- 无标题文档
查看论文信息

中文题名:

 猪源枯草芽孢杆菌活化猪鼻腔黏膜下树突状细胞的机制研究     

姓名:

 姜瑜琦    

学号:

 2019107026    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090601    

学科名称:

 农学 - 兽医学 - 基础兽医学    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 南京农业大学    

院系:

 动物医学院    

专业:

 基础兽医学    

研究方向:

 黏膜免疫    

第一导师姓名:

 杨倩    

第一导师单位:

 南京农业大学    

第二导师姓名:

 李昱辰    

完成日期:

 2022-06-01    

答辩日期:

 2022-05-29    

外文题名:

 Mechanism of Activation of Dendritic Cells from Porcine Nasal Mucosa by Bacillus Subtilis     

中文关键词:

 猪鼻腔黏膜 ; 枯草芽孢杆菌 ; 树突状细胞 ; CCL20    

外文关键词:

 pig nasal mucosa ; Bacillus subtilis ; dendritic cells ; CCL20    

中文摘要:

鼻腔黏膜是抵御病原微生物入侵呼吸系统的第一道防线,鼻腔黏膜屏障在抵御病原微生物入侵中发挥着重要作用。因此,增强鼻腔黏膜的屏障功能可有效预防或控制猪呼吸道疾病的发生。鼻腔黏膜从外向内由三层屏障构成:菌群屏障、黏膜上皮屏障(物理屏障)和免疫屏障,在猪的不同发育阶段具有较大差异。本研究从鼻腔黏膜菌群屏障、物理屏障和免疫屏障出发,揭示了不同日龄三元肉猪的鼻腔黏膜屏障特点,结果表明了哺乳期仔猪鼻腔屏障功能不完善,存在病原感染的潜在风险。因此,本研究使用了一株具有鼻腔定植能力的枯草芽孢杆菌NS15进行喷鼻保护,以有效增强哺乳期仔猪的鼻腔黏膜免疫力。结果表明喷鼻枯草芽孢杆菌NS15可以显著活化猪鼻腔黏膜下树突状细胞(Dendritic cells,DCs),增强DCs的免疫应答,包括增强DCs的迁移能力、抗原摄取、呈递能力。随后,本研究进一步具体阐明了枯草芽孢杆菌NS15活化猪鼻腔黏膜下DCs的相关机制,枯草芽孢杆菌NS15可以诱导呼吸道上皮细胞分泌趋化因子,通过激活微丝骨架信号通路使DCs的微丝骨架重排,从而募集鼻腔黏膜下的DCs形成跨上皮树突摄取抗原活化DCs。本研究具体内容分为以下三个部分:

1.不同日龄的猪鼻腔黏膜特点

鼻腔黏膜屏障由菌群屏障、上皮物理屏障和免疫屏障构成,本研究对猪不同日龄(包括新生期、哺乳期、断奶期、育肥期和育成期)鼻腔黏膜各屏障的结构特点进行了研究。结果表明猪鼻腔内的优势菌门为厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes),其中厚壁菌门的丰度从哺乳期开始随日龄的增加而显著下降,而变形菌门和拟杆菌门的丰度随日龄的增加而增加,在哺乳期鼻腔致病菌的丰度显著上升。通过菌群功能分析,我们发现随着日龄增加,菌群的存在有利于猪鼻腔黏膜的自身代谢和修复。我们还发现在猪的生长发育过程中,鼻腔前庭区上皮细胞层明显增厚,呼吸区和嗅区固有层腺体、杯状细胞数量明显增多。上皮细胞的紧密连接表达和增殖能力也具有明显的日龄依赖性,但在哺乳期有明显的下降,在断奶期得到恢复。在新生期和哺乳期,CD3+T细胞、IgA+B细胞和DCs在鼻腔黏膜分布数量较少,在断奶期显著增加。除此之外,大部分模式识别受体表达水平在断奶期也显著增加(P < 0.05)。综上,哺乳期的仔猪鼻腔屏障结构不完善,存在呼吸道感染的潜在风险。

2.猪源枯草芽孢杆菌活化猪鼻腔黏膜下树突状细胞的研究

为有效提升哺乳仔猪鼻腔黏膜免疫力,本研究使用一株分离自猪鼻腔的枯草芽孢杆菌(NS15)作为鼻腔免疫增强剂,结果显示喷鼻枯草芽孢杆菌NS15能显著增加鼻腔黏膜中DCs的数量(P < 0.05)。为了进一步探究猪源枯草芽孢杆菌NS15对鼻腔黏膜下DCs的作用,首先我们建立了猪呼吸道上皮细胞和DCs的气液共培养模型,随后使用流式细胞术和共聚焦显微镜对DCs的免疫功能进行检测。结果显示枯草芽孢杆菌NS15可以激活位于猪呼吸道上皮细胞下的DCs,增强DCs的迁移能力、抗原摄取和抗原递呈能力。进一步采用转录组学分析的方法检测了枯草芽孢杆菌NS15作用呼吸道上皮下的DCs基因转录的变化,结果显示猪源枯草芽孢杆菌NS15可以激活呼吸道上皮下DCs多个免疫相关信号通路,包括NF-kB、Toll样受体和C型凝集素信号通路等。同时我们还发现DCs中IL-6、IL-8、IL-12和IFN-γ等细胞因子的表达也显著性增加(P < 0.05)。综上,猪源枯草芽孢杆菌NS15可以活化猪呼吸道上皮细胞下DCs,但是其活化的具体机制需要进一步研究。

3.枯草芽胞杆菌通过调控猪呼吸道上皮细胞分泌趋化因子CCL20招募并活化树突状细胞的机制研究

为阐明枯草芽孢杆菌NS15活化猪呼吸道上皮下DCs的机制,对上皮细胞分泌的趋化因子进行了检测,结果显示枯草芽孢杆菌NS15能够显著增加上皮细胞趋化因子CCL20的表达和分泌(P < 0.05)。为了检测CCL20对DCs的趋化能力,使用共聚焦显微镜对DCs跨上皮树突的形成以及微丝骨架的变化进行观察,并使用Western blot对DCs微丝相关信号通路蛋白进行检测。结果表明趋化因子CCL20可以结合DCs上的趋化因子受体CCR6,激活微丝信号通路蛋白引起DCs的微丝骨架重排,从而有利于DCs跨越上皮细胞伸出树突来摄取抗原。

本研究首先指出了哺乳期仔猪存在鼻腔黏膜屏障功能不完善的问题,随后通过喷鼻具有定植能力的枯草芽孢杆菌以增强哺乳期猪鼻腔黏膜的免疫保护力,进一步探究了枯草芽孢杆菌NS15活化猪鼻腔黏膜DCs的机制,结果表明枯草芽孢杆菌NS15诱导呼吸道上皮细胞分泌趋化因子CCL20,导致DCs微丝骨架的重排,促进DCs跨上皮树突形成。综上,本研究揭示了枯草芽孢杆菌活化猪鼻腔黏膜中DCs的作用机制,为猪鼻腔黏膜免疫研究提供了重要的理论依据。

