- 无标题文档
查看论文信息

题名:

 连作甘薯根际微生态特征及甘薯内生贝莱斯芽孢杆菌S14的生防机制研究    

作者:

 张龙    

学号:

 2018216023    

保密级别:

 保密两年    

语种:

 chi    

学科代码:

 071005    

学科:

 理学 - 生物学 - 微生物学    

学生类型:

 博士    

学位:

 理学博士    

学校:

 南京农业大学    

院系:

 生命科学学院    

专业:

 微生物学    

研究方向:

 环境微生物学    

导师姓名:

 盛下放    

导师单位:

  南京农业大学    

第二导师姓名:

 陈亚华    

完成日期:

 2024-08-19    

答辩日期:

 2024-11-09    

外文题名:

 Rhizosphere Microecological Characterization of Continuous Sweetpotato Cropping and Biocontrol Mechanisim of Endophytic Bacillus velezensis S14 in Sweetpotato    

关键词:

 连作障碍 ; 根际微生物群落 ; 镰刀菌 ; 致病菌 ; 贝莱斯芽孢杆菌 ; 脂肽    

外文关键词:

 Continuous cropping obstacle ; Rhizosphere microbial community ; Fusarium ; Pathogenic microorganisms ; Bacillus velezensis ; Lipopeptides    

摘要:

连作障碍导致作物产量和品质下降,制约作物集约化生产。我国是甘薯生产大国,有限的耕地限制了甘薯换地耕作,长期连作导致的甘薯产量下降、病害高发等连作障碍现象日益严重,但目前针对甘薯连作障碍的研究仍处于起步阶段。厘清甘薯连作障碍因子,并针对性地研发甘薯连作障碍的消减技术,有助于推动甘薯产业高质量发展。本研究以典型甘薯连作障碍农田为研究对象,从微生态角度解析甘薯连作的障碍因子,进而以导致连作障碍的致病菌为研究材料筛选出高效生防菌,并结合全基因组和多种生化分析明确生防菌的作用机制与抑菌物质,最后通过田间试验分析其应用潜力。主要研究结果如下:
1. 以典型甘薯连作障碍农田和非连作农田为研究对象,通过比较不同处理下根际微生物组、代谢组和土壤性质等的差异,联合分析连作甘薯根际微生态特征。发现连作甘薯根际微生物多样性下降,周刺座霉(Volutella)和Neoidriella等致病性真菌显著富集,芽孢杆菌(Bacillus)等有益菌丰度显著降低。真菌网络受连作影响程度较高,网络复杂度下降,关键微生物为周刺座霉属。微生物降解芳香族化合物功能下降,苯甲酸、生物素等潜在自毒物质在甘薯根际积累。连作后甘薯块根产量、土壤pH和速效钾(AK)含量显著降低,土壤微生物群落与pH、速效钾和铵态氮(NH4+-N)的相关性最高。其中,土壤pH和速效钾与芽孢杆菌均呈正相关,与部分植物病原真菌(周刺座霉和Neoidriella)呈负相关,而铵态氮与它们呈相反趋势。通过偏最小二乘路径模型(PLS-PM)发现,连作年限主要通过土壤真菌群落间接影响块根产量。以出现典型连作障碍的甘薯农田中发病甘薯植株及其根际土壤为研究材料,从中分离潜在致病真菌,结合致病性分析明确尖孢镰刀菌(Fusarium oxysporum)和腐皮镰孢菌(F. solani)是导致甘薯连作障碍的主要致病菌,为后续甘薯连作障碍的生物防治提供材料。
2. 以甘薯连作障碍主要致病菌为靶标病原菌,从抗根腐病的“济薯26”不同组织分离的内生菌中筛选生防菌,测试其抑菌谱,并基于基因组学探究其防病促生相关功能基因(簇)。发现贝莱斯芽孢杆菌(B. velezensis)S14对尖孢镰刀菌和腐皮镰孢菌的抑制率分别为76.9%和70.3%,而且对甘薯黑斑病、基腐病和炭腐病等常见病害致病菌的抑制率均在80.0%以上,对小麦纹枯病和赤霉病致病菌的抑制率分别为93.7%和81.0%,表明生防菌S14具有广谱抑菌效果。基于基因组学预测到生防菌S14具有Surfactin、Macrolactin H、Bacillaene、Fengycin、Difficidin、Bacillibactin和Bacilysin等脂肽和聚酮类抑菌物质的生物合成基因簇,还存在efp、cheC-D、flgB-G、fliA-T、epsA-O、kinA-E、srfAA-AD等与细菌定殖相关的基因,dhbF、phzF、treP、treRtrpA-E、aroB-C、aroH等与IAA和其他促进植物生长的物质合成相关的基因,以及与养分循环相关(pstA-C、narG-J)和诱导系统抗性的基因(alsD)。
3. 以生防菌S14为研究材料,分析其对病原菌菌丝形态和细胞活性的影响以明确其抑菌机制,结合质谱检测主要抑菌物质。发现生防菌S14产生的挥发性有机化合物(VOCs)和脂肽作用于病原菌菌丝细胞膜,使细胞膜完整性丧失,引起菌丝形态畸变,诱导菌丝细胞内产生大量活性氧,引起氧化应激,最终导致菌丝细胞死亡。结合顶空固相微萃取法和气相色谱仪-质谱仪(HS-SPME/GC-MS)分析出VOCs中存在具有抑菌活性的N-亚硝基甲乙胺和3-叔丁基-2,2,4,4-四甲基戊-3-醇。经液相色谱-串联质谱联用仪(LC-MS/MS)鉴定发现生防菌S14的抑菌脂肽中主要包括常见的丰原素(Fengycin)、伊枯草素(Iturin)和表面活性素(Surfactin)等环状脂肽,同时鉴定出线性Fengycin,其中m/z为1453的线性C14 Fengycin A此前未见报道。此外,无病原菌处理下,生防菌S14处理的甘薯生物量增加45.7%;镰刀菌处理下,生防菌S14的应用能够使甘薯生物量增加65.4%。生防菌还能够提高甘薯苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)和过氧化物酶(POD)等防御酶活性,诱导甘薯产生抗病性。此外,以生防菌S14为试验材料,通过田间试验验证其应用潜力。发现生防菌能够促进甘薯生长,使单株块根产量提高41.9%,降低病害发生率。生防菌S14处理的甘薯根际富集芽孢杆菌等有益菌,降低周刺座霉和镰刀菌的丰度,致使真菌网络中周刺座霉不再成为关键微生物。
综上所述,本研究通过对典型甘薯连作障碍农田采样,分析周刺座霉属和尖孢镰刀菌是导致甘薯连作障碍的主要因子。从抗性品种中筛选的贝莱斯芽孢杆菌S14具有广谱抑菌活性,该菌株能够通过产生抑菌脂肽和VOCs导致病原真菌菌丝细胞死亡、抑制菌丝生长,通过溶解养分和产生生长素促进植物生长,通过诱导甘薯防御酶活性增强抗病能力。生防菌S14的田间应用能够有效提高甘薯块根产量,富集有益微生物、抑制周刺座霉和镰刀菌等致病菌,降低甘薯病害发生率,进而缓解甘薯连作障碍。研究结果为贝莱斯芽孢杆菌S14消减甘薯连作障碍提供了理论和实践依据。

外摘要要:

Continuous cropping obstacles lead to a decline in crop yield and quality, restricting intensive crop production. China is a large sweetpotato producer, limited arable land restrictions on sweetpotato farming, long-term continuous cropping led to a decline in sweetpotato yield, high incidence of diseases and other continuous cropping obstacles phenomenon is becoming more and more obvious, but at present for sweetpotato continuous cropping obstacles is still insufficient research. To clarify the factors of sweetpotato continuous cropping factors, and to target the development of sweetpotato continuous cropping obstacles mitigation technology can help to promote the high-quality development of the sweetpotato industry. In this study, we took a typical sweetpotato continuous cropping obstacle farmland as the research object, analyzed the obstacle factors of continuous sweetpotato crop from the perspective of microecology, and then took the pathogenic microbe leading to continuous cropping obstacle as the research material, screened the biocontrol bacteria, and analyzed the mechanism of the action of the biocontrol bacteria and its inhibitory substances with the combination of the whole genome and a variety of equipments, and analyzed the potential of its application through the field trial of the biocontrol bacteria. The main research results are as follows:

1. Taking typical sweetpotato continuous cropping obstacle farmland and non-continuous cropping farmland as research objects, the microecological characteristics of continuous cropping sweetpotato rhizosphere were analyzed by comparing the differences in rhizosphere microbiomes, metabolomes and soil properties under different treatments. It was found that the rhizosphere microbial diversity declined after continuously sweetpotato cropped, with significant enrichment of pathogenic fungi such as Volutella and Neoidriella, and significant reduction in the abundance of beneficial bacteria such as Bacillus. The fungal network was affected by the higher degree of continuous cropping, and the network complexity was reduced, and the key microorganisms was Volutella. The function of microorganisms in degrading aromatic compounds decreased, and potential autotoxic substances such as benzoic acid and biotin accumulated in the rhizosphere of sweetpotato. Sweetpotato tuber yield, soil pH and available potassium (AK) content significantly decreased after continuously cropped, and soil microbial communities showed the highest correlation with pH, quick-acting potassium and ammonium nitrogen (NH4+-N). Among them, soil pH and AK were positively correlated with Bacillus and negatively correlated with some phytopathogenic fungi (Volutella and Neoidriella), while NH4+-N showed the opposite trend. Partial least squares path modeling (PLS-PM) revealed that the number of years of continuous cropping affected tuber yield indirectly mainly through the soil fungal community. Taking the morbid sweetpotato plants and their rhizosphere soils in typical sweetpotato continuous cropping obstacle farmland as research materials, we isolated potentially pathogenic fungi from them, and combined with the pathogenicity analysis, we clarified that Fusarium oxysporum and F. solani are the main pathogens leading to the continuous cropping obstacle of sweetpotato, so as to provide the materials for the subsequent biocontrol of the continuous cropping of sweetpotato.

