| 中文题名: | 调控大豆CLCs基因的转录因子鉴定及其参与盐胁迫适应的生理功能研究 |
| 姓名: | |
| 学号: | 2018216010 |
| 保密级别: | 公开 |
| 论文语种: | chi |
| 学科代码: | 071001 |
| 学科名称: | 理学 - 生物学 - 植物学 |
| 学生类型: | 博士 |
| 学位: | 理学博士 |
| 学校: | 南京农业大学 |
| 院系: | |
| 专业: | |
| 研究方向: | 植物逆境生物学 |
| 第一导师姓名: | |
| 第一导师单位: | |
| 完成日期: | 2022-04-01 |
| 答辩日期: | 2022-05-19 |
| 外文题名: | Identification of Transcription Factors Regulating Soybean CLCs Genes and Their Physiological Functions in Salt Stress Adaptation |
| 中文关键词: | |
| 外文关键词: | soybean ; CLCs gene ; transcription factor ; salt tolerance ; bHLH3 ; ERF160 |
| 中文摘要: |
植物在生长过程中通常会受到多种不利环境因素影响,如盐害、干旱、高温和低温胁迫等,其中盐胁迫是限制农业生产的主要因素之一。目前,全球耕地面积的20%受到盐胁迫的影响。大豆(Glycine max)是世界上种植最广泛的豆科植物,被认为是中度耐盐作物,但是在盐胁迫下其生长也被抑制、发芽率和结实率降低,进而导致减产。盐胁迫条件下形成的离子毒害对植物生长、发育和产量都会产生严重的不利影响,其中关于Na+毒害的研究较多,而以Cl-为代表的阴离子毒害仅有少量报道。就栽培大豆而言,在盐胁迫下,Na+和Cl-都可对生长中的大豆植株产生离子毒害,但是Cl-的毒害大于Na+毒害, 大豆受害程度与其叶片和茎中的Cl-含量呈正相关。因此,盐胁迫下大豆植株体内Cl-吸收、转运及其调控的分子机制已成为植物耐盐性研究的重要方面。转录因子在植物盐胁迫响应和适应过程发挥重要调控作用,在缓解植物盐离子毒害的基因转录调控方面,目前已被研究的转录因子主要通过调控以Na+、K+为代表的阳离子转运蛋白或通道基因的表达,进而调控上述阳离子在植株体内的吸收和分配及稳态维持来增强植物对盐逆境的适应能力。不过,介导以Cl-为代表的阴离子转运的氯离子通道蛋白家族基因(CLCs)的转录调控机制尚未见报道。 锚点本研究针对已被报道参与植物盐胁迫适应过程的大豆第I亚家族的8个CLCs基因,锚点建立基因共表达网络结合转录调控数据库筛选和鉴定其转录调控因子,并通过酵母单杂交、烟草瞬时表达、EMSA、qRT-PCR、转录激活活性、亚细胞定位、基因过表达大豆发根组合植株和转基因拟南芥的耐盐性分析等多种技术手段,着重对感兴趣的2类重要转录因子参与大豆耐盐性调控的生理功能机制进行了深入探究。主要研究结果如下: 利用植物基因共表达数据库Genevestigator构建栽培大豆第I亚家族8个CLCs基因的共表达网络,同时转录因子调控数据库Plant Reg Map预测大豆CLCs基因成员上游所有可能的转录调控因子。初步筛选到107个转录因子编码基因,其中,在GmCLC1基因上游预测到10个转录因子,在GmCLC-b1基因上游24个,GmCLC-b2基因上游8个,GmCLC-c1基因上游21个,GmCLC-c2基因上游7个,GmCLC-d1基因上游7个,GmCLC-d2基因上游22个和GmCLC-g基因上游8个。通过酵母单杂交实验和烟草叶片瞬时表达分析,最终共在GmCLC1、GmCLC-b1、GmCLC-c1、GmCLC-c2和GmCLC-d2上游鉴定到8个转录因子: Glyma.04G054200(WRKY)、Glyma.08G152500(bHLH)、Glyma.13G187500(MYB)、Glyma.10G257900(C2H2)、Glyma.04G044900(C2H2)、Glyma.05G234600(MYB)、Glyma.20G203700(ERF)、Glyma.04G170100(MYB)。 基于大豆GmCLC1和GsCLC-c2增强植物耐盐的功能,本研究首先对GmCLC1的候选转录因子GmbHLH3的功能进行深入探究。通过启动子序列点突变、酵母单杂交(yeast one-hybrid, Y1H)、烟草瞬时表达、GUS染色、EMSA实验发现GmbHLH3转录因子可结合GmCLC1启动子-550位点的G-box元件,激活下游基因表达。此外,GmbHLH3基因过表达的大豆发根组合植株根中GmCLC1的表达水平显著高于Vector植株。对大豆发根组合植株的耐盐性分析发现,从盐胁迫下植株的生长表型、株高、叶片死细胞数量、叶片MDA含量和根和叶REL值等指标都能显示OEGmbHLH3植株较Vector植株耐盐性明显增强。盐处理下OEGmbHLH3植株根中Cl-和NO3-的积累显著增加,并显著降低Cl-向地上部(茎和叶)的转运和积累,从而导致其根、茎和叶各器官Cl-/NO3-值显著降低。OEGmbHLH3发根植株根、茎和叶Na+含量及茎、叶Na+/K+值也呈类似变化。盐胁迫下转GmbHLH3基因拟南芥也表现出明显增强的耐盐性,其根中Cl-和Na+含量、根和地上部NO3-和K+含量均与大豆组合植株表现的变化趋势基本一致。在盐处理的转GmbHLH3拟南芥中AtCLCc、AtCLCg、AtNCED3和AtP5CS1被激活表达上调。而GmbHLH3基因沉默的RNAi大豆发根组合植株在盐胁迫下的表型与Vector植株一致,未出现耐盐性降低的表型。 通过Y1H、烟草瞬时表达和GUS活性测定证明GmERF160通过结合GmCLC-c2的启动子激活报告基因。进一步对野生大豆GsCLC-c2上游转录因子预测,也鉴定到1个ERF家族成员并且与GmERF160高度同源,命名为GsERF160。Gs/GmERF160基因在盐胁迫诱导下表达上调,尤其在根中更为明显。利用大豆发根组合植株和转基因拟南芥对Gs/GmERF160基因的功能进行分析,发现Gs/GmERF160基因过表达发根组合植株和转Gs/GmERF160基因拟南芥在盐胁迫下均表现出受盐害较轻,说明Gs/GmERF160能够正调控植物的耐盐性,并且能够提高大豆发根植株根中GmCLC-c2的表达水平。分析大豆发根组合植株根、茎和叶中的离子含量,发现盐处理下Gs/GmERF160基因过表达大豆组合植株根中Cl-显著增加,茎和叶Cl-含量显著降低;NO3-则在过表达植株根、茎和叶中的含量明显升高,最终导致茎和叶Cl-/NO3-值显著降低;而Na+/K+值在茎和叶中显著降低。转Gs/GmERF160基因拟南芥植株耐盐性也明显增强,这与盐处理下其地上部Cl-/NO3-和Na+/K+值显著低于野生型(WT)有关。在此基础上,鉴定到一个与GmERF160产生互作效应的GmEIN3蛋白。 综上所述,GmbHLH3转录因子在大豆中可通过上调GmCLC1的表达水平,介导盐胁迫下大豆植株根对Cl-、NO3-等的吸收和向地上部的转运过程以保持相对较低的Cl-/NO3-和Na+/K+值,使得GmbHLH3过表达大豆发根组合植株的耐盐性明显增强, ABA介导的信号途径或脯氨酸代谢途径也可能参与了上述盐害缓解过程。锚点在野生和栽培大豆Gs/GmCLC-c2基因上游鉴定到的转录因子Gs/GmERF160也参与盐胁迫下植株体内的阴离子稳态调节,其主要通过激活并增强GmCLC-c2的表达,调节Cl-、NO3-等在Gs/GmERF160过表达大豆发根组合植株或转基因拟南芥植株体内的分布,以维持地上部明显较低的Cl-/NO3-值,进而增强耐盐性。 |
| 外文摘要: |
Plants are usually affected by a variety of unfavorable environmental factors during their growth, such as salt, drought, high and low temperature stresses, among them salt stress is one of the main factors limiting agricultural production. Currently, 20% of the arable land is affected by salt stress. Soybean (Glycine max), the most widely planted cereal legume in the world, is considered to be a moderately salt-tolerant crop, but its growth was also inhibited under salt stress, germination, and seed setting rates are reduced, resulting in reduced yields. The ion toxicity formed under salt stress will have serious adverse effects on plant growth, development, and yield. Among them, there are many studies on Na+ toxicity, but only a few reports on anion toxicity represented by Cl-. In terms of cultivated soybean, under salt stress, both Na+ and Cl- could produce ion toxicity to growing soybean plants, but the toxicity of Cl- was greater than that of Na+, and the degree of soybean injury was positively correlated with the content of Cl- in leaves and stems. Therefore, the molecular mechanism of Cl- uptake, transport, and regulation in soybean plants under salt stress has become an important aspect of plant salt tolerance research. Transcription factors play an important regulatory role in the response and adaptation of plants to salt stress. In terms of transcriptional regulation of genes alleviating salt ion toxicity in plants, transcription factors have been reported to enhance the adaptability of plants to salt stress by regulating the expression of cation (Na+ and K+) transporter or channel genes, and then regulating the absorption, distribution, and homeostasis of these cations in plants. However, the transcriptional regulation mechanism of chloride channel protein family genes (CLCs) mediating anion (Cl-) transport has not been reported yet. In this study, 8 CLCs of soybean subfamily I have been reported to be involved in the adaptation process of plants to salt stress. Gene co-expression network and transcriptional regulatory database was used to identify upstream transcriptional regulators; and Y1H, transient expression in tobacco leaves, EMSA, qRT-PCR, transcriptional activation activity, subcellular localization, salt tolerance identification of gene-overexpressed soybean hairy root-composite plants and transgenic Arabidopsis were performed, focused on the exploration of the physiological functions and mechanisms of two types important transcription factors involved in the regulation of soybean salt tolerance. The main results are as follows: The plant gene co-expression database Genevestigator was used to construct the co-expression network of 8 CLCs of cultivated soybean subfamily I, and the transcription factor regulation database Plant Reg Map