- 无标题文档
查看论文信息

中文题名:

 生物有机肥调控连作番茄土体和根际抗生素抗性基因的微生物生态学机制    

姓名:

 李建杰    

学号:

 2019203032    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090302    

学科名称:

 农学 - 农业资源利用 - 植物营养学    

学生类型:

 博士    

学位:

 农学博士    

学校:

 南京农业大学    

院系:

 资源与环境科学学院    

专业:

 农业资源与环境    

研究方向:

 土壤微生物与生物肥料    

第一导师姓名:

 沈标    

第一导师单位:

  南京农业大学    

完成日期:

 2025-06-18    

答辩日期:

 2025-06-18    

外文题名:

 Microbial Ecological Mechanisms of Bio-Organic Fertilizer Regulating Antibiotic Resistance Genes in Bulk and Rhizosphere Soils under Continuous Tomato Cropping    

中文关键词:

 番茄青枯病 ; 生物有机肥 ; 抗生素抗性基因 ; 有益菌 ; 土壤微生物群落结构    

外文关键词:

 tomato bacterial wilt ; bio-organic fertilizer ; antibiotic resistance genes ; beneficial microorganisms ; soil microbial community structure    

中文摘要:

抗生素抗性基因(ARGs)作为新兴环境污染物,在农业生态系统中的扩散与累积已成为全世界关注的环境问题之一。集约化农业和畜禽养殖大量使用抗生素,以及含有抗生素抗性基因的畜禽粪肥,使得农田土壤成为ARGs的重要储存库。与此同时,在农业生产中,作物土传病害一直是普遍存在的严峻挑战。土传病原菌为了获得更强的生存优势,在长期的进化过程中逐渐具有了较强的抗生素抗性能力。实验室前期研究也表明,病原青枯菌的入侵增加了ARGs和可移动遗传元件(MGEs)的丰度。已有研究证实,相比于化肥和有机肥,生物有机肥可以显著降低青枯病的发病率。因此研究生物有机肥调控植物土传病害与ARGs长期演变及其微生物生态学机制具有重要意义。通过分析低发病率土壤中微生物组成特征,研究其与ARGs的调控关系,进一步探究代谢对微生物和ARGs的影响机制,为有效抑制发病率和ARGs的扩散提供理论依据。

本研究以番茄连作土壤为对象,比较长期施用化学肥料、有机肥和生物有机肥条件下ARGs的演变和群落响应差异,结合盆栽验证实验,利用16S rRNA基因扩增子测序,宏基因组测序和代谢组测序技术,对以下内容进行了深入研究,(1)阐明长期施用生物有机肥在抑制番茄青枯病发生的同时,缓解其相关ARGs积累风险的微生物生态学机制;(2)解析番茄生育期不同阶段生物有机肥处理对根际土壤中ARGs丰度与组成结构的动态影响;(3)探讨生物有机肥对根际土壤代谢物-微生物-ARGs之间级联响应关系的调控机制;(4)基于不同浓度的解淀粉芽孢杆菌T-5接种实验,研究其调控番茄根际抗生素抗性基因与病原菌(青枯菌)的生态学机制,主要研究结果包括:

1. 本研究基于长期连续施用生物有机肥的田间试验,通过16S rRNA基因扩增子测序技术和宏基因组测序技术,系统评估了生物有机肥对ARGs风险的影响。实验设置不施肥(CK),单施化肥(CF),有机肥(OF)和生物有机肥(BF)四个处理,相关性分析显示,土壤中ARGs丰度与番茄青枯病发病率之间存在显著正相关关系,提示ARGs的累积可能与土传病害发生存在共同加剧的风险。微生物群落分析发现,CF处理因长期单一养分投入导致土壤细菌多样性下降,并富集了变形菌门(Proteobacteria)和拟杆菌门(Bacteroidota)等高ARGs携带潜力的菌群,同时显著积累了抗多粘菌素(polymyxin)、抗多重耐药(multidrug)和抗β-内酰胺类 (β-lactam)等类型的抗性基因;而在有机肥处理中,则以抗甲氧苄氨嘧啶(trimethoprim)、抗四环素(tetracycline)和抗磺胺类(sulfonamide)抗性基因的增加为主。进一步分析表明,与CF和OF处理相比,BF处理降低了Pseudomonas_E、Ralstonia、Agrobacterium和Enterobacte等耐药病原菌的丰度。生物有机肥的长期施用不仅可显著降低番茄青枯病的发病率,还能有效缓解由耐药病原菌增殖带来的ARGs环境风险。