外文摘要:

The nasal cavity mucosa is the first line of defense against the invasion of pathogenic microorganisms in the respiratory system, and the nasal mucosal barrier plays an important role in resisting the invasion of pathogenic microorganisms. Therefore, enhancing the barrier function of nasal mucosa can effectively prevent or control the occurrence of respiratory diseases in pigs. Nasal mucosa is composed of three barriers from the outside to the inside: bacterial barrier, mucosal epithelial barrier (physical barrier) and immune barrier, which have great differences in different developmental stages of pigs. This study from the nasal cavity flora barriers, physical barriers and immune barrier three levels, reveals the different growth stages of ternary nasal mucosal barrier characteristics of pigs, shows the suckling piglet nasal barrier function is not perfect, there is the potential risk of pathogen infection. In order to effectively enhance nasal mucosal immunity at this stage, this study used a strain of Bacillus subtilis NS15 with nasal colonization ability for nasal spray protection. Bacillus subtilis NS15 significantly activated submucosal Dendritic cells (DCs), including enhancing DCs migration ability, antigen uptake, presentation ability and immune response. Finally, this study specifically elucidated the relevant mechanism of submucosal DCs activation by Bacillus subtilis NS15. The results showed that Bacillus subtilis NS15 could induce pig respiratory epithelial cells to secrete chemokine CCL20, which combined with CCR6 receptor on DCs to activate DCs by activating the microfilament skeleton signaling pathway to rearrange the microfilament skeleton of DCs, so as to attract DCs in the nasal mucosa to form trans-epithelial dendritic uptake of antigen. The specific content of this study is divided into the following three parts:

1. Characteristics of nasal mucosa of pigs at different ages

The nasal mucosal barrier consists of biological barrier, mechanical epithelial barrier and immune barrier. This study was conducted to study the structural characteristics of nasal mucosal barriers in pigs at different growth and development stages, including neonatal stage, suckling stage, weaning stage, growing stage and finishing stage. The results showed that with the growth and development of pigs, the epithelial cell layer in the vestibular area of nasal cavity was significantly thickened, and the glands and goblet cells in the lamina of respiratory and olfactory areas were significantly increased. The expression of tight junction and proliferation of epithelial cells were significantly age-dependent. The number of CD3+T cells, IgA+B cells and dendritic cells involved in the nasal immune barrier increased significantly during weaning, and the mRNA expression levels of most pattern recognition receptor genes also increased significantly during weaning (P < 0.05). Firmicutes, Proteobacteria and Bacteroidetes were the dominant bacterial phyla in nasal cavity of pigs. The abundance of Firmicutes decreased significantly with age, while the abundance of Proteobacteria and Bacteroidetes increased with age, and the abundance of pathogenic bacteria in nasal cavity increased significantly during lactation. Through functional analysis, we found that with the increase of age, bacterial community has a positive effect on the metabolism and repair of nasal mucosa in pigs. It is important to note that the nasal barrier of suckling piglets is not perfect and there is a potential risk of respiratory infection.

2. Activation of submucosal dendritic cells from porcine nasal cavity by Bacillus subtilis

To effectively enhance the nasal mucosal immunity of suckling piglets, a strain of Bacillus subtilis NS15 isolated from the nasal cavity of pigs was used as nasal immune enhancer. The results showed that Bacillus subtilis NS15 significantly increased the number of DCs in nasal mucosa (P < 0.05). To further investigate the effects of porcine Bacillus subtilis NS15 on DCs, we established a gas-liquid co-culture model of respiratory epithelial cells and DCs, and tested the immune function of DCs by flow cytometry and confocal microscopy. The results showed that Bacillus subtilis NS15 could activate DCs located in epithelial cells and enhance the ability of migration, antigen uptake and antigen presentation of DCs. Furthermore, transcriptome analysis of the changes of gene expression level of porcine Bacillus subtilis NS15 in nasal submucosal DCs showed that porcine Bacillus subtilis NS15 could enhance the immune function of nasal submucosal DCs and activate multiple immune-related signaling pathways, such as NF-KB, Toll-like receptor signaling pathway. The expression of IL-6, IL-8, IL-12 and IFN-γ in DCs increased significantly (P < 0.05). In conclusion, porcine Bacillus subtilis NS15 can activate DCs in epithelial cells, but the specific mechanism of activation remains unclear.

3. Study on the mechanism of Bacillus subtilis recruitment and activation of dendritic cells by regulating pig respiratory epithelial cell secretion of chemokine CCL20

In order to elucidate the mechanism of activation of DCs in pig respiratory epithelial cells by Bacillus subtilis NS15, chemokine secreted by epithelial cells was detected, and the results showed that Bacillus subtilis NS15 could significantly increase the expression and secretion of epithelial chemokine CCL20 (P < 0.05).   In order to verify the chemotactic ability of CCL20 on DCs, confocal microscopy was used to photograph the trans-epithelial dendrites and microfilaments formed by DCs. The results showed that chemokine CCL20 could bind to chemokine receptor CCR6 on DCs to cause the rearrangement of the microfilaments. Subsequently, Western blot analysis of DCs filaments signaling pathway proteins showed that CCL20 could induce activation of the filaments signaling pathway, leading to the rearrangement of DCs filaments, which was beneficial for DCs to extend dendrites across epithelial cells to absorb antigens.

This study first lactation piglets are pointed out of the imperfection of the nasal mucous membrane barrier function. Subsequently, Bacillus subtilis NS15 was sprayed to enhance the immune protection of nasal mucosa of pigs during this period. The mechanism of DCs activation in porcine nasal mucosa by Bacillus subtilis NS15 was further explored, the secretion of chemokine CCL20 by respiratory epithelial cells to recruit and promote the formation of DCs trans-epithelial dendrites was further explored. In conclusion, this study revealed the mechanism of DCs activation by Bacillus subtilis in porcine nasal mucosa, and provided an important theoretical basis for porcine nasal mucosal immunity research. 

参考文献:

[1] Cagici Can Alper, Karabay Gulten, Yilmazer Cuneyt, Gencay Sundus, Cakmak Ozcan. Electron microscopy findings in the nasal mucosa of a patient with stenosis of the nasal vestibule [J]. International journal of pediatric otorhinolaryngology, 2005, 69(3): 399-405.

[2] Mason Matthew J, Wenger Léa, Hammer Øyvind, Blix Arnoldus S. Structure and function of respiratory turbinates in phocid seals [J]. Polar Biology, 2020, 43(2): 157-73.