2. Taking the main pathogens of sweetpotato continuous cropping obstacle as target pathogens, Bacillus velezensis S14 was screened from endophytes isolated from different tissues of root-rot-resistant sweetpotato, tested for its inhibitory spectrum, and investigated its disease-preventing and promoting related functional genes (clusters) based on genomics. It was found that B. velezensis S14 inhibited F. oxysporum and F. solani by 76.9% and 70.34%, respectively, and inhibited the pathogenic fungi of common diseases such as black rot, foot rot and charcoal rot of sweetpotato by more than 80.0%, and the inhibition of the pathogenic fungi of wheat blight and scab by 93.7% and 81.0%, respectively. This indicates that strain S14 has a broad-spectrum inhibitory effect. It was predicted that the biosynthetic gene clusters of Surfactin, Macrolactin H, Bacillaene, Fengycin, Difficidin, Bacillibactin and Bacilysin, and some genes associated with bacterial colonization, such as efp, cheC-D, flgB-G, fliA-T, epsA-O, kinA-E and srfAA-AD. Besides, there also have some genes associated with synthesis of IAA and other substance that promotes plant growth (dhbF, phzF, treP, treR, trpA-E, aroB-C, aroH), as well as genes associated with nutrient cycling (pstA-C, narG-J) and induction of systemic resistance (alsD).

3. Using biocontrol bacteria S14 as the research material, the mechanism of bacterial inhibition was clarified through the morphology and cellular activity of the pathogenic bacterial hyphae, and the main bacterial inhibitory substances were detected by mass spectrometry. It was found that the volatile organic compounds (VOCs) and lipopeptides produced by S14 act on the cell membrane of the pathogenic fungal mycelium, causing the loss of cell membrane integrity, resulting in the aberration of mycelium morphology, inducing the production of a large amount of reactive oxygen species in the mycelium cells, causing oxidative stress, and ultimately leading to the death of the mycelium cells. Ethanamine,N-methyl-N-nitroso and 3-Pentanol,3-(1,1-dimethylethyl)-2,2,4,4-tetramethyl with antifungal activity were analyzed in VOCs by combining headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME/GC-MS). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that the inhibitory lipopeptides of strain S14 mainly included common cyclic lipopeptides such as Fengycin, Iturin, and Surfactin, and linear Fengycin was also identified, of which the linear C14 Fengycin A with an m/z of 1453 was found, which has not been previously reported. In addition, strain S14 treatment increased sweetpotato biomass by 45.7% under pathogen-free treatment, and increase sweetpotato biomass by 65.4% under Fusarium spp. treatment. The biocontrol bacteria were also able to increase the activities of sweetpotato defense enzymes such as PAL, PPO and POD, and induced sweetpotato to develop disease resistance. Furthermore, biocontrol bacteria S14 was used as experimental material, and its application potential was verified through field trials. It was found that the strain S14 could promote sweet potato growth, increase tuber yield by 41.9%, and reduce the incidence of diseases. The sweetpotato roots treated with strain S14 were enriched with beneficial bacteria, such as Bacillus, and the abundance of Volutella and Fusarium were reduced, so that Volutella was no longer a key microorganism in the fungal network.

In summary, in this study, through sampling typical sweetpotato cropping obstacle farmland, we analyzed that Volutella and Fusarium are the main factors leading to sweetpotato cropping obstacle, and the screening of B. velezensis from resistant varieties has broad-spectrum inhibitory activity, which can lead to the death of mycelial cells of the pathogenic fungi and inhibit the growth of mycelium through the production of bacterial inhibitory lipopeptides such as Surfactin, Iturin, and Fengycin, and VOCs, and the linear C14 Fengycin A at m/z 1453 was also identified among the bacterial lipopeptides. In addition to its antifungal effects, S14 was able to promote plant growth by solubilizing nutrients and producing growth hormone, as well as inducing the activity of sweetpotato defense enzymes. The field application of strain S14 could effectively increase the yield of sweetpotato tubers, enrich beneficial microbe, inhibit the pathogenic fungi such as Volutella and Fusarium, reduce the incidence of sweetpotato diseases, and then mitigation the sweetpotato continuous cropping obstacle. This study provides a theoretical and practical basis for the mitigation of sweetpotato continuous cropping obstacle by B. velezensis S14.

参考文献:

1.白变霞. 潞党参连作障碍防治细菌的筛选及其作用机制[D]. 山西农业大学, 2020.

2.鲍士旦. 土壤农化分析(第三版)[M]. 北京: 农业出版社, 2000.

3.蔡祖聪, 黄新琦, 赵军. 作物土传病害防控的健康微生物群落构建原理与实践[J]. 土壤学报, 2023, 60(05): 1213-1220.

4.高晓敏, 王琚钢, 马立国, 等. 尖孢镰刀菌致病机理和化感作用研究进展[J]. 微生物学通报, 2014,41(10):2143-2148.

5.高志远, 胡亚亚, 刘兰服, 等. 甘薯连作对根际土壤微生物群落结构的影响[J]. 核农学报, 2019, 33(06): 1248-1255.

6.韩琴. 棉花抗黄萎病生防菌的筛选和鉴定及抗病机理研究[D]. 南京农业大学, 2014.

7.贺旭, 韩剑, 盛强, 等. 梨火疫病拮抗细菌FX1及其抑菌物质的防病作用[J]. 园艺学报, 2023, 50(05): 1118-1129.

8.李方舟. 普洱茶树叶片内生细菌Bacillus velezensis FZ06的基因组测序及抗菌活性代谢产物研究[D]. 华南理工大学, 2020.

9.李鹏, 马代夫, 李强, 等. 甘薯根腐病的研究现状和展望[J]. 江苏农业科学, 2009, (01): 114-116.

10.李强, 赵海, 靳艳玲, 等. 中国甘薯产业助力国家粮食安全的分析与展望[J]. 江苏农业学报, 2022, 38(6): 1484-1491.

11.李艳. 黑土区大豆连作土壤线虫群落特征及其影响因子研究[D]. 东北农业大学, 2021.

12.李振方, 杨燕秋, 吴林坤, 等. 地黄强致病型病原菌的分离及其专化型鉴定[J]. 中国生态农业学报, 2013, 21(11): 1426-1433.

13.林杭. 丹参根际放线菌B-35筛选及生防促生作用研究[D]. 山东农业大学, 2023.

14.刘亚军, 逯昀, 王文静, 等. 有机肥与土壤调理剂对连作甘薯生长发育及土壤肥力的影响[J]. 作物杂志, 2024, (03): 168-174.

15.刘志丹, 刘雨艳, 陈金苗, 等. 三七连作土壤细菌、真菌和原生生物群落的差异及驱动因素分析[J]. 微生物学通报, 2024: 1-19.

16.鲁小城. 一株枯草芽孢杆菌抗植物病原真菌活性物质的研究[D]. 浙江大学, 2006.

17.马洪波, 杨苏, 李传哲, 等. 不同肥料和生物菌剂对重茬甘薯产量及土壤质量的影响[J]. 江苏农业科学, 2019, 47(24): 47-49.

18.马莹, 黄蓝青, 贾红磊, 等. 乙烯促进木质素合成减少镉吸收和积累提高番茄耐镉性[J].中国生物化学与分子生物学报, 2023, 39(07): 980-990.

19.商丽丽, 杜清福, 韩俊杰, 等. 甘薯重茬对土壤微生物的影响及重茬障碍防治措施研究[J]. 作物杂志, 2015, (04): 126-129.

20.史翠娟. 防治脱氧雪腐镰刀烯醇毒素污染的脂肽类抗菌物质的研究[D]. 哈尔滨工业大学, 2014.