2. 在田间长期定位实验的基础上,分别在番茄的苗期,开花期和结实期采集土壤样品,通过宏基因组测序探究生物有机肥对不同生育期内ARGs动态变化特征的影响,结果显示,在整个生育期内土壤细菌多样性与ARGs丰度呈显著负相关关系,高多样性的微生物群落对ARGs扩散具有“稀释”效应。生物有机肥处理中,在番茄生育期,调节微生物多样性的增加会降低ARGs风险。ARGs在生育期内呈现“先升后降”的趋势,而MGEs则处于持续上升的趋势。值得注意的是,BF处理在番茄生育后期对ARGs的抑制作用最为明显,尤其是在抗MLS、Beta-lactam、tetracycline类抗生素抗性基因的风险控制方面。针对微生物群落演替的进一步分析显示,BF处理通过调控根际土壤微生物群落的演替,促进了有益微生物如Pseudomonas、Bacillus和Streptomyces竞争优势的形成,有效抑制病原菌及其携带的抗性基因传播,从而降低ARGs风险。BF通过提高微生物多样性和促进有益菌优势,显著抑制番茄生育后期的抗性基因扩散,在降低发病率的同时降低了潜在的ARGs风险。

3. 结合前期获得的番茄不同生育期ARGs丰度数据与对应时期的土壤代谢组学数据,本研究进一步解析了生物有机肥介导下微生物-土壤代谢物-ARGs之间的生态互作关系。结果表明,施肥会显著影响代谢物的组成并且调控细菌群落变化进而调控ARGs的组成。脂质和含氮化合物类代谢物是驱动Pseudomonas和Variovorax变化的主要因素,胺类主要影响Bacillus的丰度变化,烃类则显著调控Streptomyces的动态,而Ralstonia的变化主要受酚类和醛类代谢物的影响。这种代谢物与微生物之间的协同作用,可能影响ARGs在土壤环境中的传播。进一步分析表明,醇类和酯类是与ARGs密切相关的关键代谢物。在生物有机肥处理中,醇类促进multidrug和β-lactam类ARGs的增加,酯类的减少同时降低氨基糖苷类(aminoglycoside)ARGs;在有机肥处理中,醇类抑制抗aminoglycoside和tetracycline类ARGs,酯类主要抑制抗multidrug类ARGs。这些结果表明,不同类型的代谢物通过影响关键微生物的群落结构,间接调控了ARGs的生态分布格局。

4. 最后,采集长期施用有机肥的土壤,接种不同浓度(103 CFU/cm3,105 CFU/cm3,107 CFU/cm3和109 CFU/cm3)Bacillus amyloliquefaciens T-5菌株,通过荧光定量PCR技术和16S rRNA基因扩增子测序技术,评估了外源功能菌对番茄根际ARGs动态的影响。试验结果表明,高浓度接种(例如109 CFU/cm3)可在早期迅速定殖并直接抑制青枯病病原菌的定殖,显著降低发病率以及病原菌带来的ARGs风险;而较低浓度有益菌会通过增加优势细菌属如 Pseudomonas、Massilia、Bacillus、Ralstonia和Flavobacterium等与ARGs显著正相关的类群,提高了ARGs的风险;而在109 CFU/cm3处理中会通过增加Bacillus,降低发病指数间接降低ARGs的相对丰度。总体而言,随着有益菌接种量的增加,番茄根际土壤中ARGs丰度呈现先增加后降低的动态变化,高浓度有益菌通过减少病原菌以及调控微生物群落,降低了ARGs的丰度。

综上所述,长期施用生物有机肥能够驱动土壤微生物区系和根际代谢环境的变化,在有效防控番茄青枯病的同时,缓解了土壤ARGs的扩散和积累风险。生物有机肥作为一种可持续农业管理策略,在减少病害发生和遏制ARGs污染方面具有重要应用价值。本研究为制定农田土壤ARGs风险管控策略和促进农业土壤健康提供了科学依据,体现了兼顾病害防控与ARGs风险控制的双重生态效益。

外文摘要:

Antibiotic resistance genes (ARGs), as emerging environmental contaminants, have become a global concern due to their widespread dissemination and accumulation in agricultural ecosystems. Intensive agricultural practices, extensive antibiotic usage in livestock farming, and application of animal manure containing ARGs have led agricultural soils to become critical reservoirs for ARGs. Concurrently, soil-borne diseases remain persistent and serious challenges in agricultural production. Soil-borne pathogens have evolved substantial antibiotic resistance to secure ecological advantages, and previous research has demonstrated that Ralstonia invasion significantly elevates the abundance of ARGs and mobile genetic elements (MGEs). Bio-organic fertilizer has been reported to substantially reduce bacterial wilt disease incidence compared to chemical and organic fertilizers. Therefore, investigating the microbial ecological mechanisms underlying bio-organic fertilizer regulation of soil-borne diseases and ARG dynamics holds significant ecological importance. Studying microbial characteristics in soils with lower disease incidence and their regulatory relationships with ARGs, as well as clarifying the influence of metabolites on microbial communities and ARGs, can provide theoretical bases for effectively reducing both disease incidence and ARG dissemination.

Using tomato continuous cropping soils, this study examined ARG evolution and microbial community responses under long-term application of chemical fertilizer (CF), organic fertilizer (OF), and bio-organic fertilizer (BF). Pot experiments were also conducted to validate the field observations, employing 16S rRNA gene amplicon sequencing, metagenomics, and metabolomics. The objectives were: (1) to elucidate the microbial ecological mechanisms by which long-term BF application reduces tomato bacterial wilt and associated ARG accumulation; (2) to clarify the dynamic impacts of BF on ARG abundance and composition in tomato rhizosphere soils at different growth stages; (3) to explore how BF mediates cascading interactions among rhizosphere metabolites, microbes, and ARGs; and (4) to evaluate the ecological mechanisms underlying different inoculation concentrations of Bacillus amyloliquefaciens T-5 in regulating ARGs and pathogens (Ralstonia solanacearum) in the tomato rhizosphere. The following are the main results:

1. Long-term field trials comparing BF, CF, OF, and no fertilizer control (CK) treatments demonstrated a significant positive correlation between ARG abundance and bacterial wilt incidence, suggesting cumulative ARGs potentially amplify soil-borne disease risk. Microbial community analyses indicated that CF decreased bacterial diversity and enriched ARG-hosting taxa such as Proteobacteria and Bacteroidota, significantly accumulating ARGs related to polymyxin, multidrug resistance, and β-lactam antibiotics. OF primarily increased trimethoprim, tetracycline, and sulfonamide ARGs. Compared to CF and OF, BF reduced the abundance of antibiotic-resistant pathogens including Pseudomonas_E, Ralstonia, Agrobacterium, and Enterobacter, effectively mitigating ARG-associated environmental risks.

2. Metagenomic sequencing conducted at the seedling, flowering, and fruiting stages revealed significant negative correlations between soil bacterial diversity and ARG abundance, supporting a dilution effect hypothesis where increased microbial diversity suppresses ARG dissemination. BF enhanced microbial diversity throughout tomato growth, corresponding with ARG reduction, particularly at late growth stages, effectively controlling MLS, Beta-lactam, and tetracycline ARG risks. BF promoted beneficial microbes such as Pseudomonas, Bacillus, and Streptomyces, which competitively inhibited pathogenic microbes and ARG spread, showcasing dual benefits in disease control and ARG risk reduction.

3. Integrated analysis of ARG abundance and metabolomics data revealed BF significantly influenced soil metabolite composition and microbial dynamics. Lipids and nitrogen-containing compounds primarily regulated Pseudomonas and Variovorax; amines affected Bacillus; hydrocarbons regulated Streptomyces; and phenols and aldehydes influenced Ralstonia dynamics. Alcohols and esters were crucial metabolites correlated with ARG dynamics. Specifically, alcohols increased multidrug and Beta-lactam ARGs in BF soils, whereas esters suppressed aminoglycoside ARGs. These results highlighted indirect ARG regulation via metabolite-microbe interactions.