[3] Tan Jie, Han Demin, Wang Jie, Liu Ting, Wang Tong, Zang Hongrui, Li Yunchuan, Wang Xiangdong. Numerical simulation of normal nasal cavity airflow in Chinese adult: a computational flow dynamics model [J]. European archives of oto-rhino-laryngology, 2012, 269(3): 881-9.

[4] Even-Tzur Nurit, Kloog Yoel, Wolf Michael, Elad David. Mucus secretion and cytoskeletal modifications in cultured nasal epithelial cells exposed to wall shear stresses [J]. Biophysical Journal, 2008, 95(6): 2998-3008.

[5] Harkema Jack R, Carey Stephan A, Wagner James G. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium [J]. Toxicologic pathology, 2006, 34(3): 252-69.

[6] Brulé Marine, Glaz Margot, Belloir Christine, Poirier Nicolas, Moitrier Lucie, Neiers Fabrice, Briand Loïc. Bacterial expression and purification of vertebrate odorant-binding proteins [M]. Methods in Enzymology. Elsevier. 2020: 125-50.

[7] Meillour Nagnan-Le, Joly Alexandre, Le Danvic Chrystelle, Marie Arul, Zirah Séverine, Cornard Jean-Paul. Binding specificity of native odorant-binding protein isoforms is driven by phosphorylation and ON-Acetylglucosaminylation in the pig Sus scrofa [J]. Frontiers in endocrinology, 2019, 9: 816.

[8] Khan Mona, Yoo Seung-Jun, Clijsters Marnick, Backaert Wout, Vanstapel Arno, Speleman Kato, Lietaer Charlotte, Choi Sumin, Hether Tyler D, Marcelis Lukas. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb [J]. Cell, 2021, 184(24): 5932-49. e15.

[9] Ma Hongdi, Tao Wanyin, Zhu Shu. T lymphocytes in the intestinal mucosa: defense and tolerance [J]. Cellular & molecular immunology, 2019, 16(3): 216-24.

[10] Smith-Garvin Jennifer E, Koretzky Gary A, Jordan Martha S. T cell activation [J]. Annual review of immunology, 2009, 27: 591-619.

[11] Mitroi Mihaela, Albulescu Dana, Capitanescu Alina, Docea Anca Oana, Musat Gabriela, Mitroi George, Zlatian Ovidiu, Tsatsakis Aristidis, Tzanakakis George, Spandidos Demetrios A. Differences in the distribution of CD20, CD3, CD34 and CD45RO in nasal mucosa and polyps from patients with chronic rhinosinusitis [J]. Molecular Medicine Reports, 2019, 19(4): 2792-800.

[12] C Yuan, Y Jin, Y Li, E Zhang, P Zhang, Q Yang. PEDV infection in neonatal piglets through the nasal cavity is mediated by subepithelial CD3 + T cells [J]. Veterinary research, 2021, 52(1): 26.

[13] Abdellatif Ahmed M. Evaluating the distribution of T-lymphocytes and S-phase proliferating cells across the nasal mucosa of dromedary camel (Camelus dromedarius) [J]. Tissue and Cell, 2021, 72: 101580.

[14] Ruterbusch Mikel, Pruner Kurt B, Shehata Laila, Pepper Marion. In vivo CD4+ T cell differentiation and function: revisiting the Th1/Th2 paradigm [J]. Annual review of immunology, 2020, 38: 705-25.

[15] Kamali Ali N, Noorbakhsh Seyedeh Masoomeh, Hamedifar Haleh, Jadidi-Niaragh Farhad, Yazdani Reza, Bautista José M, Azizi Gholamreza. A role for Th1-like Th17 cells in the pathogenesis of inflammatory and autoimmune disorders [J]. Molecular immunology, 2019, 105: 107-15.

[16] Jain Aakanksha, Song Ran, Wakeland Edward K, Pasare Chandrashekhar. T cell-intrinsic IL-1R signaling licenses effector cytokine production by memory CD4 T cells [J]. Nature communications, 2018, 9(1): 1-13.

[17] Parra David, Takizawa Fumio, Sunyer J Oriol. Evolution of B cell immunity [J]. Annu Rev Anim Biosci, 2013, 1(1): 65-97.

[18] Sunyer J Oriol. Fishing for mammalian paradigms in the teleost immune system [J]. Nature immunology, 2013, 14(4): 320-6.

[19] Kano T, Suzuki H, Makita Y, et al. Nasal-associated lymphoid tissue is the major induction site for nephritogenic IgA in murine IgA nephropathy[J]. Kidney International, 2021, 100(2): 364-376.

[20] Gianchecchi Elena, Manenti Alessandro, Kistner Otfried, Trombetta Claudia, Manini Ilaria, Montomoli Emanuele. How to assess the effectiveness of nasal influenza vaccines? Role and measurement of sIgA in mucosal secretions [J]. Influenza and other respiratory viruses, 2019, 13(5): 429-37.

[21] Paixão V, Almeida E B, Amaral J B, et al. Elderly Subjects Supplemented with L-Glutamine Shows an Improvement of Mucosal Immunity in the Upper Airways in Response to Influenza Virus Vaccination[J]. Vaccines, 2021, 9(2): 107.

[22] Mabbott Neil A, Donaldson David S, Ohno Hiroshi, Williams Ifor R, Mahajan Arvind. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium [J]. Mucosal immunology, 2013, 6(4): 666-77.

[23] Yang Xiaotong, Chen Xianchun, Lei Ting, Qin Lin, Zhou Yang, Hu Chuan, Liu Qingfeng, Gao Huile. The construction of in vitro nasal cavity-mimic M-cell model, design of M cell-targeting nanoparticles and evaluation of mucosal vaccination by nasal administration [J]. Acta Pharmaceutica Sinica B, 2020, 10(6): 1094-105.

[24]Giannasca Paul J, Boden James A, Monath Thomas P. Targeted delivery of antigen to hamster nasal lymphoid tissue with M-cell-directed lectins [J]. Infection and Immunity, 1997, 65(10): 4288-98.

[25] Carapelli Alessandro, Regoli Marì, Nicoletti Claudio, Ermini Leonardo, Fonzi Luciano, Bertelli Eugenio. Rabbit tonsil-associated M-cells express cytokeratin 20 and take up particulate antigen [J]. Journal of Histochemistry & Cytochemistry, 2004, 52(10): 1323-31.

[26] Gebert A, Willführ B, Pabst R. The rabbit M-cell marker vimentin is present in epithelial cells of the tonsil crypt [J]. Acta oto-laryngologica, 1995, 115(5): 697-700.

[27] Chen Zhengqiong, Shen Zigang, Li Jintao, He Wei, Yang Ying, Liang Zhiqing. Nasal immunization using a mimovirus vaccine based on the Eppin B-cell epitope induced suppressed fertility in mice [J]. Human vaccines & immunotherapeutics, 2014, 10(8): 2227-34.