predicted all possible transcriptional regulators upstream of soybean CLCs. 107 transcription factor encoding genes were preliminarily screened, among which, 10 transcription factors predicted upstream of GmCLC1, 24 upstream of GmCLC-b1, 8 upstream of GmCLC-b2, 21 upstream of GmCLC-c1, and 7 upstream of GmCLC-c2, 7 upstream of GmCLC-d1, 22 upstream of GmCLC-d2 and 8 upstream of GmCLC-g. Yeast one-hybrid experiments and transient expression analysis in tobacco leaves were performed and 8 transcription factors were identified upstream of GmCLC1, GmCLC-b1, GmCLC-c1, GmCLC-c2, and GmCLC-d2: Glyma.04G054200(WRKY), Glyma.08G152500(bHLH), Glyma.13G187500(MYB), Glyma.10G257900(C2H2), Glyma.04G044900(C2H2), Glyma.05G234600(MYB), Glyma.20G203700(ERF), and Glyma.04G170100(MYB). Based on the salt tolerance function of soybean GmCLC1 and GsCLC-c2, this study firstly explored the function of GmbHLH3, a candidate transcription factor of GmCLC1. Through point mutation of promoter sequence, Y1H, transient expression in tobacco, GUS activity assay, and EMSA, it was found that GmbHLH3 transcription factor could bind to the G-box element at the promoter of GmCLC1 gene to activate the expression of the downstream gene. In addition, the expression level of GmCLC1 in the roots of GmbHLH3-overexpressing soybean hairy root-composite plants was significantly higher than that of Vector plants. The salt tolerance of OEGmbHLH3 composite plants was significantly enhanced in terms of growth phenotype, plant height, number of dead cells in leaves, MDA content in leaves, and REL values in roots and leaves of plants. The accumulation of Cl- and NO3- in roots of OEGmbHLH3 plants significantly increased under salt treatment, and the transport and accumulation of Cl- to shoots (stems and leaves) were significantly decreased, resulting in a significant decrease of Cl-/NO3- values in roots, stems and leaves. The Na+ content in roots, stems and leaves and Na+/K+ values in stems and leaves of OEGmbHLH3 plants also showed similar changes. GmbHLH3-transgenic Arabidopsis also showed significantly enhanced salt tolerance, and the changes of Cl- and Na+ contents in roots, NO3- and K+ contents in roots and shoots were consistent with those of soybean composite plants. In addition, AtCLCc, AtCLCg, AtNCED3 and AtP5CS1 were activated and up-regulated in salt-treated GmbHLH3-transgenic Arabidopsis. The phenotype of the GmbHLH3-RNAi soybean hairy root-composite plants was consistent with that of the Vector plants under salt stress, and did not show reduced salt tolerance. GmERF160 activates the reporter gene by binding to the promoter of GmCLC-c2 as demonstrated by Y1H, tobacco transient expression and GUS activity assay. Further prediction of the upstream transcription factor of wild soybean GsCLC-c2, a gene with high homology to GmERF160 was identified and named GsERF160. GsERF160 and GmERF160 genes were up-regulated under salt stress, especially in roots. The functions of Gs/GmERF160 genes were analyzed by soybean hair-root composite plants and transgenic Arabidopsis. It was found that soybean composite plants and transgenic Arabidopsis showed less salt damage under salt stress, indicating that Gs/GmERF160 can positively regulate the salt tolerance of plants and activate the expression of GmCLC-c2 in the roots of soybean composite plants. Under salt treatment, the content of Cl- in roots of Gs/GmERF160-overexpressing soybean composite plants was significantly increased, while the content of Cl- in stems and leaves was significantly decreased, the content of NO3- in roots, stems and leaves of overexpressed plants was significantly increased, resulting in a significant decrease in the value of Cl-/NO3- in stems and leaves. The salt tolerance of Gs/GmERF160-transgenic Arabidopsis plants was also significantly enhanced, which was related to the significantly lower Cl-/NO3- and Na+/K+ values in shoots under salt treatment than those in wild type (WT). On this basis, a GmEIN3 protein that interacted with GmERF160 was identified. In summary, the transcription factor GmbHLH3 can confer enhanced salt tolerance in GmbHLH3-overexpressing soybean hairy root-composite plants by upregulating the GmCLC1 expression, mediating the Cl- and NO3- absorption and their transportation to shoots to maintain relatively low Cl-/NO3- and Na+/K+ values, and ABA-mediated signaling pathway or proline metabolism pathway may also be involved in the process of above-mentioned salt damage alleviation. 锚点The transcription factor Gs/GmERF160, identified upstream of Gs/GmCLC-c2 gene in wild and cultivated soybeans, also participates in the regulation of anion homeostasis in plants under salt stress. It mainly regulates the distribution of Cl-, NO3-, etc. in Gs/GmERF160-overexpressing hairy root-composite plants or transgenic Arabidopsis by activating and enhancing the expression of GmCLC-c2, and maintaining significantly lower Cl-/NO3- value in shoots, thereby enhancing salt tolerance. |
| 参考文献: |
李伟, 王龙超, 曹金花, 於丙军. 2014. 大豆基因组CLC 同源基因家族的生物信息学分析. 南京农业大学学报, 37, 35-43. 卫培培. 2017. 基于盐逆境条件下栽培和野生大豆CLCs基因家族的挖掘和功能解析. 南京农业大学, 博士学位论文. 杨莎, 侯林琳, 郭峰, 张佳蕾, 耿耘, 孟静静, 李新国, 万书波. 2017. 盐胁迫下外源Ca2+对花生生长发育, 生理及产量的影响. 应用生态学报, 28, 894-900. 於丙军, 刘振, 卫培培. 2017. 基于盐逆境下植物CLC同源基因的发掘和功能解析的研究进展. 南京农业大学学报, 40, 187-194. 於丙军,刘友良. 2004. 植物中的氯、氯通道和耐氯性. 植物学通报, 21, 402-410. 周国安, 关荣霞, 李英慧, 常汝镇, 邱丽娟. 2009. 异源表达一个大豆Na+/H+逆向转运蛋白基因GmNHX2提高拟南芥的耐盐性. 科学通报, 17, 2508-2516. Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D., Shinozaki, K. 1997. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell, 9, 1859-1868. Abogadallah, G.M., Nada, R.M., Malinowski, R., Quick, P. 2011. Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. Planta, 233, 1265-1276. Aladdin, H., Xu, D. 2008. Conserved salt tolerance quantitative trait loci (QTL) in wild and cultivated soybean. Breeding Sci, 58, 355-359. Amin, I., Rasool, S., Mir, M.A., Wani, W., Masoodi, K.Z., Ahmad, P. 2020. Ion homeostasis for salinity tolerance in plants: a molecular approach. Physiol Plant, 171, 578-594. An, J.P., Li, R., Qu, F.J., You, C.X., Wang, X.F., Hao, Y.J. 2018. R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple. Plant J, 96, 562-577. Asada, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol, 141, 391-396. Babitha, K.C., Ramu, S.V., Pruthvi, V., Mahesh, P. 2013. Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis. Transgenic Res, 22, 327-341. Banerjee, A., Roychoudhury, A. 2017. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma, 254, 3-16. Barbier-Brygoo, H., De Angeli, A., Filleur, S., Frachisse, J.M., Gambale, F., Thomine, S., Wege, S. 2011. Anion channels/transporters in plants: from molecular bases to regulatory networks. Annu Rev Plant Biol, 62, 25-51. Barragan, V., Leidi, E.O., Andres, Z., Rubio, L., Luca, A.D., Fernandez, J.A., Cubero, B., Pardo, J.M. 2012. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell, 24, 1127-1142. Basu, S., Kumar, A., Benazir, I., Kumar, G. 2021. Reassessing the role of ion homeostasis for improving salinity tolerance in crop plants. Physiol Plant, 171, 502-519. Ben Ahmed, C., Ben Rouina, B., Sensoy, S., Boukhriss, M., Ben Abdullah, F. 2010. Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. J Agr Food Chem, 58, 4216-4222. Berna, A., Bernier, F. 1999. Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2-producing enzyme. Plant Mol Biol, 39, 539-549. Bian, X.H., Li, W., Niu, C.F., Wei, W., Hu, Y., Han, J.Q., Lu, X., Tao, J.J., Jin, M., Qin, H., Zhou, B., Zhang, W.K., Ma, B., Wang, G.D., Yu, D.Y., Lai, Y.C., Chen, S.Y., Zhang, J.S. 2020. A class B heat shock factor selected for during soybean domestication contributes to salt tolerance by promoting flavonoid biosynthesis. New Phytol, 225, 268-283. Bose, J., Rodrigo-Moreno, A., Shabala, S. 2014. ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot, 65, 1241-1257. Cai, R., Zhao, Y., Wang, Y., Lin, Y., Cheng, B. 2015. Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell Tiss Org, 119, 565-577. Cda, B., Tm, A., Ss, A., Xg, C., Lg, A., Lh, A., Zw, A., Yan, Z.A., Miao, L.A., Ys, A. 2019. Constitutive expression of GmF6′H1 from soybean improves salt tolerance in transgenic Arabidopsis. Plant Physiol Bioch, 141, 446-455. Chen, H., He, H., Yu, D. 2011. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants. Physiol Plantarum, 141, 11-18. Chen, H., Xin, C., Gu, H., Wu, B., Cui, X. 2014. GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants. Plant Growth Regul, 73, 299-308. Chen, H.C., Hsieh-Feng, V., Liao, P.C., Cheng, W.H., Liu, L.Y., Yang, Y.W., Lai, M.H., Chang, M.C. 2017. The function of OsbHLH068 is partially redundant with its homolog, AtbHLH112, in the regulation of the salt stress response but has opposite functions to control flowering in Arabidopsis. Plant Mol Biol, 94, 531-548. Chen, M., Wang, Q.Y., Cheng, X.G., Xu, Z.S., Li, L.C., Ye, X.G., Xia, L.Q., Ma, Y.Z. 2007. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Bioph Res Co, 353, 299-305. Chen, N., Tong, S., Tang, H., Zhang, Z., Liu, B., Lou, S., Liu, J., Liu, H., Ma, T., Jiang, Y. 2020. The PalERF109 transcription factor positively regulates salt tolerance via PalHKT1;2 in Populus alba var. pyramidalis. Tree Physiol, 40, 717-730. Chen, T.H., Murata, N. 2011. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ, 34, 1-20. Chen, X., Yao, Q., Gao, X., Jiang, C., Fu, X. 2016. Shoot-to-root mobile transcription factor HY5 coordinatesplant carbon and nitrogen acquisition. Curr Biol, 26, 640-646. Chen, Y., Li, F., Yan, M., Kang, C., Xu, Y. 2013. Overexpression of OrbHLH001, a putative helix–loop–helix transcription factor, causes increased expression of AKT1 and maintains ionic balance under salt stress in rice. J Plant Physiol, 170, 93-100. Cheng, C., Liu, Y., Liu, X., An, J., Jiang, L., Yu, B. 2019a. Recretohalophyte Tamarix TrSOS1 confers higher salt tolerance to transgenic plants and yeast than glycophyte soybean GmSOS1. Environ Exp Bot, 165, 196-207. Cheng, Q., Dong, L., Gao, T., Liu, T., Li, N., Wang, L., Chang, X., Wu, J., Xu, P., Zhang, S. 2018. The bHLH transcription factor GmPIB1 facilitates resistance to Phytophthora sojae in Glycine max. J Exp Bot, 69, 2527-2541. Cheng, Z., Zhang, X., Zhao, K., Yao, W., Jiang, T. 2019b. Over-expression of ERF38 gene enhances salt and osmotic tolerance in transgenic poplar. Front Plant Sci, 10, 1375. Clough, S.J., Bent, A.F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 16, 735-743. Colmenero-Flores, J.M., Franco-Navarro, J.D., Cubero-Font, P., Peinado-Torrubia, P., Rosales, M.A. 2019. Chloride as a beneficial macronutrient in higher plants: new roles and regulation. Int J Mol Sci, 20, 4686. Colmenero-Flores, J.M., Martinez, G., Gamba, G., Vazquez, N., Iglesias, D.J., Brumos, J., Talon, M. 2007. Identification and functional characterization of cation-chloride cotransporters in plants. Plant J, 50, 278-292. Cui, M.H., Yoo, K.S., Hyoung, S., Nguyen, H.T., Kim, Y.Y., Kim, H.J., Ok, S.H., Yoo, S.D., Shin, J.S. 2013. An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. FEBS Lett, 587, 1773-1778. Das, K., Roychoudhury, A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci, 2, 53. De Angeli, A., Monachello, D., Ephritikhine, G., Frachisse, J.M., Thomine, S., Gambale, F., Barbier-Brygoo, H. 2006. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature, 442, 939-942. De Angeli, A., Zhang, J., Meyer, S., Martinoia, E. 2013. AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. Nat Commun, 4, 1804. Deinlein, U., Stephan, A.B., Horie, T., Luo, W., Xu, G., Schroeder, J.I. 2014. Plant salt-tolerance mechanisms. Trends Plant Sci, 19, 371-379. Diédhiou, C.J., Golldack, D. 2006. Salt-dependent regulation of chloride channel transcripts in rice. Plant Sci, 170, 793-800. Do, T.D., Chen, H., Hien, V.T., Hamwieh, A., Yamada, T., Sato, T., Yan, Y., Cong, H., Shono, M., Suenaga, K., Xu, D. 2016. Ncl synchronously regulates Na+, K+, and Cl- in soybean and greatly increases the grain yield in saline field conditions. Sci Rep, 6, 19147. Dong, L., Cheng, Y., Wu, J., Cheng, Q., Li, W., Fan, S., Jiang, L., Xu, Z., Kong, F., Zhang, D., Xu, P., Zhang, S. 2015. Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean. J Exp Bot, 66, 2635-2647. Du, Y.T., Zhao, M.J., Wang, C.T., Gao, Y., Wang, Y.X., Liu, Y.W., Chen, M., Chen, J., Zhou, Y.B., Xu, Z.S., Ma, Y.Z. 2018. Identification and characterization of GmMYB118 responses to drought and salt stress. BMC Plant Biol, 18, 320. Feng, X., Feng, P., Yu, H., Yu, X., Sun, Q., Liu, S., Minh, T.N., Chen, J., Wang, D., Zhang, Q., Cao, L., Zhou, C., Li, Q., Xiao, J., Zhong, S., Wang, A., Wang, L., Pan, H., Ding, X. 2020. GsSnRK1 interplays with transcription factor GsERF7 from wild soybean to regulate soybean stress resistance. Plant Cell Environ, 43, 1192-1211. Flowers, T.J. 1988. Chloride as a nutrient and as an osmoticum, in: Tinker, P.B., Laüchli, A. (Ed.), Advances in Plant Nutrition. NY: Praeger, New York, pp 55-78. Foyer, C.H., Lopez-Delgado, H., Dat, J.F., Scott, I.M. 1997. Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plantarum, 100, 241-254. Franco-Navarro, J.D., Brumos, J., Rosales, M.A., Cubero-Font, P., Talon, M., Colmenero-Flores, J.M. 2016. Chloride regulates leaf cell size and water relations in tobacco plants. J Exp Bot, 67, 873-891. Franco-Navarro, J.D., Rosales, M.A., Cubero-Font, P., Calvo, P., Alvarez, R., Diaz-Espejo, A., Colmenero-Flores, J.M. 2019. Chloride as a macronutrient increases water-use efficiency by anatomically driven reduced stomatal conductance and increased mesophyll diffusion to CO2. Plant J, 99, 815-831. Franco-Zorrilla, J.M., Lopez-Vidriero, I., Carrasco, J.L., Godoy, M., Vera, P., Solano, R. 2014. DNA-binding specificities of plant transcription factors and their potential to define target genes. P Natl Acad Sci USA, 111, 2367-2372. Gaudinier, A., Rodriguez-Medina, J., Zhang, L., Olson, A., Liseron-Monfils, C., B?gman, A.-M., Foret, J., Abbitt, S., Tang, M., Li, B., Runcie, D.E., Kliebenstein, D.J., Shen, B., Frank, M.J., Ware, D., Brady, S.M. 2018. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature, 563, 259-264. Geilfus, C.M. 2018. Chloride: from nutrient to toxicant. Plant Cell Physiol, 59, 877-886. Golldack, Luking, Yang. 2011. Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep, 30, 1383-1391. Guan, R., Qu, Y., Guo, Y., Yu, L., Liu, Y., Jiang, J., Chen, J., Ren, Y., Liu, G., Tian, L. 2014. Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J, 80, 937-950. Gupta, B., Huang, B. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics, 2014, 701596. Han, Y.J., Cho, K.C., Hwang, O.J., Choi, Y.S., Shin, A.Y., Hwang, I., Kim, J.I. 2012. Overexpression of an Arabidopsis β-glucosidase gene enhances drought resistance with dwarf phenotype in creeping bentgrass. Plant Cell Rep, 31, 1677-1686. Hao, Y.J., Wei, W., Song, Q.X., Chen, H.W., Zhang, Y.Q., Wang, F., Zou, H.F., Gang, L., Tian, A.G., Zhang, W.K. 2011. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J, 68, 302-313. Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J. 2000. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 51, 463-499. He, F., Li, H.G., Wang, J.J., Su, Y., Wang, H.L., Feng, C.H., Yang, Y., Niu, M.X., Liu, C., Yin, W., Xia, X. 2019. PeSTZ1, a C2H2-type zinc finger transcription factor from Populus euphratica, enhances freezing tolerance through modulation of ROS scavenging by directly regulating PeAPX2. Plant Biotechnol J, 17, 2169-2183. Henderson, S.W., Baumann, U., Blackmore, D.H., Walker, A.R., Walker, R.R., Gilliham, M. 2014. Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. BMC Plant Biol, 14, 273. Hoang, X.L.T., Nhi, D.N.H., Thu, N.B.A., Thao, N.P., Tran, L.S.P. 2017. Transcription factors and their roles in signal transduction in plants under abiotic stresses. Curr Genomics, 18, 483-497. Horie, T., Sugawara, M., Okada, T., Taira, K., Kaothien-Nakayama, P., Katsuhara, M., Shinmyo, A., Nakayama, H. 2011. Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. J Biosci Bioeng, 111, 346-356. Huang, S.J., Liang, Z.H., Chen, S., Sun, H.W., Fan, X.R. 2019. A transcription factor, OsMADS57, regulates long-distance nitrate transport and root elongation. Plant Physiol, 180, 882-895. Huang, X.S., Wang, W., Zhang, Q., Liu, J.H. 2013. A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol, 162, 1178-1194. Ihsan, M.Z., Ahmad, S.J., Shah, Z.H., Rehman, H.M., Aslam, Z., Ahuja, I., Bones, A.M., Ahmad, J.N. 2017. Gene mining for proline based signaling proteins in cell wall of Arabidopsis thaliana. Front Plant Sci, 8, 233. Iwamoto, M., Tagiri, A. 2016. MicroRNA-targeted transcription factor gene RDD1 promotes nutrient ion uptake and accumulation in rice. Plant J, 85, 466-477. James, R., A., Blake, C., Byrt, C., S., Munns, R. 2011. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot, 62, 2939-2947. Ji, X., Du, Y., Li, F., Sun, H., Zhang, J., Li, J., Peng, T., Xin, Z., Zhao, Q. 2019. The basic helix-loop-helix transcription factor, OsPIL15, regulates grain size via directly targeting a purine permease gene OsPUP7 in rice. Plant Biotechnol J, 17, 1527-1537. Jia, Q., Li, M.W., Zheng, C., Xu, Y., Sun, S., Li, Z., Wong, F.L., Song, J., Lin, W.W., Li, Q., Zhu, Y., Liang, K., Lin, W., Lam, H.M. 2021. The soybean plasma membrane‐localized cation/H+ exchanger GmCHX20a plays a negative role under salt stress. Physiol Plantarum, 171, 714-727. Jossier, M., Kroniewicz, L., Dalmas, F., Le Thiec, D., Ephritikhine, G., Thomine, S., Barbier-Brygoo, H., Vavasseur, A., Filleur, S., Leonhardt, N. 2010. The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance. Plant J, 64, 563-576. Kavas, M., Gkdemir, G., Segin, Z., Allahbakhsh. 