4. Pot experiments involving different inoculation concentrations (103, 105, 107, and 109 CFU/cm³) of B. amyloliquefaciens T-5 revealed that high inoculation (109 CFU/cm³) rapidly colonized the rhizosphere, significantly reducing bacterial wilt and associated ARG risks. Lower inoculation levels increased positive correlations between dominant taxa (e.g., Pseudomonas, Massilia, Bacillus, Ralstonia, Flavobacterium) and ARGs, potentially increasing ARG risk. Overall, increasing T-5 inoculation concentrations initially raised but subsequently lowered ARG abundance, demonstrating that higher doses effectively controlled pathogens and reduced ARG risks through microbial community modulation.

In conclusion, long-term application of bio-organic fertilizer reshapes soil microbial communities and rhizosphere metabolites, significantly suppressing tomato bacterial wilt disease and mitigating ARG proliferation and accumulation. Thus, bio-organic fertilizer represents a valuable sustainable agricultural management practice with dual ecological benefits of disease control and ARG pollution mitigation. This research provides a scientific foundation for developing ARG risk management strategies and promoting agricultural soil health.

参考文献:

[1] Abe, K., Nomura, N., Suzuki, S. Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism[J]. FEMS Microbiol Ecol, 2020, 96: fiaa031.

[2] Acero, J. L., Benitez, F. J., Real, F. J., et al. Chlorination of organophosphorus pesticides in natural waters[J]. Journal of Hazardous Materials, 2008, 153: 320-328.

[3] Amin, M., Rakhisi, Z., Ahmady, A. Z. Isolation and identification of Bacillus species from soil and evaluation of their antibacterial properties[J]. Avicenna Journal of Clinical Microbiology and Infection, 2015, 2: e23233.

[4] An, X. L., Chen, Q. L., Zhu, D., et al. Distinct effects of struvite and biochar amendment on the class 1 integron antibiotic resistance gene cassettes in phyllosphere and rhizosphere[J]. Science of The Total Environment, 2018, 631-632: 668-676.

[5] Anderson, M. J. A new method for non-parametric multivariate analysis of variance[J]. Austral Ecology, 2001, 26: 32-46.

[6] Anjum, R., Grohmann, E., Krakat, N. Anaerobic digestion of nitrogen rich poultry manure: Impact of thermophilic biogas process on metal release and microbial resistances[J]. Chemosphere, 2017, 168: 1637-1647.

[7] Asghari, F. B., Dehghani, M. H., Dehghanzadeh, R., et al. Performance evaluation of ozonation for removal of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa and genes from hospital wastewater[J]. Scientific Reports, 2021, 11: 24519.

[8] Awasthi, M. K., Chen, H., Liu, T., et al. Respond of clay amendment in chicken manure composts to understand the antibiotic resistant bacterial diversity and its correlation with physicochemical parameters[J]. Journal of Cleaner Production, 2019, 236: 117715.

[9] Bakker, M. G., Chaparro, J. M., Manter, D. K., et al. Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays[J]. Plant and Soil, 2015, 392: 115-126.

[10] Bakker, P. A. H. M., Doornbos, R. F., Zamioudis, C., et al. Induced systemic resistance and the rhizosphere microbiome[J]. Plant Pathol J, 2013, 29: 136-143.

[11] Barlow, M. What antimicrobial resistance has taught us about horizontal gene transfer[C]//Methods in Molecular Biology.2009

[12] Bartlett, K., Hovik, R., Eaton, S., et al. Intermediates of peroxisomal beta-oxidation. A study of the fatty acyl-CoA esters which accumulate during peroxisomal beta-oxidation of [U-14C]hexadecanoate[J]. The Biochemical journal, 1990, 270: 175-180.

[13] Berendonk, T. U., Manaia, C. M., Merlin, C., et al. Tackling antibiotic resistance: the environmental framework[J]. Nat Rev Microbiol, 2015, 13: 310-317.

[14] Berendsen, R. L., Vismans, G., Yu, K., et al. Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. ISME J, 2018, 12: 1496-1507.

[15] Berg, G., Koberl, M., Rybakova, D., et al. Plant microbial diversity is suggested as the key to future biocontrol and health trends[J]. FEMS Microbiol Ecol, 2017, 93: 1-9.

[16] Bonanomi, G., Antignani, V., Capodilupo, M., et al. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases[J]. Soil Biology and Biochemistry, 2010, 42: 136-144.