[28]Mutoh Mami, Kimura Shunsuke, Takahashi-Iwanaga Hiromi, Hisamoto Meri, Iwanaga Toshihiko, Iida Junichiro. RANKL regulates differentiation of microfold cells in mouse nasopharynx-associated lymphoid tissue (NALT) [J]. Cell and Tissue Research, 2016, 364(1): 175-84.

[29] Steinman R M. Dendritic cells and immune-based therapies[J]. Experimental hematology, 1996, 24(8): 859-862.

[30] Ginhoux Florent, Liu Kang, Helft Julie, Bogunovic Milena, Greter Melanie, Hashimoto Daigo, Price Jeremy, Yin Na, Bromberg Jonathan, Lira Sergio A. The origin and development of nonlymphoid tissue CD103+ DCs [J]. Journal of Experimental Medicine, 2009, 206(13): 3115-30.

[31] Lutz M B, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity?[J]. Trends in immunology, 2002, 23(9): 445-449.

[32]Li Y, Puebla-Clark L, Hernández J, et al. Development of pig conventional dendritic cells from bone marrow hematopoietic cells in vitro[J]. Frontiers in immunology, 2020: 2334.

[33]Yuan C, Zhang E, Huang L, et al. Oral administration of inactivated porcine epidemic diarrhea virus activate DCs in porcine Peyer’s patches[J]. BMC veterinary research, 2018, 14(1): 1-8.

[34] Banchereau Jacques, Steinman Ralph M. Dendritic cells and the control of immunity [J]. Nature, 1998, 392(6673): 245-52.

[35]Jongbloed Sarah L, Kassianos Andrew J, McDonald Kylie J, Clark Georgina J, Ju Xinsheng, Angel Catherine E, Chen Chun-Jen J, Dunbar P Rod, Wadley Robert B, Jeet Varinder. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens [J]. Journal of Experimental Medicine, 2010, 207(6): 1247-60.

[36]Lambrecht Bart N, Hammad Hamida. The role of dendritic and epithelial cells as master regulators of allergic airway inflammation [J]. The Lancet, 2010, 376(9743): 835-43.

[37] O Schulz, SI Hammerschmidt, GL Moschovakis, R Förster. Chemokines and Chemokine Receptors in Lymphoid Tissue Dynamics [J]. Annual review of immunology, 2016, 34: 203-42.

[38]Hernandez Jesus, Li Yanli, Mateu Enric. Swine Dendritic Cell Response to Porcine Reproductive and Respiratory Syndrome Virus: An Update [J]. Frontiers in Immunology, 2021, 12:712109.

[39]X Liu, X Xia, X Wang, J Zhou, LA Sung, J Long, X Geng, Z Zeng, W Yao. Tropomodulin1 Expression Increases Upon Maturation in Dendritic Cells and Promotes Their Maturation and Immune Functions [J]. Frontiers in immunology, 2020, 11: 587441.

[40]X Jiang, Y Qin, L Kun, Y Zhou. The Significant Role of the Microfilament System in Tumors [J]. Frontiers in oncology, 2021, 11: 620390.

[41]Y Meng, Y Zhang, V Tregoubov, DL Falls, Z Jia. Regulation of spine morphology and synaptic function by LIMK and the actin cytoskeleton [J]. Reviews in the neurosciences, 2003, 14(3): 233-40.

[42]Moreau Hélène D, Piel Matthieu, Voituriez Raphaël, Lennon-Duménil Ana-Maria. Integrating physical and molecular insights on immune cell migration [J]. Trends in immunology, 2018, 39(8): 632-43.

[43] S Kodama, N Abe, T Hirano, M Suzuki. A single nasal dose of CCL20 chemokine induces dendritic cell recruitment and enhances nontypable Haemophilus influenzae-specific immune responses in the nasal mucosa [J]. Acta oto-laryngologica, 2011, 131(9): 989-96.

[44] L Zhao, J Xia, X Wang, F Xu. Transcriptional regulation of CCL20 expression [J]. Microbes and infection, 2014, 16(10): 864-70.

[45] AYS Lee, H Körner. The CCR6-CCL20 axis in humoral immunity and T-B cell immunobiology [J]. Immunobiology, 2019, 224(3): 449-54.

[46] H Hammad, BN Lambrecht. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma [J]. Nature reviews Immunology, 2008, 8(3): 193-204.

[47] Mills Peter R, Davies Robert J, Devalia Jagdish L. Airway epithelial cells, cytokines, and pollutants [J]. American journal of respiratory and critical care medicine, 1999, 160(supplement_1): S38-S43.

[48]Pappu Rajita, Rutz Sascha, Ouyang Wenjun. Regulation of epithelial immunity by IL-17 family cytokines [J]. Trends in immunology, 2012, 33(7): 343-9.

[49]Hewitt R J, Lloyd C M. Regulation of immune responses by the airway epithelial cell landscape[J]. Nature Reviews Immunology, 2021, 21(6): 347-362.

[50]Dainichi T, Matsumoto R, Mostafa A, Kabashima K. Immune control by TRAF6-mediated pathways of epithelial cells in the EIME (epithelial immune microenvironment)[J]. Frontiers in immunology, 2019, 10: 1107.

[51]Le Borgne M, Etchart N, Goubier A, Lira SA, Sirard JC, van Rooijen N, Caux C, Aït-Yahia S, Vicari A, Kaiserlian D, Dubois B. Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo[J]. Immunity, 2006, 24(2): 191-201.

[52]Thomas S Y, Whitehead G S, Takaku M, Ward J M, Xu X, Nakano K, Lyonscohen M R, Nakano H, Gowdy K M, Wade P A, Cook D N. MyD88-dependent dendritic and epithelial cell crosstalk orchestrates immune responses to allergens[J]. Mucosal immunology, 2018, 11(3): 796-810.

[1] T Pedreira, C Elfmann, J Stülke. The current state of SubtiWiki, the database for the model organism Bacillus subtilis [J]. Nucleic acids research, 2022, 50(D1): D875-D82.

[2] CM Vogt, M Hilbe, M Ackermann, C Aguilar, C Eichwald. Mouse intestinal microbiota reduction favors local intestinal immunity triggered by antigens displayed in Bacillus subtilis biofilm [J]. Microbial cell factories, 2018, 17(1): 187.

[3] Y Su, C Liu, H Fang, D Zhang. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine [J]. Microbial cell factories, 2020, 19(1): 173.

[4] Y Ma, W Wang, H Zhang, J Wang, W Zhang, J Gao, S Wu, G Qi. Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens [J]. Scientific reports, 2018, 8(1): 15358.

[5] J Wang, Y Wang, E Zhang, M Zhou, J Lin, Q Yang. Intranasal administration with recombinant Bacillus subtilis induces strong mucosal immune responses against pseudorabies [J]. Microbial cell factories, 2019, 18(1): 103.

