrainian [J]. Virol J, 2015, 12: 214. [159] Qiu H J, Tian Z J, Tong G Z, et al. Protective immunity induced by a recombinant pseudorabies virus expressing the GP5 of porcine reproductive and respiratory syndrome virus in piglets [J]. Vet Immunol Immunopathol, 2005, 106(3-4): 309-19. [160] Reagan RL, Schenck DM, Harmon MP, et al. Morphological observations by electron microscopy of pseudorabies virus (Aujeszky strain) after propagation in the rabbit [J]. Am J Vet Res, 1952, 13(49): 577-8. [161] Richards A L, Sollars P J, Pitts J D, et al. The pUL37 tegument protein guides alpha-herpesvirus retrograde axonal transport to promote neuroinvasion [J]. PLoS Path, 2017, 13(12): e1006741. [162] Rijnbrand R, van der Straaten T, van Rijn P A, et al. Internal entry of ribosomes is directed by the 5' noncoding region of classical swine fever virus and is dependent on the presence of an RNA pseudoknot upstream of the initiation codon [J]. J Virol, 1997, 71(1): 451-7. [163] Risatti G R, Borca M V, Kutish G F, et al. The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine [J]. J Virol, 2005, 79(6): 3787-96. [164] Robinson R C, Turbedsky K, Kaiser D A, et al. Crystal structure of Arp2/3 complex [J]. Science, 2001, 294(5547): 1679-84. [165] Rohde G, Wenzel D, Haucke V. A phosphatidylinositol (4,5)-bisphosphate binding site within mu2-adaptin regulates clathrin-mediated endocytosis [J]. J Cell Biol, 2002, 158(2): 209-14. [166] Ruiz-Arguello M B, Martin D, Wharton S A, et al. Thermostability of the human respiratory syncytial virus fusion protein before and after activation: implications for the membrane-fusion mechanism [J]. J Gen Virol, 2004, 85(Pt 12): 3677-87. [167] Rupper A, Lee K, Knecht D, et al. Sequential activities of phosphoinositide 3-kinase, PKB/Aakt, and Rab7 during macropinosome formation in Dictyostelium [J]. Mol Biol Cell, 2001, 12(9): 2813-24. [168] Rybin V O, Xu X, Steinberg S F. Activated protein kinase C isoforms target to cardiomyocyte caveolae : stimulation of local protein phosphorylation [J]. Circul Res, 1999, 84(9): 980-8. [169] Rziha H J, Mettenleiter T C, Ohlinger V, et al. Herpesvirus (pseudorabies virus) latency in swine: occurrence and physical state of viral DNA in neural tissues [J]. Virology, 1986, 155(2): 600-13. [170] Sanchez E G, Quintas A, Perez-Nunez D, et al. African swine fever virus uses macropinocytosis to enter host cells [J]. PLoS Path, 2012, 8(6): e1002754. [171] Schat K A, Xing Z. Specific and nonspecific immune responses to Marek's disease virus [J]. Dev Comp Immunol, 2000, 24(2-3): 201-21. [172] Scheele U, Kalthoff C, Ungewickell E. Multiple interactions of auxilin 1 with clathrin and the AP-2 adaptor complex [J]. J Biol Chem, 2001, 276(39): 36131-8. [173] Schelhaas M, Shah B, Holzer M, et al. Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis [J]. PLoS Path, 2012, 8(4): e1002657. [174] Schettino C, Bareschino M A, Ricci V, et al. Erlotinib: an EGF receptor tyrosine kinase inhibitor in non-small-cell lung cancer treatment [J]. Expert Rev Respir Med, 2008, 2(2): 167-78. [175] Schlossman D M, Schmid S L, Braell W A, et al. An enzyme that removes clathrin coats: purification of an uncoating ATPase [J]. J Cell Biol, 1984, 99(2): 723-33. [176] Shoji K, Ohashi K, Sampei K, et al. Cytochalasin D acts as an inhibitor of the actin-cofilin interaction [J]. Biochem Biophys Res Commun, 2012, 424(1): 52-7. [177] Song K S, Scherer P E, Tang Z, et al. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins [J]. J Biol Chem, 1996, 271(25): 15160-5. [178] Sorkin A, Puthenveedu M A. Clathrin-Mediated Endocytosis [J]. 2013: 1-31. [179] Spear M, Guo J, Wu Y. The trinity of the cortical actin in the initiation of HIV-1 infection [J]. 2012, 9: 45-. [180] Spear P G. A First Step toward Understanding Membrane Fusion Induced by Herpes Simplex Virus [J]. Mol Cell, 2001, 8(1): 2-4. [181] Spear P G, Eisenberg R J, Cohen G H. Three classes of cell surface receptors for alphaherpesvirus entry [J]. Virology, 2000, 275(1): 1-8. [182] Stahlhut M, Sandvig K, van Deurs B. Caveolae: uniform structures with multiple functions in signaling, cell growth, and cancer [J]. Exp Cell Res, 2000, 261(1): 111-8. [183] Stewart S. Mad Itch [J]. J Comp Med Vet Arch, 1890, 11(7): 386-90. [184] Su C, Zheng C. When Rab GTPases meet innate immune signaling pathways [J]. Cytokine Growth Factor Rev, 2021, 59: 95-100. [185] Suarez-Pedroso M, Sordo-Puga Y, Sosa-Teste I, et al. Novel chimeric E2CD154 subunit vaccine is safe and confers long lasting protection against classical swine fever virus [J]. Vet Immunol Immunopathol, 2021, 234: 110222. [186] Sun Z, Brodsky J L. Protein quality control in the secretory pathway [J]. J Cell Biol, 2019, 218(10): 3171-87. [187] Swanson J A. Shaping cups into phagosomes and macropinosomes [J]. #N/A, 2008, 9(8): 639-49. [188] Swenson S L, McMillen J, Hill H T. Evaluation of the safety and efficacy of a thymidine kinase, inverted repeat, gI, and gpX gene-deleted pseudorabies vaccine [J]. J Vet Diagn Invest, 1993, 5(3): 341-6. [189] Taharaguchi S, Yoshino S, Amagai K, et al. The latency-associated transcript promoter of pseudorabies virus directs neuron-specific expression in trigeminal ganglia of transgenic mice [J]. J Gen Virol, 2003, 84(Pt 8): 2015-22. [190] Tan L, Yao J, Yang Y, et al. Current Status and Challenge of Pseudorabies Virus Infection in China [J]. Virol Sin, 2021, 36(4): 588-607. [191] Tebar F, Bohlander S K, Sorkin A. Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic [J]. Mol Biol Cell, 1999, 10(8): 2687-702. [192] Thomas S M, Brugge J S. Cellular functions regulated by Src family kinases [J]. Annu Rev Cell Dev Biol, 1997, 13: 513-609. [193] Thomson R E S, Carrera-Pacheco S E, Gillam E M J. Engineering functional thermostable proteins using ancestral sequence reconstruction [J]. J Biol Chem, 2022, 298(10): 102435. [194] Tischer B K, von Einem J, Kaufer B, et al. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli [J]. BioTechniques, 2006, 40(2): 191-7. [195] Tong W, Li G, Liang C, et al. A live, attenuated pseudorabies virus strain JS-2012 deleted for gE/gI protects against both classical and emerging strains [J]. Antiviral Res, 2016, 130: 110-7. [196] Tong W, Zheng H, Li G X, et al. Recombinant pseudorabies virus expressing E2 of classical swine fever virus (CSFV) protects against both virulent pseudorabies virus and CSFV [J]. Antiviral Res, 2020, 173: 104652. [197] Tran H T T, Truong D A, Ly V D, et al. The potential efficacy of the E2-subunit vaccine to protect pigs against different genotypes of classical swine fever virus circulating in Vietnam [J]. Clin Exp Vaccine Res, 2020, 9(1): 26-39. [198] Ungewickell E, Ungewickell H, Holstein S E, et al. Role of auxilin in uncoating clathrin-coated vesicles [J]. Nature, 1995, 378(6557): 632-5. [199] van Rijn P A, Bossers A, Wensvoort G, et al. Classical swine fever virus (CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge [J]. J Gen Virol, 1996, 77 ( Pt 11): 