[17] Bonanomi, G., Alioto, D., Minutolo, M., et al. Organic amendments modulate soil microbiota and reduce virus disease incidence in the TSWV-tomato pathosystem[J]. Pathogens, 2020, 9: 379.

[18] Bougnom, B. P., S.Thiele-Bruhn, Ricci, V., et al. Raw wastewater irrigation for urban agriculture in three African cities increases the abundance of transferable antibiotic resistance genes in soil, including those encoding extended spectrum beta-lactamases (ESBLs)[J]. Science of The Total Environment, 2020, 698: 134201.

[19] Bourceret, A., Guan, R., Dorau, K., et al. Maize field study reveals covaried microbiota and metabolic changes in roots over plant growth[J]. mBio, 2022, 13: e02584-02521.

[20] Brandl, M. T. Plant lesions promote the rapid multiplication of escherichia coli O157:H7 on postharvest lettuce[J]. Applied and environmental microbiology, 2008, 74: 5285-5289.

[21] Brito, I. L. Examining horizontal gene transfer in microbial communities[J]. Nature Reviews Microbiology, 2021, 19: 442-453.

[22] Brown, R. W., Chadwick, D. R., Bending, G. D., et al. Nutrient (C, N and P) enrichment induces significant changes in the soil metabolite profile and microbial carbon partitioning[J]. Soil Biology and Biochemistry, 2022, 172: 108779.

[23] Bubici, G., Kaushal, M., Prigigallo, M. I., et al. Corrigendum: Biological Control Agents Against Fusarium Wilt of Banana[J]. Frontiers in Microbiology, 2019, 10: 1290.

[24] Buddenhagen, I., Kelman, A. Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum[J]. Annual Review of Phytopathology, 1964, 2: 203-230.

[25] Bueno, C. B., Santos, R. M. d., Buzo, F. d. S., et al. Effects of chemical fertilization and microbial Inoculum on Bacillus subtilis colonization in soybean and maize plants[J]. Frontiers in Microbiology, 2022, 13: 901157.

[26] Bustin, S. A. Improving the quality of quantitative polymerase chain reaction experiments: 15 years of MIQE[J]. Molecular Aspects of Medicine, 2024, 96: 101249.

[27] Cao, Y., Yin Ying Wang, Gui, C. L., et al. Beneficial rhizobacterium triggers induced systemic resistance of maize to Gibberella stalk rot via calcium signaling[J]. Molecular Plant-Microbe Interactions, 2023, 36: 516-528.

[28] Caporaso, J. G., Lauber, C. L., AWalters, W., et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms[J]. ISME J, 2012, 6: 1621-1624.

[29] Carrión, V. J., Perez-Jaramillo, J., Cordovez, V., et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome[J]. Science, 2019, 366: 606-612.

[30] Cha, J.-Y., Han, S., Hong, H.-J., et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil[J]. ISME J, 2016, 10: 119-129.

[31] Chaparro, J. M., Badri, D. V., Bakker, M. G., et al. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions[J]. PLoS One, 2013, 8: e55731.

[32] Chapelle, E., Mendes, R., Bakker, P. A., et al. Fungal invasion of the rhizosphere microbiome[J]. ISME J, 2016, 10: 265-268.

[33] Chen, C., Wei, Y., Fan, T. F., et al. Characterization and identification of a Bacillus strain TS02 as bio-control agent of strawberry powdery mildew[J]. African Journal of Microbiology Research, 2012, 6: 4017-4022.

[34] Chen, D. Q., Zou, J. W., Chen, D. X., et al. Chicken manure application alters microbial community structure and the distribution of antibiotic-resistance genes in rhizosphere soil of Cinnamomum camphora forests[J]. FEMS microbiology ecology, 2023, 99: fiad155.

[35] Chen, H. Y., Liu, C., Teng, Y. G., et al. Environmental risk characterization and ecological process determination of bacterial antibiotic resistome in lake sediments[J]. Environment International, 2021, 147: 106345.

[36] Chen, Q. L., Fan, X. T., Zhu, D., et al. Effect of biochar amendment on the alleviation of antibiotic resistance in soil and phyllosphere of Brassica chinensis L[J]. Soil Biology and Biochemistry, 2018, 119: 74-82.

[37] Chen, Q. L., An, X. L., Zheng, B. X., et al. Loss of soil microbial diversity exacerbates spread of antibiotic resistance[J]. Soil Ecology Letters, 2019a, 1: 3-13.