[6] S Zhang, C Mou, Y Cao, E Zhang, Q Yang. Immune response in piglets orally immunized with recombinant Bacillus subtilis expressing the capsid protein of porcine circovirus type 2 [J]. Cell communication and signaling : CCS, 2020, 18(1): 23.

[7] L Rhayat, M Maresca, C Nicoletti, J Perrier, KS Brinch, S Christian, E Devillard, E Eckhardt. Effect of Bacillus subtilis Strains on Intestinal Barrier Function and Inflammatory Response [J]. Frontiers in immunology, 2019, 10: 564.

[8] Yan FF, Wang WC, Cheng HW. Bacillus subtilis based probiotic improved bone mass and altered brain serotoninergic and dopaminergic systems in broiler chickens [J]. Journal of Functional Foods, 2018, 49: 501-9.

[9] P Zhang, L Huang, E Zhang, C Yuan, Q Yang. Oral administration of Bacillus subtilis promotes homing of CD3 + T cells and IgA-secreting cells to the respiratory tract in piglets [J]. Research in veterinary science, 2021, 136: 310-7.

[10] Zhou Dongyan, Chan Jasper Fuk-Woo, Zhou Runhong, Li Liu, Li Shuang, Zhang Anna Jinxia, Chen Serena J, Chan Chris Chung-Sing, Shan Sisi, Poon Vincent Kwok-Man. Robust SARS-CoV-2 Infection in Nasal Turbinate Despite Systemic Neutralizing Antibody [J]. 2020, 29 (4):551-563.e5.

[11] Sato Shintaro, Kiyono Hiroshi. The mucosal immune system of the respiratory tract [J]. Current opinion in virology, 2012, 2(3): 225-32.

[12] Y Yang, Y Jing, J Yang, Q Yang. Effects of intranasal administration with Bacillus subtilis on immune cells in the nasal mucosa and tonsils of piglets [J]. Experimental and therapeutic medicine, 2018, 15(6): 5189-98.

[13] Wang Jialu, Wang Yongheng, Zhang En, Zhou Mengyun, Lin Jian, Yang Qian. Intranasal administration with recombinant Bacillus subtilis induces strong mucosal immune responses against pseudorabies [J]. Microbial Cell Factories, 2019, 18(1): 1-11.

[14] Liang Jinfeng, Fu Jia, Kang Haihong, Lin Jian, Yu Qinghua, Yang Qian. Comparison of 3 kinds of Toll-like receptor ligands for inactivated avian H5N1 influenza virus intranasal immunization in chicken [J]. Poultry science, 2013, 92(10): 2651-60.

[15] MEM de Almeida, KCS Alves, MGS de Vasconcelos, TS Pinto, JC Glória, YO Chaves, WLL Neves, AM Tarragô, JN de Souza Neto, S Astolfi-Filho, GS Pontes, AA da Silva Balieiro, R Isticato, E Ricca, LAM Mariúba. Bacillus subtilis spores as delivery system for nasal Plasmodium falciparum circumsporozoite surface protein immunization in a murine model [J]. Scientific reports, 2022, 12(1): 1531.

[16] X Wang, T Tsai, X Wei, B Zuo, E Davis, T Rehberger, S Hernandez, EJM Jochems, CV Maxwell, J Zhao. Effect of Lactylate and Bacillus subtilis on Growth Performance, Peripheral Blood Cell Profile, and Gut Microbiota of Nursery Pigs [J]. Microorganisms, 2021, 9(4) :null.

[17] Y Du, Z Xu, G Yu, W Liu, Q Zhou, D Yang, J Li, L Chen, Y Zhang, C Xue, Y Cao. A Newly Isolated Bacillus subtilis Strain Named WS-1 Inhibited Diarrhea and Death Caused by Pathogenic Escherichia coli in Newborn Piglets [J]. Frontiers in microbiology, 2019, 10: 1248.

[18] Weese J Scott, Slifierz Mackenzie, Jalali Mohammad, Friendship Robert. Evaluation of the nasal microbiota in slaughter-age pigs and the impact on nasal methicillin-resistant Staphylococcus aureus (MRSA) carriage [J]. BMC veterinary research, 2014, 10(1): 1-10.

[19] Powers Matthew J, Sanabria-Valentín Edgardo, Bowers Albert A, Shank Elizabeth A. Inhibition of cell differentiation in Bacillus subtilis by Pseudomonas protegens [J]. Journal of bacteriology, 2015, 197(13): 2129-38.

[20] 秦瑶, 王苇, 郭秉娇, 王熙楚, 张文举, 周霞, 王晓兰. 2 株枯草芽孢杆菌对大肠杆菌和沙门氏菌的体外抑菌试验研究 [J]. 中国畜牧兽医, 2014, 41(1): 207-10.

Yao Qin, Wei Wang, Bingjiao Guo, et al.Study on Bacillus subtilus Strains Q4 and Q10 inhibiting the growth of E.coli and Salmonella in vitro[J]. Chinese Animal Husbandry and Veterinarian, 2014, 41(1): 207-10.(in Chinese with English abstract).

[21] He Yuyong, Mao Chunxia, Wen Hong, Chen Zhiyu, Lai Tao, Li Lingyu, Lu Wei, Wu Huadong. Influence of ad libitum feeding of piglets with Bacillus subtilis fermented liquid feed on gut flora, luminal contents and health [J]. Scientific reports, 2017, 7(1): 1-10.

[22] Zhou Ziyao, Liu Furui, Zhang Xinyue, Zhou Xiaoxiao, Zhong Zhijun, Su Huaiyi, Li Jin, Li Haozhou, Feng Fan, Lan Jingchao. Cellulose-dependent expression and antibacterial characteristics of surfactin from Bacillus subtilis HH2 isolated from the giant panda [J]. PLoS One, 2018, 13(1): e0191991.

[23] R Taggar, S Singh, V Bhalla, MS Bhattacharyya, DK Sahoo. Deciphering the Antibacterial Role of Peptide From Bacillus subtilis subsp. spizizenii Ba49 Against Staphylococcus aureus [J]. Frontiers in microbiology, 2021, 12: 708712.

[24] S Regmi, YS Choi, YH Choi, YK Kim, SS Cho, JC Yoo, JW Suh. Antimicrobial peptide from Bacillus subtilis CSB138: characterization, killing kinetics, and synergistic potency [J]. International microbiology : the official journal of the Spanish Society for Microbiology, 2017, 20(1): 43-53.

[25] R Deshmukh, AG Chalasani, D Chattopadhyay, U Roy. Ultrastructural changes in methicillin-resistant Staphylococcus aureus (MRSA) induced by a novel cyclic peptide ASP-1 from Bacillus subtilis: A scanning electron microscopy (SEM) study [J]. Revista Argentina de microbiologia, 2021, 53(4): 281-6.