2737-45. [200] Van Troys M, Huyck L, Leyman S, et al. Ins and outs of ADF/cofilin activity and regulation [J]. Eur J Cell Biol, 2008, 87(8-9): 649-67. [201] van Zijl M, Wensvoort G, de Kluyver E, et al. Live attenuated pseudorabies virus expressing envelope glycoprotein E1 of hog cholera virus protects swine against both pseudorabies and hog cholera [J]. J Virol, 1991, 65(5): 2761-5. [202] Viejo-Borbolla A, Munoz A, Tabares E, et al. Glycoprotein G from pseudorabies virus binds to chemokines with high affinity and inhibits their function [J]. J Gen Virol, 2010, 91(Pt 1): 23-31. [203] Wang G, Zha Z, Huang P, et al. Structures of pseudorabies virus capsids [J]. Nat Commun, 2022a, 13(1): 1533. [204] Wang G, Zha Z, Huang P, et al. Structures of pseudorabies virus capsids [J]. Nat Commun, 2022b, 13(1): 1533. [205] Wang J, Yuan S, Zhu D, et al. Structure of the herpes simplex virus type 2 C-capsid with capsid-vertex-specific component [J]. Nat Commun, 2018, 9(1): 3668. [206] Wang W, Zheng Q, Pan D, et al. Near-atomic cryo-electron microscopy structures of varicella-zoster virus capsids [J]. Nat Microbiol, 2020, 5(12): 1542-52. [207] Wang Y, Yuan J, Cong X, et al. Generation and Efficacy Evaluation of a Recombinant Pseudorabies Virus Variant Expressing the E2 Protein of Classical Swine Fever Virus in Pigs [J]. Clin Vaccine Immunol, 2015, 22(10): 1121-9. [208] Wang Z, Nie Y, Wang P, et al. Characterization of classical swine fever virus entry by using pseudotyped viruses: E1 and E2 are sufficient to mediate viral entry [J]. Virology, 2004, 330(1): 332-41. [209] Weinstein J, Khersonsky O, Fleishman S J. Practically useful protein-design methods combining phylogenetic and atomistic calculations [J]. Curr Opin Struct Biol, 2020, 63: 58-64. [210] Weiss M L, Dobbs M E, MohanKumar P S, et al. The estrous cycle affects pseudorabies virus (PRV) infection of the CNS [J]. Brain Res, 2001, 893(1-2): 215-26. [211] White A K, Ciacci-Zanella J, Galeota J, et al. Comparison of the abilities of serologic tests to detect pseudorabies-infected pigs during the latent phase of infection [J]. Am J Vet Res, 1996, 57(5): 608-11. [212] Wijma H J, Floor R J, Janssen D B. Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability [J]. Curr Opin Struct Biol, 2013, 23(4): 588-94. [213] Wittmann G, Jakubik J, Ahl R. Multiplication and distribution of Aujeszky's disease (pseudorabies) virus in vaccinated and non-vaccinated pigs after intranasal infection [J]. Arch Virol, 1980, 66(3): 227-40. [214] Wu R, Bai C, Sun J, et al. Emergence of virulent pseudorabies virus infection in Northern China [J]. J Vet Sci, 2013, 14(3): 363. [215] Xia S L, Xiang G T, Lei J L, et al. Efficacy of the marker vaccine rAdV-SFV-E2 against classical swine fever in the presence of maternally derived antibodies to rAdV-SFV-E2 or C-strain [J]. Vet Microbiol, 2016, 196: 50-4. [216] Xiong X, Qu K, Ciazynska K A, et al. A thermostable, closed SARS-CoV-2 spike protein trimer [J]. Nat Struct Mol Biol, 2020, 27(10): 934-41. [217] Xu Z, Cen Y K, Zou S P, et al. Recent advances in the improvement of enzyme thermostability by structure modification [J]. Crit Rev Biotechnol, 2020, 40(1): 83-98. [218] Yamamoto M, Toya Y, Schwencke C, et al. Caveolin is an activator of insulin receptor signaling [J]. J Biol Chem, 1998, 273(41): 26962-8. [219] Yamauchi Y, Helenius A. Virus entry at a glance [J]. J Cell Sci, 2013, 126(Pt 6): 1289-95. [220] Yan R, Liu H, Lv F, et al. Rac1/Wave2/Arp3 Pathway Mediates Rat Blood-Brain