21.汤晓仪, 王勃, 韩俊杰, 等. 不同冬季复种轮作对甘薯耕层土壤真菌群落及块根产量的影响[J]. 江苏农业科学, 2024, 52(11): 267-272.

22.汤尧, 李朝哲, 刘春雨, 等. 1-MCP协同活性炭处理抑制鲜切胡萝卜木质化形成研究[J].西华大学学报(自然科学版), 2024, 43(04): 44-52.

23.王建. 多粘类芽孢杆菌GRY-11的分离、鉴定及其对苹果连作障碍影响的研究[D]. 山东农业大学, 2023.

24.王静, 曹建敏, 陈德鑫, 等. 短小芽孢杆菌AR03挥发性有机物的抑菌活性及其组分分析[J]. 中国农业科学, 2018, 51(10): 1908-1919.

25.熊雨洁. 解淀粉芽孢杆菌W48防治辣椒连作病害与菌剂制备[D]. 江苏大学, 2023.

26.许仙菊, 姜晓蕊, 陈丹艳, 等. 耐连作甘薯品种的筛选及薯块氮、磷、钾营养状况分析[J]. 江苏农业学报, 2023, 39(03): 657-664.

27.荀卫兵, 张瑞福, 沈其荣. 根际微生物组功能补偿装配的概念、内涵和展望[J]. 土壤学报, 2024.

28.张成玲, 孙厚俊, 赵永强, 等. 甘薯根腐病病原分子鉴定及防治药剂筛选[J]. 江西农业学报, 2019, 31(08): 46-51.

29.张林林. 海洋细菌源生物农药前体的筛选及抗菌机制研究[D]. 中国科学院大学(中国科学院海洋研究所), 2018.

30.张瑞福, 沈其荣. 抑病型土壤的微生物区系特征及调控[J]. 南京农业大学学报, 2012, 35(05): 125-132.

31.张瑞福. 根际微生物:农业绿色发展中大有作为的植物第二基因组[J]. 生物技术通报, 2020, 36(09): 1-2.

32.周新刚, 马海鲲, 郭辉, 等. 植物-土壤反馈理论及其在连作障碍管理中的应用[J]. 科技导报, 2022, 40(3): 32-40.

33.Abarenkov K, Henrik Nilsson R, Larsson K, et al. The UNITE database for molecular identification of fungi - recent updates and future perspectives[J]. New Phytologist, 2010, 186(2): 281-285.

34.Abdollahi M R, Kianersi F, Moosavi S S, et al. Identification and expression analysis of two genes involved in the biosynthesis of t-anethole in fennel (Foeniculum vulgare Mill.) and their up-regulation in leaves in response to methyl jasmonate treatments[J]. Journal of Plant Growth Regulation, 2023, 42(2): 759-770.

35.Acedo J Z, Chiorean S, Vederas J C, et al. The expanding structural variety among bacteriocins from Gram-positive bacteria[J]. FEMS Microbiology Reviews, 2018, 42(6): 805-828.

36.Alami M M, Pang Q, Gong Z, et al. Continuous cropping changes the composition and diversity of bacterial communities: A meta-analysis in nine different fields with different plant cultivation[J]. Agriculture, 2021, 11(12): 1224.

37.Alarcón M V, Salguero J, Lloret P G. Auxin modulated initiation of lateral roots is linked to pericycle cell length in maize[J]. Frontiers in Plant Science, 2019, 10: 00011.

38.Ali A M, Awad M Y M, Hegab S A, et al. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato[J]. Journal of Plant Nutrition, 2021, 44(3): 411-420.

39.Ali Q, Khan A R, Tao S, et al. Broad-spectrum antagonistic potential of Bacillus spp. volatiles against Rhizoctonia solani and Xanthomonas oryzae pv. oryzae[J]. Physiologia Plantarum, 2023, 175(6): e14087.

40.Ali T, Bhagat N, Magotra S, et al. Plant growth promotion and induction of defense response in Crocus sativus L. by two native Bacillus species against Fusarium oxysporum R1[J]. Journal of Plant Growth Regulation, 2024, 43(3): 787-806.

41.Almeida O A C, de Araujo N O, Dias B H S, et al. The power of the smallest: The inhibitory activity of microbial volatile organic compounds against phytopathogens[J]. Frontiers in Microbiology, 2023, 13: 951130.

42.Amtmann A, Troufflard S, Armengaud P. The effect of potassium nutrition on pest and disease resistance in plants[J]. Physiologia Plantarum, 2008, 133: 682-691.

43.Appu M, Ramalingam P, Sathiyanarayanan A, et al. An overview of plant defense-related enzymes responses to biotic stresses[J]. Plant Gene, 2021, 27: 100302.

44.Asante M, Ahiabor B D K, Atakora W K. Growth, Nodulation, and Yield Responses of Groundnut (Arachis hypogaea L.) as Influenced by Combined Application of Rhizobium Inoculant and Phosphorus in the Guinea Savanna Zone of Ghana[J]. International Journal of Agronomy, 2020, 2020(1): 8691757.

45.Babar S, Baloch A, Qasim M, et al. Unearthing the soil-bacteria nexus to enhance potassium bioavailability for global sustainable agriculture: A mechanistic preview[J]. Microbiological Research, 2024, 288: 127885.

46.Bai Q, Xie Y, Dong R, et al. First report of Volutella blight on Pachysandra caused by Volutella Pachysandricola in China[J]. Plant Disease, 2012, 96: 584.

47.Baker N R, Zhalnina K, Yuan M, et al. Nutrient and moisture limitations reveal keystone metabolites linking rhizosphere metabolomes and microbiomes[J]. Proceedings of the National Academy of Sciences, 2024, 121(32): e1991528175.

48.Baliyan N, Dhiman S, Dheeman S, et al. Optimization of gibberellic acid production in endophytic Bacillus cereus using response surface methodology and its use as plant growth regulator in chickpea[J]. Journal of Plant Growth Regulation, 2022, 41(7): 3019-3029.

49.Bani M, Rispail N, Evidente A, et al. Identification of the main toxins isolated from Fusarium oxysporum f. sp. pisi race 2 and their relation with isolates' pathogenicity[J]. Journal of Agricultural and Food Chemistry, 2014, 62(12): 2574-2580.

50.Bao L, Liu Y, Ding Y, et al. Interactions between phenolic acids and microorganisms in rhizospheric soil from continuous cropping of Panax notoginseng[J]. Frontiers in Microbiology, 2022, 13: 791603.

51.Bauer M A, Kainz K, Carmona-Gutierrez D, et al. Microbial wars: Competition in ecological niches and within the microbiome[J]. Microbial Cell, 2018, 5(5): 215-219.

52.Beneduzi A, Ambrosini A, Passaglia L M P. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents[J]. Genetics and molecular biology, 2012, 4(35): 1044-1051.

53.Berendsen R L, Pieterse C M J, Bakker P A H M. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478-486.

54.Bonito G, Hameed K, Toome-Heller M, et al. Atractiella rhizophila, sp. nov., an endorrhizal fungus isolated from the Populus root microbiome[J]. Mycologia, 2017, 109(1): 18-26.

55.Boss B L, Wanees A E, Zaslow S J, et al. Comparative genomics of the plant-growth promoting bacterium Sphingobium sp. strain AEW4 isolated from the rhizosphere of the beachgrass Ammophila breviligulata[J]. BMC Genomics, 2022, 23(1): 508.

56.Bremner J M, Keeney D R. Determination and isotope-ratio analysis of different forms of nitrogen in soils: 3. Exchangeable ammonium, nitrate, and nitrite by extraction-distillation methods[J]. Soil Science Society of America Journal, 1966, 30(5): 577-582.

57.Callaway R M, Aschehoug E T. Invasive plants versus their new and old neighbors: A mechanism for exotic invasion[J]. Science, 2000, 290(5491): 521-523.

58.Carrión V J, Perez-Jaramillo J, Cordovez V, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome[J]. Science, 2019, 366(6465): 606-612.

59.Caulier S, Nannan C, Gillis A, et al. Overview of the Antimicrobial compounds produced by members of the Bacillus subtilis Group[J]. Frontiers in Microbiology, 2019, 10: 302.

60.Ceja-Navarro J A, Wang Y, Ning D, et al. Protist diversity and community complexity in the rhizosphere of switchgrass are dynamic as plants develop[J]. Microbiome, 2021, 9(1): 96.

61.Chandra A, Chandra P, Tripathi P. Whole genome sequence insight of two plant growth-promoting bacteria (B. subtilis BS87 and B. megaterium BM89) isolated and characterized from sugarcane rhizosphere depicting better crop yield potentiality[J]. Microbiological Research, 2021, 247: 126733.

62.Chen D, Zhou Y, Wang M, et al. Succession pattern in soil micro-ecology under tobacco (Nicotiana tabacum L.) continuous cropping circumstances in Yunnan province of southwest China[J]. Frontiers in Microbiology, 2022a, 12: 785110.