[26] Wang Xiaoqing, Hu Weiwei, Zhu Liqi, Yang Qian. Bacillus subtilis and surfactin inhibit the transmissible gastroenteritis virus from entering the intestinal epithelial cells [J]. Bioscience Reports, 2017, 37(2) :null.

[27] Yuan Lvfeng, Zhang Shuai, Wang Yongheng, Li Yuchen, Wang Xiaoqing, Yang Qian. Surfactin inhibits membrane fusion during invasion of epithelial cells by enveloped viruses [J]. Journal of virology, 2018, 92(21): e00809-18.

[28] Starosila Darya, Rybalko Svetlana, Varbanetz Ludmila, Ivanskaya Naila, Sorokulova Iryna. Anti-influenza activity of a Bacillus subtilis probiotic strain [J]. Antimicrobial agents and chemotherapy, 2017, 61(7): e00539-17.

[29] XQ Huang, ZX Lu, BA Cui, XM Bie, FX Lü. [Inhibitory effect of new antimicrobial substance by Bacillus subtilis fmbJ on Newcastle disease virus and infectious Bursal disease virus in vitro] [J]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology, 2006, 22(2): 328-33.

[1] K VanderWaal, J Deen. Global trends in infectious diseases of swine [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(45): 11495-500.

[2] PJ Sánchez-Cordón, M Montoya, AL Reis, LK Dixon. African swine fever: A re-emerging viral disease threatening the global pig industry [J]. Veterinary journal (London, England : 1997), 2018, 233: 41-8.

[3] SM Nur Husna, HT Tan, N Md Shukri, NS Mohd Ashari, KK Wong. Nasal Epithelial Barrier Integrity and Tight Junctions Disruption in Allergic Rhinitis: Overview and Pathogenic Insights [J]. Frontiers in immunology, 2021, 12: 663626.

[4] Sepahi Ali, Salinas Irene. The evolution of nasal immune systems in vertebrates [J]. Molecular immunology, 2016, 69: 131-8.

[5] J Yang, L Dai, Q Yu, Q Yang. Histological and anatomical structure of the nasal cavity of Bama minipigs [J]. PloS one, 2017, 12(3): e0173902.

[6] Shimizu Takeshi, Shimizu Shino, Hattori Reiko, Majima Yuichi. A mechanism of antigen-induced goblet cell degranulation in the nasal epithelium of sensitized rats [J]. Journal of allergy and clinical immunology, 2003, 112(1): 119-25.

[7] Sharma Deepika, Malik Ankit, Guy Clifford S, Karki Rajendra, Vogel Peter, Kanneganti Thirumala-Devi. Pyrin inflammasome regulates tight junction integrity to restrict colitis and tumorigenesis [J]. Gastroenterology, 2018, 154(4): 948-64. e8.

[8] Blikslager Anthony T. Mucosal epithelial barrier repair to maintain pig health [J]. Livestock Science, 2010, 133(1-3): 194-9.

[9] Lefrançois Leo, Parker Christina M, Olson Sara, Muller Werner, Wagner Norbert, Puddington Lynn. The role of β7 integrins in CD8 T cell trafficking during an antiviral immune response [J]. The Journal of experimental medicine, 1999, 189(10): 1631-8.

[10] Li Yue, Jin Liang, Chen Tongxin. The effects of secretory IgA in the mucosal immune system [J]. BioMed Research International, 2020, 2020:2032057.

[11] Garg Ravendra, Shrivastava Pratima, van Drunen Littel-van den Hurk Sylvia. The role of dendritic cells in innate and adaptive immunity to respiratory syncytial virus, and implications for vaccine development [J]. Expert review of vaccines, 2012, 11(12): 1441-57.

[12] Li Danyang, Wu Minghua. Pattern recognition receptors in health and diseases [J]. Signal transduction and targeted therapy, 2021, 6(1): 1-24.

[13] YN Huang, QW Ao, QY Jiang, YF Guo, GQ Lan, HS Jiang. Comparisons of different myosin heavy chain types, AMPK, and PGC-1α gene expression in the longissimus dorsi muscles in Bama Xiang and Landrace pigs [J]. Genetics and molecular research : GMR, 2016, 15(2).

[14] Aubry-Damon Hélène, Grenet Karine, Sall-Ndiaye Penda, Che Didier, Cordeiro Eugenio, Bougnoux Marie-Elisabeth, Rigaud Emma, Le Strat Yann, Lemanissier Véronique, Armand-Lefèvre Laurence. Antimicrobial resistance in commensal flora of pig farmers [J]. Emerging infectious diseases, 2004, 10(5): 873.

[15] MJ Slifierz, RM Friendship, JS Weese. Longitudinal study of the early-life fecal and nasal microbiotas of the domestic pig [J]. BMC microbiology, 2015, 15(1): 184.

[16] Wexler Aaron G, Goodman Andrew L. An insider's perspective: Bacteroides as a window into the microbiome [J]. Nature microbiology, 2017, 2(5): 1-11.

[17] Shin Na-Ri, Whon Tae Woong, Bae Jin-Woo. Proteobacteria: microbial signature of dysbiosis in gut microbiota [J]. Trends in biotechnology, 2015, 33(9): 496-503.

[18] K Oliphant, E Allen-Vercoe. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health [J]. Microbiome, 2019, 7(1): 91.

[19] Xun Wenjuan, Shi Liguang, Zhou Hanlin, Hou Guanyu, Cao Ting. Effect of weaning age on intestinal mucosal morphology, permeability, gene expression of tight junction proteins, cytokines and secretory IgA in Wuzhishan mini piglets [J]. Italian Journal of Animal Science, 2018, 17(4): 976-83.

[20] J Wang, L Zeng, B Tan, G Li, B Huang, X Xiong, F Li, X Kong, G Liu, Y Yin. Developmental changes in intercellular junctions and Kv channels in the intestine of piglets during the suckling and post-weaning periods [J]. Journal of animal science and biotechnology, 2016, 7: 4.

[21] Ortega-Martínez Marta, Rodríguez-Flores Laura E, Ancer-Arellano Adriana, Cerda-Flores Ricardo M, de-la-Garza-González Carlos, Ancer-Rodríguez Jesús, Jaramillo-Rangel Gilberto. Analysis of cell turnover in the bronchiolar epithelium through the normal aging process [J]. Lung, 2016, 194(4): 581-7.

[22] N Arpaia, J Godec, L Lau, KE Sivick, LM McLaughlin, MB Jones, T Dracheva, SN Peterson, DM Monack, GM Barton. TLR signaling is required for Salmonella typhimurium virulence [J]. Cell, 2011, 144(5): 675-88.

[23] Shao Lulu, Fischer David D, Kandasamy Sukumar, Saif Linda J, Vlasova Anastasia N. Tissue-specific mRNA expression profiles of porcine Toll-like receptors at different ages in germ-free and conventional pigs [J]. Veterinary immunology and immunopathology, 2016, 171: 7-16.