[38] Chen, Q. L., Cui, H. L., Su, J. Q., et al. Antibiotic resistomes in plant microbiomes[J]. Trends in plant science, 2019b, 24: 530-541.

[39] Chen, Q. L., An, X. L., Li, H., et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil[J]. Environment International, 2016, 92-93: 1-10.

[40] Chen, Q. L., An, X. L., Li, H., et al. Do manure-borne or indigenous soil microorganisms influence the spread of antibiotic resistance genes in manured soil?[J]. Soil Biology and Biochemistry, 2017, 114: 229-237.

[41] Chen, S. M., Waghmode, T. R., Sun, R. B., et al. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization[J]. Microbiome, 2019c, 7: 136.

[42] Chen, X. F., Yin, H. L., Li, G. Y., et al. Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: Implications from oxidative stress and gene expression[J]. Water Res, 2019d, 149: 282-291.

[43] Chen, Y., Peng, Y., Dai, C.-C., et al. Biodegradation of 4-hydroxybenzoic acid by Phomopsis liquidambari[J]. Applied Soil Ecology, 2011, 51: 102-110.

[44] Chen, Z. Q., Fu, Q. Q., Wen, Q. X., et al. Microbial community competition rather than high-temperature predominates ARGs elimination in swine manure composting[J]. Journal of Hazardous Materials, 2022, 423: 127149.

[45] Chenoll, E., Macian, M. C., Aznar, R. Lactobacillus tucceti sp. nov., a new lactic acid bacterium isolated from sausage[J]. Systematic and Applied Microbiology, 2006, 29: 389-395.

[46] Ciusa, M. L., Marshall, R. L., Ricci, V., et al. Absence, loss-of-function, or inhibition of Escherichia coli AcrB does not increase expression of other efflux pump genes supporting the discovery of AcrB inhibitors as antibiotic adjuvants[J]. Journal Antimicrobial Chemotherapy, 2022, 77: 633-640.

[47] Clarke, B. P., Logeman, B. L., Hale, A. T., et al. A synthetic biological approach to reconstitution of inositide signaling pathways in bacteria[J]. Advances in Biological Regulation, 2019, 73.

[48] Conco, T., Kumari, S., Awolusi, O. O., et al. Profiling of emerging pathogens, antibiotic resistance genes and mobile genetic elements in different biological wastewater treatment plants[J]. Journal of Environmental Chemical Engineering, 2022, 10: 107596.

[49] Coutinho, T. A., Venter, S. N. Pantoea ananatis: an unconventional plant pathogen[J]. Molecular Plant Pathology, 2009, 10: 325-335.

[50] Csorba, C., Rodic, N., Antonielli, L., et al. Soil pH, developmental stages and geographical origin differently influence the root metabolomic diversity and root-related microbial diversity of Echium vulgare from native habitats[J]. Frontiers in Plant Science, 2024, 15: 1369754.

[51] D'Costa, V. M., McGrann, K. M., Hughes, D. W., et al. Sampling the antibiotic resistome[J]. Science, 2006, 311: 374-377.

[52] D'Costa, V. M., Griffiths, E., Wright, G. D. Expanding the soil antibiotic resistome: exploring environmental diversity[J]. Curr Opin Microbiol, 2007, 10: 481-489.

[53] Dasgupta, S., Meisner, C., Wheeler, D., et al. Pesticide poisoning of farm workersimplications of blood test results from Vietnam[J]. International Journal of Hygiene and Environmental Health, 2005, 210: 121-132.

[54] Davies, J., Davies, D. Origins and evolution of antibiotic resistance[J]. Microbiol Mol Biol Rev, 2010, 74: 417-433.

[55] Ding, N., Huertas, R., Torres-Jerez, I., et al. Transcriptional, metabolic, physiological and developmental responses of switchgrass to phosphorus limitation[J]. Plant Cell Environment, 2021, 44: 186-202.

[56] Dong, M. H., Zhao, M. L., Shen, Z. Z., et al. Biofertilizer application triggered microbial assembly in microaggregates associated with tomato bacterial wilt suppression[J]. Biology and Fertility of Soils, 2020, 56: 551-563.