63.Chen L, Bian L, Ma Q, et al. Defensive alteration of root exudate composition by grafting Prunus sp. onto resistant rootstock contributes to reducing crown gall disease[J]. Horticulture Research, 2024, 11(4): uhae49.

64.Chen L, Brookes P C, Xu J, et al. Structural and functional differentiation of the root-associated bacterial microbiomes of perennial ryegrass[J]. Soil Biology and Biochemistry, 2016, 98: 1-10.

65.Chen L, Yang X, Raza W, et al. Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers[J]. Applied Microbiology and Biotechnology, 2011, 89(5): 1653-1663.

66.Chen X H, Koumoutsi A, Scholz R, et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42[J]. Nature Biotechnology, 2007, 25(9): 1007-1014.

67.Chen Y, Du J, Li Y, et al. Evolutions and managements of soil microbial community structure drove by continuous cropping[J]. Frontiers in Microbiology, 2022b, 13: 839494.

68.Cheng C, Su S, Bo S, et al. A Bacillus velezensis strain isolated from oats with disease-preventing and growth-promoting properties[J]. Scientific Reports, 2024, 14(1): 12950.

69.Chilton J E. Volutella species on alfalfa[J]. Mycologia, 1954, 46: 800-809.

70.Clark C A, Doyle V P, Villordon A Q, et al. First report of Pythium root rot on aeroponically grown sweetpotato caused by Pythium myriotylum in Louisiana[J]. Plant Disease, 2018, 103(2): 378.

71.Cong W, Hoffland E, Li L, et al. Intercropping enhances soil carbon and nitrogen[J]. Global Change Biology, 2015, 21(4): 1715-1726.

72.Cui R, Geng G, Wang G, et al. The response of sugar beet rhizosphere micro-ecological environment to continuous cropping[J]. Frontiers in Microbiology, 2022, 13: 956785.

73.Dakora F D, Phillips D A. Root exudates as mediators of mineral acquisition in low-nutrient environments[J]. Plant and Soil, 2002, 245(1): 35-47.

74.Dananjaya S H S, Udayangani R M C, Shin S Y, et al. In vitro and in vivo antifungal efficacy of plant based lawsone against Fusarium oxysporum species complex[J]. Microbiological Research, 2017, 201: 21-29.

75.de Bruijn F J. Biological nitrogen fixation[M]//Lugtenberg B. Principles of plant-microbe interactions: Microbes for sustainable agriculture. Cham: Springer International Publishing, 2015: 215-224.

76.De la Cruz-López N, Cruz-López L, Holguín-Meléndez F, et al. Volatile organic compounds produced by cacao endophytic bacteria and their inhibitory activity on Moniliophthora roreri[J]. Current Microbiology, 2022, 79(2): 35.

77.Dean R, Van Kan J A L, Pretorius Z A, et al. The top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(4): 414-430.

78.Deng Q, Wang R, Sun D, et al. Complete genome of Bacillus velezensis CMT-6 and comparative genome analysis reveals lipopeptide diversity[J]. Biochemical Genetics, 2020, 58(1): 1-15.

79.Dimkić I, Janakiev T, Petrović M, et al. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - A review[J]. Physiological and Molecular Plant Pathology, 2022, 117: 101754.

80.Ding A, Ahsan T, Wang C, et al. Genome sequence, assembly and characterization of Bacillus velezensis VR-34 used as biocontrol agent of Peyronellaea arachidicola (peanut web blotch, Pathogen)[J]. Biological Control, 2023a, 185: 105316.

81.Ding W, Li J, Hu B, et al. Response of abundance, diversity, and network of rhizosphere fungal community to monoculture of Cut Chrysanthemum[J]. Applied Microbiology and Biotechnology, 2023b, 107: 3673-3685.

82.Djemouai N, Meklat A, Yekkour A, et al. Actinobacteria: an underestimated source of potential microbial biocontrol agents against Fusarium-related diseases in cultivated crops[J]. European Journal of Plant Pathology, 2023, 167: 477-537.

83.Dobrzyński J, Jakubowska Z, Kulkova I, et al. Biocontrol of fungal phytopathogens by Bacillus pumilus[J]. Frontiers in Microbiology, 2023, 14: 1194606.

84.Duan Y N, Jiang W T, Zhang R, et al. Discovery of Fusarium proliferatum f. sp. malus domestica causing apple replant disease in China[J]. Plant Disease, 2022a, 106(11): 2958-2966.

85.Duan Y, Chen R, Zhang R, et al. Isolation and identification of Bacillus vallismortis HSB-2 and its biocontrol potential against apple replant disease[J]. Biological Control, 2022b, 170: 104921.

86.Duan Y, Zhao L, Jiang W, et al. The phlorizin-degrading Bacillus licheniformis XNRB-3 mediates soil microorganisms to alleviate apple replant disease[J]. Frontiers in Microbiology, 2022c, 13: 839484.

87.Dubinkina V, Fridman Y, Pandey P P, et al. Multistability and regime shifts in microbial communities explained by competition for essential nutrients[J]. eLife, 2019, 8: e49720.

88.Dunlap C A, Kim S, Kwon S, et al. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(3): 1212-1217.

89.Ebben M H, Williams P H. Brown root rot of tomatoes[J]. Annals of Applied Biology, 1956, 44: 425-436.

90.Ellegaard-Jensen L, Aamand J, Kragelund B B, et al. Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron[J]. Biodegradation, 2013, 24(6): 765-774.

91.Estrada R, Cosme R, Porras T, et al. Changes in bulk and rhizosphere soil microbial diversity communities of native quinoa due to the monocropping in the Peruvian central andes[J]. Microorganisms, 2023, 11(8): 1926.

92.Falardeau J, Wise C, Novitsky L, et al. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens[J]. Journal of Chemical Ecology, 2013, 39(7): 869-878.

93.Fan B, Blom J, Klenk H, et al. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex[J]. Frontiers in Microbiology, 2017 ,8: 22.

94.Fan S, Zhao F, Zhang J, et al. American ginseng root rot caused by Fusarium redolens in China[J]. Plant Disease, 2021, 105(9): 2734.

95.Fira D, Dimkić I, Berić T, et al. Biological control of plant pathogens by Bacillus species[J]. Journal of Biotechnology, 2018, 285: 44-55.

96.Fu Y, Liu T, Wang X, et al. Untargeted metabolomics reveal rhizosphere metabolites mechanisms on continuous ramie cropping[J]. Frontiers in Plant Science, 2023,14: 1217956.

97.Fu Y, Yan R, Liu D, et al. Characterization of Sinomonas gamaensis sp. nov., a novel soil bacterium with antifungal activity against Exserohilum turcicum[J]. Microorganisms, 2019, 7(6): 170.

98.Gao Y, Tang Z H, Xia H Q, et al. Potassium fertilization stimulates sucrose-to-starch conversion and root formation in sweet potato (Ipomoea batatas (L.) Lam.)[J]. International Journal of Molecular Sciences, 2021a, 22(9): 4826.

99.Gao Z, Han M, Hu Y, et al. Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil[J]. Frontiers in Microbiology, 2019, 10: 2269.

100.Gao Z, Hu Y, Han M, et al. Effects of continuous cropping of sweet potatoes on the bacterial community structure in rhizospheric soil[J]. BMC Microbiology, 2021b, 21(1): 102.

101.Garbeva P, Van Veen J A, Van Elsas J D. Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness[J]. Annual Review of Phytopathology, 2004, 42(1): 243-270.

102.Gershenzon J, Dudareva N. The function of terpene natural products in the natural world[J]. Nature Chemical Biology, 2007, 3(7): 408-414.

103.Ghorbani S, Harighi B. Characterization of endophytic bacteria with plant growth promotion and biological control potential isolated from walnut trees[J]. Forest Pathology, 2018, 48(2): e12403.

104.Gohil R B, Raval V H, Panchal R R, et al. Plant growth-promoting activity of Bacillus sp. PG-8 isolated from fermented panchagavya and its effect on the growth of Arachis hypogea[J]. Frontiers in Agronomy, 2022, 4: 805454.

105.Goodwin S, McPherson J D, McCombie W R. Coming of age: ten years of next-generation sequencing technologies[J]. Nature Reviews Genetics, 2016, 17(6): 333-351.

106.Gowtham H G, Murali M, Singh S B, et al. Plant growth promoting rhizobacteria- Bacillus amyloliquefaciens improves plant growth and induces resistance in chilli against anthracnose disease[J]. Biological Control, 2018, 126: 209-217.

107.Gräfenhan T, Schroers H J, Nirenberg H I, et al. An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella[J]. Studies in Mycology, 2011, 68: 79-113.

108.Guertal E A, Bauske E M, Edwards J H. Crop rotation effects on sweet potato yield and quality[J]. Journal of Production Agriculture, 1997, 10(1): 70-73.