[24] J Pott, S Stockinger, N Torow, A Smoczek, C Lindner, G McInerney, F Bäckhed, U Baumann, O Pabst, A Bleich, MW Hornef. Age-dependent TLR3 expression of the intestinal epithelium contributes to rotavirus susceptibility [J]. PLoS pathogens, 2012, 8(5): e1002670.

[25] S Hardy, B Jackson, S Goodbourn, J Seago. Classical swine fever virus N pro antagonises IRF3 to prevent IFN-independent TLR3 and RIG-I-mediated apoptosis [J]. Journal of virology, 2021, 95(5): e01136-20.

[1] YJ Jeon, CH Gil, J Won, A Jo, HJ Kim. Symbiotic microbiome Staphylococcus aureus from human nasal mucus modulates IL-33-mediated type 2 immune responses in allergic nasal mucosa [J]. BMC microbiology, 2020, 20(1): 301.

[2] Y Yang, Y Jing, J Yang, Q Yang. Effects of intranasal administration with Bacillus subtilis on immune cells in the nasal mucosa and tonsils of piglets [J]. Experimental and therapeutic medicine, 2018, 15(6): 5189-98.

[3] Q Gao, S Zhao, T Qin, Y Yin, Q Yang. Corrigendum to "Effects of porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells" [Vet. Microbiol. 179 (3-4) (2015) 131-141] [J]. Veterinary microbiology, 2020, 246: 108701.

[4] K Osth, L Strindelius, A Larhed, A Ahlander, GM Roomans, I Sjöholm, E Björk. Uptake of ovalbumin-conjugated starch microparticles by pig respiratory nasal mucosa in vitro [J]. Journal of drug targeting, 2003, 11(1): 75-82.

[5] T Qin, Y Yin, Q Yu, L Huang, X Wang, J Lin, Q Yang. CpG Oligodeoxynucleotides Facilitate Delivery of Whole Inactivated H9N2 Influenza Virus via Transepithelial Dendrites of Dendritic Cells in Nasal Mucosa [J]. Journal of virology, 2015, 89(11): 5904-18.

[6] Kulkarni Devesha H, Newberry Rodney D. Intestinal macromolecular transport supporting adaptive immunity [J]. Cellular and molecular gastroenterology and hepatology, 2019, 7(4): 729-37.

[7] M Guo, F Wu, G Hao, Q Qi, R Li, N Li, L Wei, T Chai. Bacillus subtilis Improves Immunity and Disease Resistance in Rabbits [J]. Frontiers in immunology, 2017, 8: 354.

[8] L Rhayat, M Maresca, C Nicoletti, J Perrier, KS Brinch, S Christian, E Devillard, E Eckhardt. Effect of Bacillus subtilis Strains on Intestinal Barrier Function and Inflammatory Response [J]. Frontiers in immunology, 2019, 10: 564.

[9] F Taherali, F Varum, AW Basit. A slippery slope: On the origin, role and physiology of mucus [J]. Advanced drug delivery reviews, 2018, 124: 16-33.

[10] Germic Nina, Frangez Ziva, Yousefi Shida, Simon Hans-Uwe. Regulation of the innate immune system by autophagy: monocytes, macrophages, dendritic cells and antigen presentation [J]. Cell Death & Differentiation, 2019, 26(4): 715-27.

[11] Vatner Ralph E, Janssen Edith M. STING, DCs and the link between innate and adaptive tumor immunity [J]. Molecular immunology, 2019, 110: 13-23.

[12] H Lee, D Ruane, K Law, Y Ho, A Garg, A Rahman, D Esterházy, C Cheong, E Goljo, AG Sikora, D Mucida, BK Chen, S Govindraj, G Breton, S Mehandru. Phenotype and function of nasal dendritic cells [J]. Mucosal immunology, 2015, 8(5): 1083-98.

[13] Tae Y M, Park H T, Moon H G, et al. Airway activation of formyl peptide receptors inhibits Th1 and Th17 cell responses via inhibition of mediator release from immune and inflammatory cells and maturation of dendritic cells[J]. The Journal of Immunology, 2012, 188(4): 1799-1808.

[14] AL Man, ME Prieto-Garcia, C Nicoletti. Improving M cell mediated transport across mucosal barriers: do certain bacteria hold the keys? [J]. Immunology, 2004, 113(1): 15-22.

[15] M Bailey. The mucosal immune system: recent developments and future directions in the pig [J]. Developmental and comparative immunology, 2009, 33(3): 375-83.

[16] C Caux, B Dubois. Antigen uptake by dendritic cells [J]. Methods in molecular medicine, 2001, 64: 369-76.

[17] Roeske K, Stachowiak R, Jagielski T, Kaminski M, Bielecki J. Delivery of Chicken Egg Ovalbumin to Dendritic Cells by Listeriolysin O-Secreting Vegetative Bacillus subtilis[J]. Journal of Microbiology and Biotechnology, 2018, 28(1): 122-135.

[18] Shortman Ken, Heath William R. The CD8+ dendritic cell subset [J]. Immunological reviews, 2010, 234(1): 18-31.

[19] Bonavita R, Isticato R, Maurano F, Ricca E, Rossi Me. Mucosal immunity induced by gliadin-presenting spores of Bacillus subtilis in HLA-DQ8-transgenic mice[J]. Immunology Letters, 2015, 165(2): 84-89.

[20] Garris Christopher S, Arlauckas Sean P, Kohler Rainer H, Trefny Marcel P, Garren Seth, Piot Cécile, Engblom Camilla, Pfirschke Christina, Siwicki Marie, Gungabeesoon Jeremy. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12 [J]. Immunity, 2018, 49(6): 1148-61. e7.

[21] T Wang, C He. TNF-α and IL-6: The Link between Immune and Bone System [J]. Current drug targets, 2020, 21(3): 213-27.

[22] Miyashita Yusuke, Kouwaki Takahisa, Tsukamoto Hirotake, Okamoto Masaaki, Nakamura Kimitoshi, Oshiumi Hiroyuki. TICAM-1/TRIF associates with Act1 and suppresses IL-17 receptor–mediated inflammatory responses [J]. Life science alliance, 2022, 5(2):e202101181.

[23] I Zanoni, F Granucci. Regulation of antigen uptake, migration, and lifespan of dendritic cell by Toll-like receptors [J]. Journal of molecular medicine (Berlin, Germany), 2010, 88(9): 873-80.

[24] Brown Gordon D, Willment Janet A, Whitehead Lauren. C-type lectins in immunity and homeostasis [J]. Nature Reviews Immunology, 2018, 18(6): 374-89.

[25] Van Vliet Sandra J, den Dunnen Jeroen, Gringhuis Sonja I, Geijtenbeek Teunis BH, van Kooyk Yvette. Innate signaling and regulation of dendritic cell immunity [J]. Current opinion in immunology, 2007, 19(4): 435-40.