2020. Ectopic expression of common bean ERF transcription factor PvERF35 promotes salt stress tolerance in tobacco. Plant Biology, 22, 1102-1112. Ke, D., He, Y., Fan, L., Niu, R., Cheng, L., Wang, L., Zhang, Z. 2022. The soybean TGA transcription factor GmTGA13 plays important roles in the response to salinity stress. Plant Biology, 24, 313-322. Ketehouli, T., Zhou, Y.G., Dai, S.Y., Carther, K., Sun, D.Q., Li, Y., Nguyen, Q., Xu, H., Wang, F.W., Liu, W.C., Li, X.W., Li, H.Y. 2021. A soybean calcineurin B-like protein-interacting protein kinase, GmPKS4, regulates plant responses to salt and alkali stresses. J Plant Physiol, 256, 153331. Khan, S.A., Li, M.Z., Wang, S.M., Yin, H.J. 2018. Revisiting the role of plant transcription factors in the battle against abiotic stress. Int J Mol Sci, 19, 1634. Kobayashi, M., Katoh, H., Ikeuchi, M. 2006. Mutations in a putative chloride efflux transporter gene suppress the chloride requirement of photosystem II in the cytochrome c550-deficient mutant. Plant Cell Physiol, 47, 799-804. Krishnamurthy, P., Vishal, B., Khoo, K., Rajappa, S., Loh, C.S., Kumar, P.P. 2019. Expression of AoNHX1 increases salt tolerance of rice and Arabidopsis, and bHLH transcription factors regulate AtNHX1 and AtNHX6 in Arabidopsis. Plant Cell Rep, 38, 1299-1315. Ku, Y.S., Ni, M., Munoz, N.B., Xiao, Z., Lo, A.W., Chen, P., Li, M.W., Cheung, M.Y., Xie, M., Lam, H.M. 2020. ABAS1 from soybean is a 1R-subtype MYB transcriptional repressor that enhances ABA sensitivity. J Exp Bot, 71, 2970-2981. Lam, H.M., Xu, X., Liu, X., Chen, W., Yang, G., Wong, F.L., Li, M.W., He, W., Qin, N., Wang, B., Li, J., Jian, M., Wang, J., Shao, G., Wang, J., Sun, S.S., Zhang, G. 2010. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet, 42, 1053-1059. Lazof, D.B., Bernstein, N. 1998. The NaCl induced inhibition of shoot growth: the case for disturbed nutrition with special consideration of calcium. Adv Bot Res, 29, 113-189. Lee, G.J., Carter, T.E., Villagarcia, M.R., Li, Z., Zhou, X., Gibbs, M.O., Boerma, H.R. 2005. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor Appl Genet, 110, 787-787. Lescot, M. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 30, 325-327. Li, B., Tester, M., Gilliham, M. 2017a. Chloride on the Move. Trends Plant Sci, 22, 236-248. Li, B., Zheng, J.C., Wang, T.T., Min, D.H., Ma, Y.Z. 2020. Expression analyses of soybean VOZ transcription factors and the role of GmVOZ1G in drought and salt stress tolerance. Int J Mol Sci, 21, 2177. Li, L., Gao, W.W., Peng, Q., Zhou, B., Kong, Q.H., Ying, Y.H., Shou, H.X. 2018a. Two soybean bHLH factors regulate response to iron deficiency. J Integr Plant Biol, 60, 608-622. Li, M., Chen, R., Jiang, Q.Y., Sun, X.J., Zhang, H., Hu, Z. 2021. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Mol Biol, 105, 333-345. Li, S., Cong, Y., Liu, Y., Wang, T., Shuai, Q., Chen, N., Gai, J., Li, Y. 2017b. Optimization of Agrobacterium-mediated transformation in soybean. Front Plant Sci, 8, 246. Li, S., Wang, N., Ji, D.D., Zhang, W.X., Wang, Y., Yu, Y.C., Zhao, S.Z., Lyu, M.H., You, J.J., Zhang, Y.Y., Wang, L.L., Wang, X.F., Liu, Z.H., Tong, J.H., Xiao, L.T., Bai, M.Y., Xiang, F.N. 2019. A GmSIN1/GmNCED3s/GmRbohBs feed-forward loop acts as a signal amplifier that regulates root growth in soybean exposed to salt stress. Plant Cell, 31, 2107-2130. Li, W.Y., Wong, F.L., Tsai, S.N., Phang, T.H., Shao, G., Lam, H.M. 2006. Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. Plant Cell Environ, 29, 1122-1137. Li, Y., Chen, Q., Nan, H., Li, X., Lu, S., Zhao, X., Liu, B., Guo, C., Kong, F., Cao, D. 2017c. Overexpression of GmFDL19 enhances tolerance to drought and salt stresses in soybean. PLoS One, 12, e0179554. Li, Z., Tian, Y., Jing, X., Fu, X., Gao, J., Bo, W., Han, H., Wang, L., Peng, R., Yao, Q. 2018b. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000. Plant Physiol Bioch, 132, 683-695. Li, Z.Y., Xu, Z.S., He, G.Y., Yang, G.X., Chen, M. 2012a. Overexpression of soybean GmCBL1 enhances abiotic stress tolerance and promotes hypocotyl elongation in Arabidopsi. Biochem Bioph Res Co, 427, 731-736. Li, Z.Y., Xu, Z.S., He, G.Y., Yang, G.X., Chen, M., Li, L.C., Ma, Y.Z. 2012b. A mutation in Arabidopsis BSK5 encoding a brassinosteroid-signaling kinase protein affects responses to salinity and abscisic acid. Biochem Bioph Res Co, 426, 522-527. Liao, H., Wong, F.L., Phang, T.H., Cheung, M.Y., Lam, H.M. 2003. GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency. Gene, 318, 103-111. Liao, Y., Zou, H.F., Wang, H.W., Zhang, W.K., Ma, B., Zhang, J.S., Chen, S.Y. 2008. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res, 18, 1047. Licausi, F., Ohme‐Takagi, M., Perata, P. 2013. APETALA2/Ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol, 199, 639-649. Lin, H., Yang, Y., Quan, R., Mendoza, I., Wu, Y., Du, W., Zhao, S., Schumaker, K.S., Pardo, J.M., Guo, Y. 2009. Phosphorylation of SOS3-Like calcium binding protein8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. Plant Cell, 21, 1607-1619. Liu, W., Feng, J., Ma, W., Zhou, Y., Ma, Z. 2021a. GhCLCg-1, a Vacuolar chloride channel, contributes to salt tolerance by regulating ion accumulation in upland cotton. Front Plant Sci, 12, 765173. Liu, W., Tai, H., Li, S., Gao, W., Zhao, M., Xie, C., Li, W.X. 2014. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol, 201, 1192-1204. Liu, X., Liu, F., Zhang, L., Cheng, C., Wei, P., Yu, B. 2021b. GsCLC-c2 from wild soybean confers chloride/salt tolerance to transgenic Arabidopsis and soybean composite plants by regulating anion homeostasis. Physiol Plant, 172, 1867-1879. Liu, X., Pi, B., Pu, J., Cheng, C., Fang, J., Yu, B. 2020. Genome-wide analysis of chloride channel-encoding gene family members and identification of CLC genes that respond to Cl?/salt stress in upland cotton. Mol Biol Rep, 47, 9361-9371. Liu, Y.J., Ji, X.Y., Nie, X.G., Qu, M., Zheng, L., Tan, Z.L., Zhao, H.M., Huo, L., Liu, S.N., Zhang, B., Wang, Y.C. 2015. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol, 207, 692-709. Lu, L., Wei, W., Tao, J.J., Lu, X., Bian, X.H., Hu, Y., Cheng, T., Yin, C.C., Zhang, W.K., Chen, S.Y., Zhang, J.S. 2021. Nuclear factor Y subunit GmNFYA competes with GmHDA13 for interaction with GmFVE to positively regulate salt tolerance in soybean. Plant Biotechnol J, 19, 2362-2379. Luo, G.Z., Wang, H.W., Jian, H., Tian, A.G., Chen, S.Y. 2005a. A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Plant Mol Biol, 59, 809-820. Luo, Q., Yu, B., Liu, Y. 2005b. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J Plant Physiol, 162, 1003-1012. Ma, Q., Xia, Z., Cai, Z., Li, L., Cheng, Y., Liu, J., Nian, H. 2019. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana. Front Plant Sci, 9, 1979. Ma, X.J., Fu, J.D., Tang, Y.M., Yu, T.F., Ma, Y.Z. 2020. GmNFYA13 improves salt and drought tolerance in transgenic soybean plants. Front Plant Sci, 11, 587244. Miller, G., Suzuki, N., Ciftci‐Yilmaz, S., Mittler, R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ, 33, 453-467. Mittler, R., Kim, Y., Song, L., Coutu, J., Coutu, A., Ciftci-Yilmaz, S., Lee, H., Stevenson, B., Zhu, J.K. 2006. Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett, 580, 6537–6542. Moez, H., Chantal, E., Mariama, N., Laurent, L., Khaled, M. 2016. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci, 7, 1787. Munns, R. 2005. Genes and salt tolerance: bringing them together. New Phytol, 167, 645-663. Munns, R., Tester, M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 59, 651-681. Nakamura, A., Fukuda, A., Sakai, S., Tanaka, Y. 2006. Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.). Plant Cell Physiol, 47, 32-42. Nakano, T., Suzuki, K., Fujimura, T., Shinshi, H. 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 140, 411-432. Negi, J., Matsuda, O., Nagasawa, T., Oba, Y., Takahashi, H., Kawai-Yamada, M., Uchimiya, H., Hashimoto, M., Iba, K. 2008. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature, 452, 483-486. Nguyen, C.T., Agorio, A., Jossier, M., Depre, S., Thomine, S., Filleur, S. 2016. Characterization of the chloride channel-like, AtCLCg, involved in chloride tolerance in Arabidopsis thaliana. Plant Cell Physiol, 57, 764-775. Nguyen, Q.H., Vu, L.T.K., Nguyen, L.T.N., Pham, N.T.T., Nguyen, Y.T.H., Le, S.V., Chu, M.H. 2019. Overexpression of the GmDREB6 gene enhances proline accumulation and salt tolerance in genetically modified soybean plants. Sci Rep, 9, 19663. Nie, W.X., Xu, L., Yu, B.J. 2015. A putative soybean GmsSOS1 confers enhanced salt tolerance to transgenic Arabidopsis sos1-1 mutant. Protoplasma, 252, 127-134. Niu, C.F., Wei, W., Zhou, Q.Y., Tian, A.G., Chen, S.Y. 2012. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ, 35, 1156-1170. Peng, J., Li, Z., Wen, X., Li, W., Shi, H., Yang, L., Zhu, H., Guo, H. 2014. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet, 10, e1004664. Phang, T.H., Shao, G., Lam, H.M. 2008. Salt tolerance in soybean. J Integr Plant Biol, 50, 1196-1212. Phukan, U.J., Jeena, G.S., Shukla, R.K. 2016. WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci, 7, 760. Qi, X., Li, M.W., Xie, M., Liu, X., Ni, M., Shao, G., Song, C., Kay-Yuen Yim, A., Tao, Y., Wong, F.L., Isobe, S., Wong, C.F., Wong, K.S., Xu, C., Li, C., Wang, Y., Guan, R., Sun, F., Fan, G., Xiao, Z., Zhou, F., Phang, T.H., Liu, X., Tong, S.W., Chan, T.F., Yiu, S.M., Tabata, S., Wang, J., Xu, X., Lam, H.M. 2014. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun, 5, 4340. Quan, R., Hu, S., Zhang, Z., Zhang, H., Zhang, Z., Huang, R. 2010. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol J, 8, 476-488. Quan, R., Wang, J., Yang, D., Zhang, H., Zhang, Z., Huang, R. 2017. EIN3 and SOS2 synergistically modulate plant salt tolerance. Sci Rep, 7, 44637. Rao, S.S., El-Habbak, M.H., Havens, W.M., Singh, A., Zheng, D., Vaughn, L., Haudenshield, J.S., Hartman, G.L., Korban, S.S., Ghabrial, S.A. 2013. Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress. Mol Plant Pathol, 15, 145-160. Rao, X., Chen, X., Shen, H., Ma, Q., Li, G., Tang, Y., Pena, M., York, W., Frazier, T.P., Lenaghan, S., Xiao, X., Chen, F., Dixon, R.A. 2019. Gene regulatory networks for lignin biosynthesis in switchgrass (Panicum virgatum). Plant Biotechnol J, 17, 580-593. Rawia, A.E., Eid, L.S., Taha, S., Ibrahiem. 2011. Alleviation of adverse effects of salinity on growth, and chemical constituents of marigold plants by using glutathione and ascorbate. J Appl Sci Res, 7, 714-721. Raza, S.H., Athar, H.R., Ashraf, M., Hameed, A. 2007. Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ Exp Bot, 60, 368-376. Rong, W., Qi, L., Wang, A., Ye, X., Du, L., Liang, H., Xin, Z., Zhang, Z. 2014. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J, 12, 468-479. Schroeder, J.I., Ward, J.M., Gassmann, W. 1994. Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct, 23, 441. Schuster, A., Erasimus, H., Fritah, S., Nazarov, P.V., Dyck, E.V., Niclou, S.P., Golebiewska, A. 2019. RNAi/CRISPR screens: from a pool to a valid hit. Trends Biotechnol, 37, 38-55. Seo, J.S., Joo, J., Kim, M.J., Kim, Y.K., Nahm, B.H., Song, S.I., Cheong, J.J., Lee, J.S., Kim, J.K., Choi, Y.D. 2011. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J, 65, 907-921. Seo, P.J., Park, C.M. 2010. MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol, 186, 471-483. Shatters, R.G., Abdelghany, A., Elbagoury, O., West, S.H. 1994. Soybean seed deterioration and response to osmotic priming: changes in specific enzyme activities in extracts from dry and germinating seeds. Seed Sci Res, 4, 33-41. Shelke, D., Nikalje, G.C., Nikam, T.D., Maheshwari, P., Punita, D.L., Rao, K.R.S.S., Kavi Kishor, P.B., Suprasanna, P. 2019. Chloride (Cl-) uptake, transport, and regulation in plant salt tolerance, in: Roychoudhury, A., Tripathi, D.K. (Eds.), Molecular Plant Abiotic Stress: Biology and Biotechnology. JohnWiley & Sons Ltd., New York, pp 241-268. Shen, Y., Shen, L., Shen, Z., Jing, W., Ge, H., Zhao, J., Zhang, W. 2015. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ, 38, 2766-2779. Shi, H., Ishitani, M., Kim, C., Zhu, J.K. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA, 97, 6896-6901. Shi, W.Y., Du, Y.T., Ma, J., Min, D.H., Jin, L.G., Chen, J., Chen, M., Zhou, Y.B., Ma, Y.Z., Xu, Z.S., Zhang, X.H. 2018. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean. Int J Mol Sci, 19, 4087. Sun, X.L., Sun, M., Luo, X., Ding, X.D., Cai, H., Bai, X., Liu, X.F., Zhu, Y.M. 2013. A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses. Planta, 240, 1373-1374. Szekely, G., Abraham, E., Cseplo, A., Rigo, G., Zsigmond, L., Csiszar, J., Ayaydin, F., Strizhov, N., Jasik, J., Schmelzer, E., Koncz, C., Szabados, L. 2008. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J, 53, 11-28. Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., McDonald, G.K. 2011. Additive effects of Na+ and Cl- ions on barley growth under salinity stress. J Exp Bot, 62, 2189-2203. Teakle, N.L., Tyerman, S.D. 2010. Mechanisms of Cl- transport contributing to salt tolerance. Plant Cell Environ, 33, 566-589. Tian, F., Yang, D.C., Meng, Y.Q., Jin, J., Gao, G. 2019. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res, 48, D1104-D1113. Toledo-Ortiz, G., Huq, E., Quail, P.H. 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell, 15, 1749-1770. Uhrig, R.G., Moorhead, G. 2017. AtSLP2 is an intronless protein phosphatase that co-expresses with intronless mitochondrial pentatricopeptide repeat (PPR) and tetratricopeptide (TPR) protein encoding genes. Plant Signal Behav, 12, e1307493. van Verk, M.C., Bol, J.F., Linthorst, H.J. 2011a. Prospecting for genes involved in transcriptional regulation of plant defenses, a bioinformatics approach. BMC Plant Biol, 11, 88. van Verk, M.C., Bol, J.F., Linthorst, H.J. 2011b. WRKY transcription factors involved in activation of SA biosynthesis genes. BMC Plant Biol, 11, 89-89. van Zelm, E., Zhang, Y., Testerink, C. 2020. Salt tolerance mechanisms of plants. Annu Rev Plant Biol, 71, 403-433. Wang, D., Liu, Y.X., Yu, Q., Zhao, S.P., Zhao, J.Y., Ru, J.N., Cao, X.Y., Fang, Z.W., Chen, J., Zhou, Y.B., Chen, M., Ma, Y.Z., Xu, Z.S., Lan, J.H. 2019. Functional analysis of the soybean GmCDPK3 gene responding to drought and salt stresses. Int J Mol Sci, 20, 5909. Wang, F., Chen, H.W., Li, Q.T., Wei, W., Li, W., Zhang, W.K., Ma, B., Bi, Y.D., Lai, Y.C., Liu, X.L., Man, W.Q., Zhang, J.S., Chen, S.Y. 2015a. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. Plant J, 83, 224-236. Wang, J., Nan, N., Li, N., Liu, Y., Wang, T.J., Hwang, I., Liu, B., Xu, Z.Y. 2020a. A DNA methylation reader-chaperone regulator-transcription factor complex activates OsHKT1;5 expression during salinity stress. Plant Cell, 32, 3535-3558. Wang, L.S., Chen, Q.S., Xin, D.W., Zhao-Ming, Q.I., Zhang, C., Si-Nan, L.I., Jin, Y.M., Mo, L.I., Mei, H.Y., Anoyu, S.U. 2018a. Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene,enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots. J Integr Agr, 17, 13. Wang, R., Jing, W., Xiao, L., Jin, Y., Shen, L., Zhang, W. 2015b. The rice high-affinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB-Type transcription factor. Plant Physiol, 168, 1076-1090. Wang, S., Su, S.Z., Wu, Y., Li, S.P., Shan, X.H., Liu, H.K., Wang, S., Yuan, Y.P. 2015c. Overexpression of maize chloride channel gene ZmCLC-d in Arabidopsis thaliana improved its stress resistance. Biol plantarum, 59, 55-64. Wang, W., Vinocur, B., Altman, A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218, 1-14. Wang, X., Yong, L., Ji, W., Xi, B., Cai, H., Dan, Z., Sun, X.L., Chen, L.J., Zhu, Y.M. 2011. A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana. J Plant Physiol, 168, 1241-1248. Wang, X., Zhao, J., Fang, Q., Chang, X., Li, Y. 2021. GmAKT1 is involved in K+ uptake and Na+/K+ homeostasis in Arabidopsis and soybean plants. Plant Sci, 304, 110736. Wang, Y., Jiang, L., Chen, J., Tao, L., An, Y., Cai, H., Guo, C. 2018b. Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean. PLoS One, 13, e0192382. Wang, Y., Wang, J., Zhao, X., Yang, S., Wang, W. 2020b. Overexpression of the transcription factor gene OsSTAP1 increases salt tolerance in rice. Rice, 13, 50. Wang, Y.X., Liu, Z.W., Wu, Z.J., Li, H., Zhuang, J. 2016. Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L.) O. Kuntze]. PLoS One, 11, e0166727. Wege, S., Gilliham, M., Henderson, S.W. 2017. Chloride: not simply a 'cheap osmoticum', but a beneficial plant macronutrient. J Exp Bot, 68, 3057-3069. Wei, P., Che, B., Shen, L., Cui, Y., Wu, S., Cheng, C., Liu, F., Li, M.W., Yu, B., Lam, H.M. 2019a. Identification and functional characterization of the chloride channel gene, GsCLC-c2 from wild soybean. BMC Plant Biol, 19, 121. Wei, P., Wang, L., Liu, A., Yu, B., Lam, H.M. 2016. GmCLC1 confers enhanced salt tolerance through regulating chloride accumulation in soybean. Front Plant Sci, 7, 1082. Wei, Q., Liu, Y., Zhou, G., Li…, Q. 2013. Overexpression of CsCLCc, a chloride channel gene from Poncirus trifoliata, enhances salt tolerance in Arabidopsis. Plant Mol Biol Rep, 31, 1548-1557. Wei, Q.J., Gu, Q.Q., Wang, N.N., Yang, C.Q., Peng, S.A. 2015. Molecular cloning and characterization of the chloride channel gene family in trifoliate orange. Biologia plantarum, 59, 645-653. Wei, W., Liang, D.W., Bian, X.H., Shen, M., Xiao, J.H., Zhang, W.K., Ma, B., Lin, Q., Lv, J., Chen, X., Chen, S.Y., Zhang, J.S. 2019b. GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca2+ signaling pathways in transgenic soybean. Plant J, 100, 384-398. White, P.J., Broadley, M.R. Chloride in soils and its iptake and movement within the plant: a review. Ann Bot, 967-988. Wong, T.H., Li, M.W., Yao, X.Q., Lam, H.M. 2013. The GmCLC1 protein from soybean functions as a chloride ion transporter. J Plant Physiol, 170, 101-104. Wu, H., Li, Z. 2019. The importance of Cl? exclusion and vacuolar Cl? sequestration: revisiting the role of Cl? transport in plant salt tolerance. Front Plant Sci, 10, 1418. Xing, H.L., Wang, D., Zhang, Z.P., Han, H.Y., Liu, C.Y. 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol, 29, 327. Xu, Z., Ali, Z., Xu, L., He, X., Huang, Y., Yi, J., Shao, H., Ma, H., Zhang, D. 2016. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean. Sci Rep, 6, 20366. Xu, Z., Liu, X., He, X., Xu, L., Huang, Y., Shao, H., Zhang, D., Tang, B., Ma, H. 2017. The soybean basic Helix-Loop-Helix transcription factor ORG3-like enhances cadmium tolerance via increased iron and reduced cadmium uptake and transport from roots to shoots. Front Plant Sci, 8, 1098. Yan, J.H., Wang, B., Jiang, Y., Cheng, L.J., Tian, L. 2014. GmFNSII-controlled soybean flavone metabolism responds to abiotic stresses and regulates plant salt tolerance. Plant Cell Physiol, 55, 74-86. Yang, C., Huang, Y., Lv, W., Zhang, Y., Bhat, J.A., Kong, J., Xing, H., Zhao, J., Zhao, T. 2020a. GmNAC8 acts as a positive regulator in soybean drought stress. Plant Sci, 293, 110442. Yang, O., Popova, O.V., Süthoff, U., Lüking, I., Dietz, K.J., Golldack, D. 2009. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene, 436, 45-55. Yang, Y., Guo, Y. 2018. Elucidating the molecular mechanisms mediating plant salt‐stress responses. New Phytol, 217, 523-539. Yang, Y., Yu, T.F., Ma, J., Chen, J., Xu, Z.S. 2020b. The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants. Int J Mol Sci, 21, 670. Ying, Z., Wang, Y., Li, Y., Lei, T., Yan, F., Su, L., Li, X., Zhao, Y., Xin, S., Li, J. 2013. Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene, 513, 174-183. Yong, L., Zou, H.F., Wei, W., Hao, Y.J., Tian, A.G., Jian, H., Liu, Y.F., Zhang, J.S., Chen, S.Y. 2008. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta, 228, 225-240. Yu, C., Liu, Y., Zhang, A., Sha, S., Yan, A., Huang, L., Ali, I., Yu, L., Forde, B.G., Gan, Y. 2015. MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice. PLoS One, 10, e0135196. Yu, L., Liu, W., Guo, Z., Li, Z., Chen, X. 2020. Interaction between MdMYB63 and MdERF106 enhances salt tolerance in apple by mediating Na+/H+ transport. Plant Physiol Bioch, 155, 464-471. Yu, T.F., Liu, Y., Fu, J.D., Ma, J., Fang, Z.W., Chen, J., Zheng, L., Lu, Z.W., Zhou, Y.B., Chen, M. 2021. The NF-Y-PYR module integrates the abscisic acid signal pathway to regulate plant stress tolerance. Plant Biotechnol J, 19, 2589-2605. Zang, D., Wang, J., Zhang, X., Liu, Z., Wang, Y. 2019. Arabidopsis heat shock transcription factor HSFA7b positively mediates salt stress tolerance by binding to an E-box-like motif to regulate gene expression. J Exp Bot, 70, 5355-5374. Zeng, L., Liu, X., Zhou, Z., Li, D., Zhao, X., Zhu, L., Luo, Y., Hu, S. 2018. Identification of a G2-like transcription factor, OsPHL3, functions as a negative regulator of flowering in rice by co-expression and reverse genetic analysis. BMC Plant Biol, 18, 157. Zhang, G., Chen, M., Chen, X., Xu, Z., Li, L., Guo, J., Ma, Y. 2010. Isolation and characterization of a novel EAR-motif-containing gene GmERF4 from soybean (Glycine max L.). Mol Biol Rep, 37, 809. Zhang, G., Chen, M., Li, L., Xu, Z., Chen, X., Guo, J., Ma, Y. 2009. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot, 60, 3781-3796. Zhang, H., Feng, H., Zhang, J., Ge, R., Zhang, L., Wang, Y., Li, L., Wei, J., Li, R. 2020a. Emerging crosstalk between two signaling pathways coordinates K+ and Na+ homeostasis in the halophyte Hordeum brevisubulatum. J Exp Bot, 71, 4345-4358. Zhang, H., Jin, J., Jin, L., Li, Z., Xu, G., Wang, R., Zhang, J., Zhai, N., Chen, Q., Liu, P., Chen, X., Zheng, Q., Zhou, H. 2018. Identification and analysis of the chloride channel gene family members in tobacco (Nicotiana tabacum). Gene, 676, 56-64. Zhang, L., Li, Z., Quan, R., Li, G., Wang, R., Huang, R. 2011a. An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis. Plant Physiol, 157, 854-865. Zhang, W., Liao, X., Cui, Y., Ma, W., Zhang, X.N., Du, H.Y., Ma, Y.J., Ning, L.H., Wang, H., Huang, F., Kan, G.Z., Yu, D.Y. 2019. A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean. PLoS Genetics, 15, e1007798. Zhang, W., Wang, N., Yang, J., Guo, H., Liu, Z., Zheng, X., Li, S., Xiang, F. 2020b. The salt-induced transcription factor GmMYB84 confers salinity tolerance in soybean. Plant Sci, 291, 110326. Zhang, X.K., Zhou, Q.H., Cao, J.H., Yu, B.J. 2011b. Differential Cl?/salt tolerance and NaCl-induced alternations of tissue and cellular ion fluxes in Glycine max, Glycine soja and their hybrid seedlings. J Agron Crop Sci, 197, 329-339. Zhang, Y., Fang, Q., Zheng, J., Li, Z., Li, Y., Feng, Y., Han, Y., Li, Y. 2022. GmLecRlk, a lectin receptor-like protein kinase, contributes to salt stress tolerance by regulating salt-responsive genes in soybean. Int J Mol Sci, 23. Zhao, C.Z., Zhang, H., Song, C., Zhu, J.K., Shabala, S. 2020a. Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1, 100017. Zhao, J.Y., Lu, Z.W., Sun, Y., Fang, Z.W., Min, D.H. 2020b. The ankyrin-repeat gene GmANK114 confers drought and salt tolerance in Arabidopsis and soybean. Front Plant Sci, 11, 584167. Zhao, M.J., Yin, L.J., a, J.M., Zheng, J.C., Wang, Y.X., Lan, J.H., Fu, J.D., Chen, M., Xu, Z.S., Ma, Y.Z. 2019a. The roles of GmERF135 in improving salt tolerance and decreasing ABA sensitivity in soybean. Front Plant Sci, 10, 940. Zhao, M.J., Yin, L.J., Liu, Y., Ma, J., Zheng, J.C., Lan, J.H., Fu, J.D., Chen, M., Xu, Z.S., Ma, Y.Z. 2019b. The ABA-induced soybean ERF transcription factor gene GmERF75 plays a role in enhancing osmotic stress tolerance in Arabidopsis and soybean. BMC Plant Biol, 19, 506. Zhao, S.P., Xu, Z.S., Zheng, W.J., Zhao, W., Wang, Y.X., Yu, T.F., Chen, M., Zhou, Y.B., Min, D.H., Ma, Y.Z., Chai, S.C., Zhang, X.H. 2017a. Genome-wide analysis of the RAV family in soybean and functional identification of GmRAV-03 involvement in salt and drought stresses and exogenous ABA treatment. Front Plant Sci, 8, 905. Zhao, X., Wei, P., Liu, Z., Yu, B., Shi, H. 2017b. Soybean Na+/H+ antiporter GmsSOS1 enhances antioxidant enzyme activity and reduces Na+ accumulation in Arabidopsis and yeast cells under salt stress. Acta Physiol Plant, 39, 19. Zhao, Y., Yang, Z., Ding, Y., Liu, L., Han, X., Zhan, J., Wei, X., Diao, Y., Qin, W., Wang, P., Liu, P., Sajjad, M., Zhang, X., Ge, X. 2019c. Over-expression of an R2R3 MYB Gene, GhMYB73, increases tolerance to salt stress in transgenic Arabidopsis. Plant Sci, 286, 28-36. Zhou, L., Wang, C., Liu, R., Han, Q., Vandeleur, R.K., Du, J., Tyerman, S., Shou, H. 2014. Constitutive overexpression of soybean plasma membrane intrinsic protein GmPIP1;6 confers salt tolerance. BMC Plant Biol, 14, 181. Zhou, Q., Yu, B.J. 2009. Accumulation of inorganic and organic osmolytes and their role in osmotic adjustment in NaCl-stressed vetiver grass seedlings. Russ J Plant Physl, 56, 678-685. Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., Gruissem, W. 2004. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol, 136, 2621-2632. Zuo, Z.F., Kang, H.G., Hong, Q.C., Park, M.Y., Sun, H.J., Kim, J., Song, P.S., Lee, H.Y. 2020. A novel basic helix-loop-helix transcription factor, ZjICE2 from Zoysia japonica confers abiotic stress tolerance to transgenic plants via activating the DREB/CBF regulon and enhancing ROS scavenging. Plant Mol Biol, 102, 447-462.
|
| 中图分类号: | Q945 |
| 开放日期: | 2022-06-07 |