109.Guseva K, Darcy S, Simon E, et al. From diversity to complexity: Microbial networks in soils[J]. Soil Biology and Biochemistry, 2022, 169: 108604.

110.Hamdache A, Azarken R, Lamarti A, et al. Comparative genome analysis of Bacillus spp. and its relationship with bioactive nonribosomal peptide production[J]. Phytochemistry Reviews, 2013, 12(4): 685-716.

111.Han X, Shen D, Xiong Q, et al. The plant-beneficial rhizobacterium Bacillus velezensis FZB42 controls the soybean pathogen Phytophthora sojae due to bacilysin production[J]. Applied and Environmental Microbiology, 2021, 87(23): e1601-e1621.

112.Hanson L, De Lucchi C, Stevanato P, et al. Root rot symptoms in sugar beet lines caused by Fusarium oxysporum f. sp. betae[J]. European Journal of Plant Pathology, 2018, 150(3): 589-593.

113.Hernández-Restrepo M, Groenewald J Z, Crous P W. Taxonomic and phylogenetic re-evaluation of Microdochium, Monographella and Idriella[J]. Persoonia, 2016, 36: 57-82.

114.Hu L, Robert C A M, Cadot S, et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communications, 2018, 9(1): 2738.

115.Huang S, Yu J, Hou D, et al. Response of soil microbial community diversity to continuous cucumber cropping in facilities along the Yellow River irrigation area[J]. PLOS ONE, 2023, 18(8): e289772.

116.Huang X, Chen J, Liu J, et al. Autotoxicity hinders the natural regeneration of Cinnamomum migao H. W. Li in southwest China[J]. Forests, 2019, 10(10): 919.

117.Hwang W M, Ko Y, Kim J, et al. Ahniella affigens gen. nov., sp. nov., a gammaproteobacterium isolated from sandy soil near a stream[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(8): 2478-2484.

118.Jain S, Choudhary D K. Induced defense-related proteins in soybean (Glycine max L. Merrill) plants by Carnobacterium sp. SJ-5 upon challenge inoculation of Fusarium oxysporum[J]. Planta, 2014, 239(5): 1027-1040.

119.Jennings P. Fusarium Mycotoxins: Chemistry, genetics and biology - by Anne E. Desjardins[J]. Plant Pathology, 2007, 56(2): 337.

120.Jin W, Peng L, Zhang X, et al. Effects of endophytic and ectomycorrhizal basidiomycetes on Quercus virginiana seedling growth and nutrient absorption[J]. Journal of Sustainable Forestry, 2019, 38(5): 457-470.

121.Kalam S, Das S N, Basu A, et al. Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere[J]. Journal of Basic Microbiology, 2017, 57(5): 376-385.

122.Karačić V, Miljaković D, Marinković J, et al. Bacillus species: Excellent biocontrol agents against tomato diseases[J]. Microorganisms, 2024, 12(3): 457.

123.Kim P I, Bai H, Bai D, et al. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26[J]. Journal of Applied Microbiology, 2004, 97(5): 942-949.

124.Kim T H, Kim S, Park W, et al. Genome-wide association study to identify novel loci and genes for Fusarium root rot resistance in sweet potato using genotyping-by-sequencing[J]. Frontiers in Plant Science, 2023, 14: 1251157.

125.King B C, Waxman K D, Nenni N V, et al. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi[J]. Biotechnology for Biofuels, 2011, 4(1): 4.

126.Klipcan L, van Oss R, Keren-Kieserman A, et al. Potassium positively affects skin characteristics of sweet potato storage roots[J]. Agronomy-BASEL, 2020, 10(9) 1385.

127.Köhl J, Kolnaar R, Ravensberg W J. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy[J]. Frontiers in Plant Science, 2019, 10: 845.

128.Kong M, Liang J, Ali Q, et al. 5-Methoxyindole, a chemical homolog of melatonin, adversely affects the phytopathogenic fungus Fusarium graminearum[J]. International Journal of Molecular Sciences, 2021, 22(20): 10991.

129.Kracmarova M, Uhlik O, Strejcek M, et al. Soil microbial communities following 20 years of fertilization and crop rotation practices in the Czech Republic[J]. Environmental Microbiome, 2022, 17(1): 13.

130.Ku Y, Xu G, Tian X, et al. Root colonization and growth promotion of soybean, wheat and Chinese cabbage by Bacillus cereus YL6[J]. PLOS ONE, 2018, 13(11): e200181.

131.Kwak M, Kong H G, Choi K, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology, 2018, 36(11): 1100-1109.

132.Lahlali R, Ezrari S, Radouane N, et al. Biological control of plant pathogens: A global perspective[J]. Microorganisms, 2022, 10(3): 596.

133.Lareo C, Ferrari M D. Chapter 7 - Sweet potato as a bioenergy crop for fuel ethanol production: perspectives and challenges[M]//Ray R C, Ramachandran S. Bioethanol production from food crops. Academic Press, 2019: 115-147.

134.Laveriano-Santos E P, López-Yerena A, Jaime-Rodríguez C, et al. Sweet potato is Not simply an abundant food crop: A comprehensive review of its phytochemical constituents, biological activities, and the effects of processing[J]. Antioxidants, 2022, 11(9): 1648.

135.Leslie J F, Summerell B A. Species descriptions[M]//2006: 121-278.

136.Li F, Zeng Y, Zong M, et al. Bioprospecting of a novel endophytic Bacillus velezensis FZ06 from leaves of Camellia assamica: Production of three groups of lipopeptides and the inhibition against food spoilage microorganisms[J]. Journal of Biotechnology, 2020a, 323: 42-53.

137.Li J, Liu X, Xie J, et al. A comparison of different estimation methods for fungicide EC50 and EC95 values[J]. Journal of Phytopathology, 2015, 163(4): 239-244.

138.Li P, Xue Y, Shi J, et al. The response of dominant and rare taxa for fungal diversity within different root environments to the cultivation of Bt and conventional cotton varieties[J]. Microbiome, 2018a, 6(1): 184.

139.Li S, Hu J, Ning S, et al. Bacillus velezensis HY19 as a sustainable preservative in post-harvest citrus (Citrus reticulata Blanco L.) fruit management[J]. Food Control, 2024a, 155: 110068.

140.Li X, Chen D, Carrión V J, et al. Acidification suppresses the natural capacity of soil microbiome to fight pathogenic Fusarium infections[J]. Nature Communications, 2023, 14(1): 5090.

141.Li X, He X, Hou L, et al. Dark septate endophytes isolated from a xerophyte plant promote the growth of Ammopiptanthus mongolicus under drought condition[J]. Scientific Reports, 2018b, 8(1): 7896.

142.Li X, Meng D, Li J, et al. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination[J]. Environmental Pollution, 2017, 231: 908-917.

143.Li Y C, Li Z, Li Z W, et al. Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach[J]. Journal of Applied Microbiology, 2016, 121(3): 787-799.

144.Li Y, Li Z, Arafat Y, et al. Studies on fungal communities and functional guilds shift in tea continuous cropping soils by high-throughput sequencing[J]. Annals of Microbiology, 2020b, 70(1): 7.

145.Li Y, Shi C, Wei D, et al. Soybean continuous cropping affects yield by changing soil chemical properties and microbial community richness[J]. Frontiers in Microbiology, 2022a, 13: 1083736.

146.Li Z, Alami M M, Tang H, et al. Applications of Streptomyces jingyangensis T. and Bacillus mucilaginosus A. improve soil health and mitigate the continuous cropping obstacles for Pinellia ternata (Thunb.) Breit[J]. Industrial Crops and Products, 2022b, 180: 114691.

147.Li Z, Tang S, Gao H, et al. Plant growth-promoting rhizobacterium Bacillus cereus AR156 induced systemic resistance against multiple pathogens by priming of camalexin synthesis[J]. Plant, Cell & Environment, 2024b, 47(1): 337-353.

148.Liao H L, Huang L, Li N, et al. Auxiliary rapid identification of pathogenic and antagonistic microorganisms associated with Coptis chinensis root rot by high-throughput sequencing[J]. Scientific Reports, 2021, 11: 11141.

149.Liao Z, Chen Q, Li J, et al. Influence of Chrysanthemum morifolium-maize intercropping pattern on yield, quality, soil condition, and rhizosphere soil microbial communities of C. morifolium[J]. Frontiers in Plant Science, 2024, 15: 1383477.

150.Ling N, Wang T, Kuzyakov Y. Rhizosphere bacteriome structure and functions[J]. Nature Communications, 2022, 13(1): 836.

151.Liu C, Cai Q, Liao P, et al. Effects of Fallopia multiflora–Andrographis paniculata intercropping model on yield, quality, soil nutrition and rhizosphere microorganisms of F. multiflora[J]. Plant and Soil, 2021, 467(1): 465-481.

152.Liu H, Niu M, Zhu S, et al. Effect study of continuous monoculture on the quality of Salvia miltiorrhiza bge roots[J]. BioMed Research International, 2020a, 2020(1): 4284385.