[57] Dong, M. H., Zhou, H. J., Wang, J., et al. Responses of soil microbial metabolism, function and soil quality to long-term addition of organic materials with different carbon sources[J]. Biochar, 2024, 6: 80.

[58] Droby, S., Chalutz, E., Wilson, C., et al. Characterization of the biocontrol activity of Debaryomyces hansenii in the control of Penicillium digitatum on grapefruit[J]. Canadian Journal of Microbiology, 1989, 35: 794-800.

[59] Duan, M. L., Zhang, Y. H., Zhou, B. B., et al. Changes in antibiotic resistance genes and mobile genetic elements during cattle manure composting after inoculation with Bacillus subtilis[J]. Bioresource Technology, 2019, 292: 122011.

[60] Duan, M. L., Li, Z. J., Yan, R. P., et al. Mechanism for combined application of biochar and Bacillus cereus to reduce antibiotic resistance genes in copper contaminated soil and lettuce[J]. Science of The Total Environment, 2023, 884: 163422.

[61] Duque, E., Udaondo, Z., Molina, L., et al. Providing octane degradation capability to Pseudomonas putida KT2440 through the horizontal acquisition of oct genes located on an integrative and conjugative element[J]. Environmental Microbiology Reports, 2022, 14: 934-946.

[62] Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10: 996-998.

[63] Ellabaan, M. M. H., Munck, C., Porse, A., et al. Forecasting the dissemination of antibiotic resistance genes across bacterial genomes[J]. Nature Communications, 2021, 12: 2435.

[64] Fan, W. W., Yuan, G. Q., Li, Q. Q., et al. Antibacterial mechanisms of methyl gallate against Ralstonia solanacearum[J]. Australasian Plant Pathology, 2013, 43: 1-7.

[65] Fang, H., Wang, H. F., Cai, L., et al. Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey[J]. Environmental Science Technology, 2014, 49: 1095-1104.

[66] Forsberg, K. J., Patel, S., Gibson, M. K., et al. Bacterial phylogeny structures soil resistomes across habitats[J]. Nature, 2014, 509: 612-616.

[67] Forsberg, K. J., Reyes, A., Wang, B., et al. The shared antibiotic Resistome of soil bacteria and human pathogens[J]. Science, 2012, 377: 1107-1111.

[68] Fu, L., Penton, C. R., Ruan, Y., et al. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease[J]. Soil Biology and Biochemistry, 2017, 104: 39-48.

[69] Gac, M. L., Plucain, J., Hindré, T., et al. Ecological and evolutionary dynamics of coexisting lineages during a long-term experiment with Escherichia coli[J]. PNAS, 2012, 109: 9487-9492.

[70] Gao, F. Z., Zou, H. Y., Wu, D. L., et al. Swine farming elevated the proliferation of Acinetobacter with the prevalence of antibiotic resistance genes in the groundwater[J]. Environment International, 2020, 136: 105484.

[71] Girma, A. Pathogenic diversity, ecology, epidemiology, and management practices of the potato bacterial wilt (Ralstonia solanacearum) disease[J]. Cogent Food and Agriculture, 2024, 10: 2407953.

[72] Goethem, M. W. V., Pierneef, R., Bezuidt, O. K. I., et al. A reservoir of 'historical' antibiotic resistance genes in remote pristine Antarctic soils[J]. Microbiome, 2018, 6: 40.

[73] Gogarten, J. P., Townsend, J. P. Horizontal gene transfer, genome innovation and evolution[J]. Nature Reviews Microbiology, 2005, 3: 679-687.

[74] Gonzalo-Calvo, D. d., Marchese, M., Hellemans, J., et al. Consensus guidelines for the validation of qRT-PCR assays in clinical research by the CardioRNA consortium[J]. Molecular Therapy: Methods and Clinical Development, 2022, 24: 171-180.

[75] Govindasamy, V., Senthilkumar, M., Magheshwaran, V., et al. Bacillus and Paenibacillus spp.: Potential PGPR for Sustainable Agriculture[C]//Microbiology Monographs. Germany:Springer,2010

[76] Guan, X. J., Li, Y. H., Yang, Y. Y., et al. Root exudates regulate soil antibiotic resistance genes via rhizosphere microbes under long-term fertilization[J]. Environment International, 2025, 195: 109180.