[26] Bruene Bernhard, Courtial Nadine, Dehne Nathalie, Syed Shahzad N, Weigert Andreas. Macrophage NOS2 in tumor leukocytes [J]. Antioxidants & Redox Signaling, 2017, 26(18): 1023-43.

[27] Zhou Hao, Tang Yan-Dong, Zheng Chunfu. Revisiting IRF1-mediated antiviral innate immunity [J]. Cytokine & Growth Factor Reviews, 2022, 64:1-6.

[28] Nograles KE, Zaba LC, Guttman‐Yassky E, Fuentes‐Duculan J, Suárez‐Fariñas M, Cardinale I, Khatcherian A, Gonzalez J, Pierson KC, White TR. Th17 cytokines interleukin (IL)‐17 and IL‐22 modulate distinct inflammatory and keratinocyte‐response pathways [J]. British Journal of Dermatology, 2008, 159(5): 1092-102.

[1] T Qin, Y Yin, Q Yu, L Huang, X Wang, J Lin, Q Yang. CpG Oligodeoxynucleotides Facilitate Delivery of Whole Inactivated H9N2 Influenza Virus via Transepithelial Dendrites of Dendritic Cells in Nasal Mucosa [J]. Journal of virology, 2015, 89(11): 5904-18.

[2] Mills Peter R, Davies Robert J, Devalia Jagdish L. Airway epithelial cells, cytokines, and pollutants [J]. American journal of respiratory and critical care medicine, 1999, 160(supplement_1): S38-S43.

[3] Pappu Rajita, Rutz Sascha, Ouyang Wenjun. Regulation of epithelial immunity by IL-17 family cytokines [J]. Trends in immunology, 2012, 33(7): 343-9.

[4] Złotkowska A, Andronowska A. Chemokines as the modulators of endometrial epithelial cells remodelling [J]. Scientific reports, 2019, 9(1): 1-9.

[5] H Hammad, BN Lambrecht. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma [J]. Nature reviews Immunology, 2008, 8(3): 193-204.

[6] DP Hoytema van Konijnenburg, BS Reis, VA Pedicord, J Farache, GD Victora, D Mucida. Intestinal Epithelial and Intraepithelial T Cell Crosstalk Mediates a Dynamic Response to Infection [J]. Cell, 2017, 171(4): 783-94.e13.

[7] Papotto Pedro H, Yilmaz Bahtiyar, Silva-Santos Bruno. Crosstalk between γδ T cells and the microbiota [J]. Nature microbiology, 2021, 6(9): 1110-7.

[8] Zhang Shuai, Mou Chunxiao, Cao Yanan, Zhang En, Yang Qian. Immune response in piglets orally immunized with recombinant Bacillus subtilis expressing the capsid protein of porcine circovirus type 2 [J]. Cell Communication and Signaling, 2020, 18(1): 1-14.

[9] C Mou, L Zhu, J Yang, W Xu, X Cheng, Q Yang. Immune Responses Induced by Recombinant Bacillus Subtilis Expressing the Hemagglutinin Protein of H5N1 in chickens [J]. Scientific reports, 2016, 6: 38403.

[10] H Liu, W Xu, Q Yu, Q Yang. 4,4'-Diaponeurosporene-Producing Bacillus subtilis Increased Mouse Resistance against Salmonella typhimurium Infection in a CD36-Dependent Manner [J]. Frontiers in immunology, 2017, 8: 483.

[11] HT Meitei, N Jadhav, G Lal. CCR6-CCL20 axis as a therapeutic target for autoimmune diseases [J]. Autoimmunity reviews, 2021, 20(7): 102846.

[12] F Sierro, B Dubois, A Coste, D Kaiserlian, JP Kraehenbuhl, JC Sirard. Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(24): 13722-7.

[13] S Kodama, N Abe, T Hirano, M Suzuki. A single nasal dose of CCL20 chemokine induces dendritic cell recruitment and enhances nontypable Haemophilus influenzae-specific immune responses in the nasal mucosa [J]. Acta oto-laryngologica, 2011, 131(9): 989-96.

[14] Deng Lei, Pan Xiaoli, Zhang Yulong, Sun Sujing, Lv Liping, Gao Lei, Ma Ping, Ai Huisheng, Zhou Qianqian, Wang Xiaohui. Immunostimulatory potential of MoS2 nanosheets: enhancing dendritic cell maturation, migration and T cell elicitation [J]. International Journal of Nanomedicine, 2020, 15: 2971.

[15] M Baba, T Imai, M Nishimura, M Kakizaki, S Takagi, K Hieshima, H Nomiyama, O Yoshie. Identification of CCR6, the specific receptor for a novel lymphocyte-directed CC chemokine LARC [J]. The Journal of biological chemistry, 1997, 272(23): 14893-8.

[16] Akhtar Mehran, Jamal Tazkira, Jamal Hina, Din Jalal Ud, Jamal Muhsin, Arif Muhammad, Arshad Maria, Jalil Fazal. Identification of most damaging nsSNPs in human CCR6 gene: In silico analyses [J]. International journal of immunogenetics, 2019, 46(6): 459-71.

[17] Sun Desheng, Ouyang Yao, Liu Xiansheng. Cigarette smoke-induced chronic obstructive pulmonary disease is attenuated by CCL20-blocker: a rat model [J]. Croatian Medical Journal, 2016, 57(4): 363-70.

[18] Ranasinghe Ranmali, Eri Rajaraman. CCR6–CCL20-Mediated immunologic pathways in inflammatory bowel disease [J]. Gastrointestinal Disorders, 2018, 1(1): 15-29.

[19] AYS Lee, H Körner. The CCR6-CCL20 axis in humoral immunity and T-B cell immunobiology [J]. Immunobiology, 2019, 224(3): 449-54.

[20] Kadomoto Suguru, Izumi Kouji, Hiratsuka Kaoru, Nakano Taito, Naito Renato, Makino Tomoyuki, Iwamoto Hiroaki, Yaegashi Hiroshi, Shigehara Kazuyoshi, Kadono Yoshifumi. Tumor-associated macrophages induce migration of renal cell carcinoma cells via activation of the CCL20-CCR6 axis [J]. Cancers, 2019, 12(1): 89.

[21] JR Bamburg, LS Minamide, O Wiggan, LH Tahtamouni, TB Kuhn. Cofilin and Actin Dynamics: Multiple Modes of Regulation and Their Impacts in Neuronal Development and Degeneration [J]. Cells, 2021, 10(10) : 2726.

[22] Y Meng, Y Zhang, V Tregoubov, DL Falls, Z Jia. Regulation of spine morphology and synaptic function by LIMK and the actin cytoskeleton [J]. Reviews in the neurosciences, 2003, 14(3): 233-40.

中图分类号:

 S85    

开放日期:

 2022-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式