153.Liu J, Li X, Jia Z, et al. Effect of benzoic acid on soil microbial communities associated with soilborne peanut diseases[J]. Applied Soil Ecology, 2017, 110: 34-42.

154.Liu L, Jin Y, Chen M, et al. A Study of soil-borne Fusarium wilt in continuous cropping Chrysanthemum cultivar ‘Guangyu’ in Henan, China[J]. Journal of Fungi, 2024, 10(1): 14.

155.Liu M, Gong Y, Sun H, et al. Characterization of a novel chitinase from sweet potato and its fungicidal effect against Ceratocystis fimbriata[J]. Journal of Agricultural and Food Chemistry, 2020b, 68(29): 7591-7600.

156.Liu N, Shao C, Sun H, et al. Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime[J]. Geoderma, 2020c, 363: 114155.

157.Liu X, Cheng X, Wang H, et al. Effect of fumigation with 1,3-dichloropropene on soil bacterial communities[J]. Chemosphere, 2015, 139: 379-385.

158.Liu Z, Liu J, Yu Z, et al. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition[J]. Soil and Tillage Research, 2020d, 197: 104503.

159.Louca S, Parfrey L W, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome[J]. Science, 2016, 353(6305): 1272-1277.

160.Lu H, Wu Y, Liang P, et al. Alkaline amendments improve the health of soils degraded by metal contamination and acidification: Crop performance and soil bacterial community responses[J]. Chemosphere, 2020, 257: 127309.

161.Lu L, Yin S, Liu X, et al. Fungal networks in yield-invigorating and -debilitating soils induced by prolonged potato monoculture[J]. Soil Biology and Biochemistry, 2013, 65: 186-194.

162.Lu S, Lepo J E, Song H, et al. Increased rice yield in long-term crop rotation regimes through improved soil structure, rhizosphere microbial communities, and nutrient bioavailability in paddy soil[J]. Biology and Fertility of Soils, 2018, 54(8): 909-923.

163.Luo S, Tian C, Zhang H, et al. Isolation and identification of biocontrol bacteria against Atractylodes chinensis root rot and their effects[J]. Microorganisms, 2023, 11(10): 2384.

164.Lyu F, Zhang W, Wang R, et al. Rhizosphere bacterial community composition was significantly affected by continuous cropping but not by sesame genotype[J]. Rhizosphere, 2023, 27: 100750.

165.Lyu J, Jin N, Meng X, et al. Exogenous silicon alleviates the adverse effects of cinnamic acid-induced autotoxicity stress on cucumber seedling growth[J]. Frontiers in Plant Science, 2022, 13: 968514.

166.Ma H, Li J, Luo A, et al. Vanillin, a newly discovered autotoxic substance in long-term potato continuous cropping soil, inhibits plant growth by decreasing the root auxin content and reducing adventitious root numbers[J]. Journal of Agricultural and Food Chemistry, 2023, 71(45): 16993-17004.

167.Ma L, Geiser D M, Proctor R H, et al. Fusarium pathogenomics[J]. Annual Review of Microbiology, 2013, 67(1): 399-416.

168.Ma L, Ma S, Chen G, et al. Mechanisms and mitigation strategies for the occurrence of continuous cropping obstacles of legumes in China[J]. Agronomy, 2024, 14(1): 104.

169.Ma Z, Gao W, Liu L, et al. Identification of QTL for resistance to root rot in sweetpotato (Ipomoea batatas (L.) Lam) with SSR linkage maps[J]. BMC Genomics,2020, 21: 366.

170.Majda M, Robert S. The role of auxin in cell wall expansion[J]. International Journal of Molecular Sciences, 2018 ,19(4): 951.

171.Maksimov I V, Singh B P, Cherepanova E A, et al. Prospects and applications of lipopeptide-producing bacteria for plant protection (Review)[J]. Applied Biochemistry and Microbiology, 2020, 56(1): 15-28.

172.McNeal K S, Herbert B E. Volatile organic metabolites as indicators of soil microbial activity and community composition shifts[J]. Soil Science Society of America Journal, 2009, 73(2): 579-588.

173.Mello J F, Brito A C Q, Motta C M S, et al. First report of Neoscytalidium dimidiatum causing root rot in sweet potato in Brazil[J]. Plant Disease, 2018, 103(2): 373.

174.Mukhopadhyay S K, Chattopadhyay A, Chakraborty I, et al. Crops that feed the world 5. Sweetpotato. Sweetpotatoes for income and food security[J]. Food Security, 2011, 3(3): 283-305.

175.Nelson P E, Wilhelm S. An undescribed fungus causing a root rot of strawberry[J]. Mycologia, 1956, 48: 547-551.

176.Nguyen N H, Song Z, Bates S T, et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecology, 2016, 20: 241-248.

177.Oman T J, van der Donk W A. Follow the leader: the use of leader peptides to guide natural product biosynthesis[J]. Nature Chemical Biology, 2010, 6(1): 9-18.

178.Ongena M, Jourdan E, Adam A, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants[J]. Environmental Microbiology, 2007, 9: 1084-1090.

179.Orozco-Mosqueda M D, Santoyo G, Glick B R. Recent advances in the bacterial phytohormone modulation of plant growth[J]. Plants, 2023, 12(3): 606.

180.Özben S, Ertek T S, Demirci F, et al. First report of Idriella lunata associated with trunk diseases of grapevine in Turkey[J]. Journal of Plant Pathology, 2023, 105(1): 341.

181.Pan C, Yang K, Erhunmwunsee F, et al. Antifungal activity of perillaldehyde on Fusarium solani and its control effect on postharvest decay of sweet potatoes[J]. Journal of Fungi, 2023a, 9(2): 257.

182.Pan C, Yang K, Erhunmwunsee F, et al. Inhibitory effect of cinnamaldehyde on Fusarium solani and its application in postharvest preservation of sweet potato[J]. Food Chemistry, 2023b, 408: 135213.

183.Pan F, Han X, Zou W, et al. Shifts of bacterial community structure and function in long-term soybean monoculture[J]. Archives of Agronomy and Soil Science, 2021, 67(6): 793-808.

184.Patani A, Patel M, Islam S, et al. Recent advances in Bacillus-mediated plant growth enhancement: a paradigm shift in redefining crop resilience[J]. World Journal of Microbiology and Biotechnology, 2024, 40(2): 77.

185.Paul N C, Park S, Liu H, et al. Fungi associated with postharvest diseases of sweet potato storage roots and in vitro antagonistic assay of Trichoderma harzianum against the diseases[J]. Journal of Fungi, 2021, 7(11): 927.

186.Preece C, Peñuelas J. A return to the wild: root exudates and food security[J]. Trends in Plant Science, 2020, 25(1): 14-21.

187.Qiao Y, Wang Z, Sun H, et al. Synthetic community derived from grafted watermelon rhizosphere provides protection for ungrafted watermelon against Fusarium oxysporum via microbial synergistic effects[J]. Microbiome, 2024, 12(1): 101.

188.Qin L, Tian P, Cui Q, et al. Bacillus circulans GN03 alters the microbiota, promotes cotton seedling growth and disease resistance, and increases the expression of phytohormone synthesis and disease resistance-related genes[J]. Frontiers in Plant Science, 2021, 12: 644597.

189.Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(D1): D590-D596.

190.Rabbee M F, Hwang B, Baek K. Bacillus velezensis: A beneficial biocontrol agent or facultative phytopathogen for sustainable agriculture[J]. Agronomy, 2023, 13(3): 840.

191.Rahman M Z, Ahmad K, Bashir Kutawa A, et al. Biology, diversity, detection and management of Fusarium oxysporum f. sp. niveum causing vascular wilt disease of watermelon (Citrullus lanatus): A review[J]. Agronomy, 2021, 11(7): 1310.

192.Rani A, Rana A, Dhaka R K, et al. Bacterial volatile organic compounds as biopesticides, growth promoters and plant-defense elicitors: Current understanding and future scope[J]. Biotechnology Advances, 2023, 63: 108078.

193.Raza W, Ling N, Liu D, et al. Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum[J]. Microbiological Research, 2016, 192: 103-113.

194.Ren Y Y, Wang X L, Zhang S Q, et al. Influence of spatial arrangement in maize-soybean intercropping on root growth and water use efficiency[J]. Plant and Soil, 2017, 415(1): 131-144.

195.Rudrappa T, Czymmek K J, Paré P W, et al. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiology, 2008, 148(3): 1547-1556.

196.Safrankova I. First report of Volutella pachysandricola on Pachysandra terminalis in the Czech Republic[J]. Plant Pathology, 2005, 54: 808.

197.Sansupa C, Wahdan S, Hossen S, et al. Can we use Functional Annotation of Prokaryotic Taxa (FAPROTAX) to assign the ecological functions of soil bacteria?[J]. Applied Sciences-BASEL, 2021, 11(2): 688.