Barrier Dysfunction under Simulated Microgravity Based on Proteomics Strategy [J]. Int J Mol Sci, 2021, 22(10): 5165. [221] Yang D G, Chung Y C, Lai Y K, et al. Avian influenza virus hemagglutinin display on baculovirus envelope: cytoplasmic domain affects virus properties and vaccine potential [J]. Mol Ther, 2007, 15(5): 989-96. [222] Yang Z, Shi Z, Guo H, et al. Annexin 2 is a host protein binding to classical swine fever virus E2 glycoprotein and promoting viral growth in PK-15 cells [J]. Virus Res, 2015, 201: 16-23. [223] Yarden Y, Sliwkowski M X. Untangling the ErbB signalling network [J]. Nature, 2001, 2(2): 127-37. [224] Yin W, Yin L, Ye W, et al. Construction of an Infectious Clone of Pseudorabies Virus Strain ZJ Genome Maintained as a Bacterial Artificial Chromosome [J]. Chinese Journal of Virology, 2010, 26(04(2010)): 330-5. [225] Yoon H A, Eo S K. Differential polarization of immune responses by genetic cotransfer of chemokines changes the protective immunity of DNA vaccine against pseudorabies virus [J]. Immunology, 2007, 120(2): 182-91. [226] Yoshimori T, Yamamoto A, Moriyama Y, et al. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells [J]. J Biol Chem, 1991, 266(26): 17707-12. [227] Yuan S, Wang J, Zhu D, et al. Cryo-EM structure of a herpesvirus capsid at 3.1 A [J]. Science, 2018, 360(6384). [228] Zanin E, Capua M, Casaccia C, et al. Isolation and Characterization of Aujeszky's Disease Virus in Captive Brown Bears from Italy [J]. J Wildl Dis, 1997, 33(3): 632-4. [229] Zhan Q, Bamburg J R, Badwey J A. Products of phosphoinositide specific phospholipase C can trigger dephosphorylation of cofilin in chemoattractant stimulated neutrophils [J]. Cell Motil Cytoskeleton, 2003, 54(1): 1-15. [230] Zhang C, Ye W, Wang Y. Bovine herpesvirus type 1 genome cloned as infectious bacterial artificial chromosome and replication of gN gene deletion mutant in vitro (in Chinese). [J]. Chinese Sci Bull (Chinese Ver), 2009, 54: 3823-9. [231] Zhang K, Huang J, Wang Q, et al. Recombinant pseudorabies virus expressing P12A and 3C of FMDV can partially protect piglets against FMDV challenge [J]. Res Vet Sci, 2011, 91(1): 90-4. [232] Zhao J, Zhu L, Xu L, et al. The Construction and Immunogenicity Analyses of Recombinant Pseudorabies Virus With NADC30-Like Porcine Reproductive and Respiratory Syndrome Virus-Like Particles Co-expression [J]. Front Microbiol, 2022, 13: 846079. [233] Zheng G, Li L F, Zhang Y, et al. MERTK is a host factor that promotes classical swine fever virus entry and antagonizes innate immune response in PK-15 cells [J]. Emerg Microbes Infect, 2020, 9(1): 571-81. [234] Zheng K, Kitazato K, Wang Y. Viruses exploit the function of epidermal growth factor receptor [J]. Rev Med Virol, 2014, 24(4): 274-86. [235] Zhou B. Classical Swine Fever in China-An Update Minireview [J]. Front Vet Sci, 2019, 6: 187. [236] Zhou M, Wu X, Jiang D, et al. Characterization of a moderately pathogenic pseudorabies virus variant isolated in China, 2014 [J]. Infection, Genetics and Evolution, 2019, 68: 161-71. [237] Zhou T, Wang C H, Yan H, et al. Inhibition of the Rac1-WAVE2-Arp2/3 signaling pathway promotes radiosensitivity via downregulation of cofilin-1 in U251 human glioma cells [J]. Mol Med Rep, 2016, 13(5): 4414-20. [238] Zhou Y, Su J, Shi L, et al. DADS downregulates the Rac1-ROCK1/PAK1-LIMK1-ADF/cofilin signaling pathway, inhibiting cell migration and invasion [J]. Oncol Rep, 2013, 29(2): 605-12. |
中图分类号: | S85 |
开放日期: | 2023-06-09 |