198.Sarabia M, Cazares S, González-Rodríguez A, et al. Plant growth promotion traits of rhizosphere yeasts and their response to soil characteristics and crop cycle in maize agroecosystems[J]. Rhizosphere, 2018, 6: 67-73.

199.Schmidt R, Cordovez V, de Boer W, et al. Volatile affairs in microbial interactions[J]. The ISME Journal, 2015, 9(11): 2329-2335.

200.Schoch C L, Sung G, López-Giráldez F, et al. The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits[J]. Systematic biology, 2009, 58(2): 224-239.

201.Shen S, Ma G, Xu G, et al. Allelochemicals identified from sweet potato (Ipomoea batatas) and their allelopathic effects on invasive alien plants[J]. Frontiers in Plant Science, 2022, 13: 823947.

202.Shen Z, Ruan Y, Xue C, et al. Soils naturally suppressive to banana Fusarium wilt disease harbor unique bacterial communities[J]. Plant and Soil, 2015, 393(1): 21-33.

203.Shen Z, Xue C, Penton C R, et al. Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy[J]. Soil Biology and Biochemistry, 2019, 128: 164-174.

204.Shi F, Hsiang T. First report of Pseudonectria buxi causing Volutella blight on boxwood (Buxus sp.) in Beijing, China[J]. Plant Disease, 2014, 98: 1282.

205.Shi W, Li M, Wei G, et al. The occurrence of potato common scab correlates with the community composition and function of the geocaulosphere soil microbiome[J]. Microbiome, 2019, 7(1): 14.

206.Siciliano S D, Palmer A S, Winsley T, et al. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities[J]. Soil Biology and Biochemistry, 2014, 78: 10-20.

207.Sirithanakorn C, Cronan J E. Biotin, a universal and essential cofactor: Synthesis, ligation and regulation[J]. FEMS Microbiology Reviews, 2021, 45(4): fuab3.

208.Song C, Zhang Y, Zhao Q, et al. Volatile organic compounds produced by Bacillus aryabhattai AYG1023 against Penicillium expansum causing blue mold on the Huangguan pear[J]. Microbiological Research, 2024, 278: 127531.

209.Song X, Pan Y, Li L, et al. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields[J]. PLOS ONE, 2018, 13: e193811.

210.Song X D, Liu F, Wu H Y, et al. Effects of long-term K fertilization on soil available potassium in East China[J]. Catena, 2020, 188: 104412.

211.Stomph T, Dordas C, Baranger A, et al. Chapter One - Designing intercrops for high yield, yield stability and efficient use of resources: Are there principles?[M]//Sparks D L. Advances in Agronomy. Academic Press, 2020: 1-50.

212.Sudová R, Kohout P, Rydlová J, et al. Diverse fungal communities associated with the roots of isoetid plants are structured by host plant identity[J]. Fungal Ecology, 2020, 45: 100914.

213.Tahir H A S, Gu Q, Wu H, et al. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt[J]. Scientific Reports, 2017a, 7(1): 40481.

214.Tahir H A S, Gu Q, Wu H, et al. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2[J]. Frontiers in Microbiology, 2017b, 8: 00171.

215.Tan G, Liu Y, Peng S, et al. Soil potentials to resist continuous cropping obstacle: Three field cases[J]. Environmental Research, 2021, 200: 111319.

216.Tan Y, Cui Y S, Li H Y, et al. Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices[J]. Journal of Basic Microbiology, 2017, 57: 337-344.

217.Tang S, Zhang Z, Liu X, et al. Study on screening and degradation effect of autotoxin-degrading bacteria in Muskmelon[J]. Agronomy, 2023, 13(5): 1334.

218.Tang T, Wang F, Huang H, et al. Antipathogenic activities of volatile organic compounds produced by Bacillus velezensis LT1 against Sclerotium rolfsii LC1, the pathogen of southern blight in Coptis chinensis[J]. Journal of Agricultural and Food Chemistry, 2024, 72(18): 10282-10294.

219.Tenenhaus M, Vinzi V E, Chatelin Y, et al. PLS path modeling[J]. Computational Statistics and Data Analysis, 2005, 48: 159-205.

220.Tian L, Shi S, Ji L, et al. Effect of the biocontrol bacterium Bacillus amyloliquefaciens on the rhizosphere in ginseng plantings[J]. International Microbiology, 2018, 21(3): 153-162.

221.Tiwari R K, Kumar R, Sharma S, et al. Continuous and emerging challenges of silver scurf disease in potato[J]. International Journal of Pest Management, 2021, 68(1): 89-101.

222.van Elsas J D, Chiurazzi M, Mallon C A, et al. Microbial diversity determines the invasion of soil by a bacterial pathogen[J]. Proceedings of the National Academy of Sciences, 2012, 109(4): 1159-1164.

223.Wacal C, Ogata N, Sasagawa D, et al. Seed yield, crude protein and mineral nutrient contents of sesame during a two-year continuous cropping on upland field converted from a paddy[J]. Field Crops Research, 2019, 240: 125-133.

224.Walker T S, Bais H P, Grotewold E, et al. Root exudation and rhizosphere biology[J]. Plant Physiology, 2003, 132(1): 44-51.

225.Wang C, Wang Y, Chu Z, et al. Endophytic Bacillus amyloliquefaciens YTB1407 elicits resistance against two fungal pathogens in sweet potato (Ipomoea batatas (L.) Lam.)[J]. Journal of Plant Physiology, 2020a, 253: 153260.

226.Wang C, Zhao X, Wu K, et al. Isolation and characterization of Bacillus velezensis strain B19 for biocontrol of Panax notoginseng root rot[J]. Biological Control, 2023a, 185: 105311.

227.Wang F, Zhan P, Zhang X, et al. Unraveling rotational remedies: Deciphering the autotoxicity of Panax notoginseng saponins[J]. Industrial Crops and Products, 2023b, 206: 117601.

228.Wang H, Sheng Y, Jiang W, et al. The effects of crop rotation combinations on the soil quality of old apple orchard[J]. Horticultural Plant Journal, 2022a, 8(1): 1-10.

229.WANG J, FENG S, LU B, et al. Fusarium oxysporum f. sp. ginseng, a new forma specialis causing Fusarium root rot of Panax ginseng[J]. Phytopathologia Mediterranea, 2022b, 61(3): 417-429.

230.Wang L, Fan R, Ma H, et al. Genomic and metabolomic insights into the antimicrobial compounds and plant growth-promoting potential of Bacillus velezensis Q-426[J]. BMC Genomics, 2023c, 24(1): 589.

231.Wang S, Cheng J, Li T, et al. Response of soil fungal communities to continuous cropping of flue-cured tobacco[J]. Scientific Reports, 2020b, 10(1): 19911.

232.Wang S, Zhang X, Zhang Z, et al. Fusarium-produced vitamin B6 promotes the evasion of soybean resistance by Phytophthora sojae[J]. Journal of Integrative Plant Biology, 2023d, 65(9): 2204-2217.

233.Wang T, Liang Y, Wu M, et al. Natural products from Bacillus subtilis with antimicrobial properties[J]. Chinese Journal of Chemical Engineering, 2015, 23(4): 744-754.

234.Wang T, Yang K, Ma Q, et al. Rhizosphere microbial community diversity and function analysis of cut Chrysanthemum during continuous monocropping[J]. Frontiers in Microbiology, 2022c, 13: 801546.

235.Wang X, Cheng L, Xiong C, et al. Understanding plant–soil interactions underpins enhanced sustainability of crop production[J]. Trends in Plant Science, 2024, 5: 008.

236.Wang X, Li Y X, Dong H X, et al. First report of Volutella buxi causing Volutella blight on Buxus bodinieri in Central Plains China[J]. Plant Disease, 2017, 101: 1325.

237.Wang Y, Ji L, Li Q, et al. Effects of long-term bare fallow during the winter-wheat growth season on the soil chemical properties, fungal community composition, and the occurrence of maize fungal diseases in North China[J]. Plant Disease, 2021, 105: 2575-2584.

238.Wei C, Liang J, Wang R, et al. Response of bacterial community metabolites to bacterial wilt caused by Ralstonia solanacearum: a multi-omics analysis[J]. Frontiers in Plant Science, 2024, 14: 1339478.

239.Wei J, Zhao J, Suo M, et al. Biocontrol mechanisms of Bacillus velezensis against Fusarium oxysporum from Panax ginseng[J]. Biological Control, 2023, 182: 105222.

240.Wei Z, Yang T, Friman V, et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health[J]. Nature Communications, 2015, 6(1): 8413.

241.Wen T, Xie P H, Penton C R, et al. Specific metabolites drive the deterministic assembly of diseased rhizosphere microbiome through weakening microbial degradation of autotoxin[J]. Microbiome, 2022, 10: 177.

242.Wu J, Chou H, Huang J, et al. Genomic and biochemical characterization of antifungal compounds produced by Bacillus subtilis PMB102 against Alternaria brassicicola[J]. Microbiological Research, 2021, 251: 126815.

243.Wu L, Huang Z, Li X, et al. Stomatal closure and SA-, JA/ET-signaling pathways are essential for Bacillus amyloliquefaciens FZB42 to restrict leaf disease caused by Phytophthora nicotianae in Nicotiana benthamiana[J]. Frontiers in Microbiology, 2018, 9: 00847.

244.Xiang W, Chen J, Zhang F, et al. Autotoxicity in Panax notoginseng of root exudatesand their allelochemicals[J]. Frontiers in Plant Science, 2022, 13: 1020626.

245.Xie L, Liu L, Luo Y, et al. Complete genome sequence of biocontrol strain Bacillus velezensis YC89 and its biocontrol potential against sugarcane red rot[J]. Frontiers in Microbiology, 2023, 14: 1180474.

246.Xie S, Ma T, Zhao N, et al. Whole-genome sequencing and comparative genome analysis of Fusarium solani-melongenae causing Fusarium root and stem rot in sweetpotatoes[J]. Microbiology Spectrum, 2022, 10(4): e622-e683.

247.Xie S, Zang H, Wu H, et al. Antibacterial effects of volatiles produced by Bacillus strain D13 against Xanthomonas oryzae pv. oryzae[J]. Molecular Plant Pathology, 2018, 19(1): 49-58.

248.Xiong W, Li R, Ren Y, et al. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease[J]. Soil Biology and Biochemistry, 2017, 107: 198-207.

249.Xu K, Li X, Zhao D, et al. Antifungal secondary metabolites produced by the fungal endophytes: Chemical diversity and potential use in the development of biopesticides[J]. Frontiers in Microbiology, 2021, 12: 689527.

250.Xu W, Li H, Ma Q, et al. Exploring the mitigation effect of microbial inoculants on the continuous cropping obstacle of capsicum[J]. Scientia Horticulturae, 2024a, 338: 113507.

251.Xu Y, Liu Z, Shen Z, et al. Alfalfa with forage crop rotation alleviates continuous alfalfa obstacles through regulating soil enzymes and bacterial community structures[J]. Agronomy, 2024b, 14(7): 1349.

252.Yadav R, Ror P, Rathore P, et al. Bacillus subtilis CP4, isolated from native soil in combination with arbuscular mycorrhizal fungi promotes biofortification, yield and metabolite production in wheat under field conditions[J]. Journal of Applied Microbiology, 2021, 131(1): 339-359.

253.Yadav R, Ror P, Rathore P, et al. Bacteria from native soil in combination with arbuscular mycorrhizal fungi augment wheat yield and biofortification[J]. Plant Physiology and Biochemistry, 2020, 150: 222-233.

254.Yan Y, Xu W, Hu Y, et al. Bacillus velezensis YYC promotes tomato growth and induces resistance against bacterial wilt[J]. Biological Control, 2022, 172: 104977.

255.Yang F, Jiang H, Ma K, et al. Genome sequencing and analysis of Bacillus velezensis VJH504 reveal biocontrol mechanism against cucumber Fusarium wilt[J]. Frontiers in Microbiology, 2023, 14: 1279695.

256.Yang L, Wang C, He X, et al. Multi-year crop rotation and quicklime application promote stable peanut yield and high nutrient-use efficiency by regulating soil nutrient availability and bacterial/fungal community[J]. Frontiers in Microbiology, 2024, 15: 1367184.

257.Ye S, Ma Y, Zhou S, et al. Biocontrol potential of Priestia megaterium YB-3 against Meloidogyne graminicola and its impact on the rhizosphere microbial community[J]. Journal of Pest Science, 2024.

258.Ye X, Li Z, Luo X, et al. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community[J]. Microbiome, 2020, 8(1): 49.

259.Yin C T, Vargas J, Schlatter D C, et al. Rhizosphere community selection reveals bacteria associated with reduced root disease[J]. Microbiome, 2021, 9(1): 86.

260.Yoon Y, Lee J G, Paul N C, et al. Biological control of a novel strain Bacillus velezensis CMML21–47 against sweet potato wilt and black rot diseases[J]. Biological Control, 2024, 195: 105541.

261.Yu T, Hou X, Fang X, et al. Short-term continuous monocropping reduces peanut yield mainly via altering soil enzyme activity and fungal community[J]. Environmental Research, 2024, 245: 117977.

262.Yuan J, Wen T, Zhang H, et al. Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt[J]. The ISME Journal, 2020, 14(12): 2936-2950.

263.Yuan M, Yu T, Shi Q, et al. Rhizosphere soil bacterial communities of continuous cropping-tolerant and sensitive soybean genotypes respond differently to long-term continuous cropping in Mollisols[J]. Frontiers in Microbiology, 2021, 12: 729047.

264.Ze M, Ma F, Zhang J, et al. Beneficial effects of Bacillus mojavensis strain MTC-8 on plant growth, immunity and disease resistance against Magnaporthe oryzae[J]. Frontiers in Microbiology, 2024, 15: 1422476.

265.Zeigler D R, Perkins J B. The genus Bacillus. In Practical Handbook of Microbiology[M]. 2nd Edition. Boca Raton, FL, USA: CRC Press, 2008.

266.Zeng C, Liu Y, Zhang B, et al. The functional identification and evaluation of endophytic bacteria sourced from the roots of tolerant Achyranthes bidentata to overcome monoculture problems of Rehmannia glutinosa[J]. Frontiers in Microbiology, 2024, 15: 1399406.

267.Zhang D, Yu S, Zhao D, et al. Inhibitory effects of non-volatiles lipopeptides and volatiles ketones metabolites secreted by Bacillus velezensis C16 against Alternaria solani[J]. Biological Control, 2021a, 152: 104421.

268.Zhang L, Sun C. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation[J]. Applied and Environmental Microbiology, 2018a, 84(18): e418-e445.

269.Zhang N, Wang D, Liu Y, et al. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains[J]. Plant and Soil, 2014, 374(1): 689-700.

270.Zhang N, Wang Z, Shao J, et al. Biocontrol mechanisms of Bacillus: Improving the efficiency of green agriculture[J]. Microbial Biotechnology, 2023a, 16(12): 2250-2263.

271.Zhang S, Wu J, Chen J, et al. The biological control effect of Bacillus cereus on strawberry leaf spot disease caused by Neopestalotiopsis clavispora[J]. Scientia Horticulturae, 2024, 327: 112841.

272.Zhang S, Zhang Y, Guo X, et al. Combination of Bacillus and low fertigation input promoted the growth and productivity of Chinese cabbage and enriched beneficial rhizosphere bacteria Lechevalieria[J]. Biology, 2023b, 12(8): 1130.

273.Zhang W, Wang X, Yang Z, et al. Physiological mechanisms behind endophytic fungus Phomopsis liquidambari-mediated symbiosis enhancement of peanut in a monocropping system[J]. Plant and Soil, 2017, 416(1): 325-342.

274.Zhang X, Ning T, Han H, et al. Effects of waxy maize relay intercropping and residue retention on rhizosphere microbial communities and vegetable yield in a continuous cropping system[J]. Pedosphere, 2018b, 28(1): 84-93.

275.Zhang Y, Guo R, Li S, et al. Effects of continuous cropping on soil, senescence, and yield of Tartary buckwheat[J]. Agronomy Journal, 2021b, 113(6): 5102-5113.

276.Zhao G, Cheng J, Sun N, et al. Two endophytic bacterial strains modulate Mn oxidation and accumulation in the wetland plant Suaeda salsa pall[J]. Plant and Soil, 2019, 438(1): 223-237.

277.Zhao J, Zhou Z, Bai X, et al. A novel of new class II bacteriocin from Bacillus velezensis HN-Q-8 and its antibacterial activity on Streptomyces scabies[J]. Frontiers in Microbiology, 2022, 13: 943232.

278.Zheng W, Zhao Z, Gong Q, et al. Responses of fungal–bacterial community and network to organic inputs vary among different spatial habitats in soil[J]. Soil Biology and Biochemistry, 2018, 125: 54-63.

279.Zheng X, Wang J, Chen M, et al. Testing a biocontrol agent consortium for suppression of tomato bacterial wilt through rhizosphere microecological regulation[J]. Applied Soil Ecology, 2024, 193: 105155.

280.Zhou S, Liu G, Zheng R, et al. Structural and functional insights into iturin W, a novel lipopeptide produced by the deep-sea bacterium Bacillus sp. strain wsm-1[J]. Applied and Environmental Microbiology, 2020, 86(21): e1520-e1597.

281.Zhou Y, Yang Z, Liu J, et al. Crop rotation and native microbiome inoculation restore soil capacity to suppress a root disease[J]. Nature Communications, 2023, 14(1): 8126.

中图分类号:

 Q939.9    

开放日期:

 2026-12-30    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式