[77] Guo, A. Y., Pan, C. R., Ma, J. Y., et al. Linkage of antibiotic resistance genes, associated bacteria communities and metabolites in the wheat rhizosphere from chlorpyrifos-contaminated soil[J]. Science of The Total Environment, 2020, 741: 140457.

[78] Guo, H. H., Gu, J., Wang, X. J., et al. Responses of antibiotic and heavy metal resistance genes to bamboo charcoal and bamboo vinegar during aerobic composting[J]. Environmental Pollution, 2019, 252: 1097-1105.

[79] Guo, Y. W., Xiao, X., Zhao, Y., et al. Antibiotic resistance genes in manure-amended paddy soils across eastern China: Occurrence and influencing factors[J]. Frontiers of Environmental Science and Engineering, 2021, 16: 91.

[80] Haas, D., Défago, G. Biological control of soil-borne pathogens by fluorescent pseudomonads[J]. Nature Reviews Microbiology, 2005, 3: 307-319.

[81] Haley, B. J., Kim, S. W., Salaheen, S., et al. Genome-wide analysis of Escherichia coli Isolated from dairy animals identifies virulence factors and genes enriched in multidrug-resistant strains[J]. Antibiotics, 2023, 12: 1559.

[82] Hamid, S., Lone, R., Mohamed, H. I. Production of antibiotics from PGPR and their role in biocontrol of plant diseases[C]//Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management.2021:441-461. 10.1007/978-3-030-66587-6_16.

[83] Han, B. H., Ma, L., Yu, Q. L., et al. The source, fate and prospect of antibiotic resistance genes in soil: A review[J]. Frontiers in Microbiology, 2022a, 13: 976657.

[84] Han, B. J., Shen, S. Z., Yang, F. X., et al. Exploring antibiotic resistance load in paddy-upland rotation fields amended with commercial organic and chemical/slow release fertilizer[J]. Frontiers in Microbiology, 2023, 14: 1184238.

[85] Han, B. J., Yang, F. X., Shen, S. Z., et al. Soil metabolic processes influenced by rice roots co-regulates the environmental evolution of antibiotic resistome[J]. Environment International, 2024, 193: 109116.

[86] Han, L. X., Cai, L., Zhang, H. P., et al. Development of antibiotic resistance genes in soils with ten successive treatments of chlortetracycline and ciprofloxacin[J]. Environmental Pollution, 2019, 253: 152-160.

[87] Han, S., Micallef, S. A. Environmental metabolomics of the tomato plant surface provides insights on Salmonella enterica colonization[J]. Applied and environmental microbiology, 2016, 82: 3131-3142.

[88] Han, X. M., Hu, H. W., Li, J. Y., et al. Long-term application of swine manure and sewage sludge differently impacts antibiotic resistance genes in soil and phyllosphere[J]. Geoderma, 2022b, 411: 115698.

[89] Han, X. M., Hu, H. W., Chen, Q. L., et al. Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures[J]. Soil Biology and Biochemistry, 2018, 126: 91-102.

[90] Hayward, A. C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum[D]. The University of Queensland, 1991

[91] He, Y., Yuan, Q., Mathieu, J., et al. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment[J]. npj Clean Water, 2020, 3: 4.

[92] Hu, H. W., Wang, J. T., Singh, B. K., et al. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes[J]. Environmental Microbiology, 2018, 20: 3186-3200.

[93] Huang, B., Jia, H. J., Han, X. B., et al. Effects of biocontrol Bacillus and fermentation bacteria additions on the microbial community, functions and antibiotic resistance genes of prickly ash seed oil meal-biochar compost[J]. Bioresource Technology, 2021a, 340: 125668.

[94] Huang, J. L., Mi, J. D., FanYan, Q., et al. Animal manures application increases the abundances of antibiotic resistance genes in soil-lettuce system associated with shared bacterial distributions[J]. Science of The Total Environment, 2021b, 787: 147667.

[95] Huang, Y., Sun, L., Zhao, J. S., et al. Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer[J]. Scientific Reports, 2015, 5: 7766.

[96] Hui, C., Sun, P. F., Guo, X. X., et al. Shifts in microbial community structure and soil nitrogen mineralization following short-term soil amendment with the ammonifier Bacillus amyloliquefaciens DT[J]. International Biodeterioration and Biodegradation, 2018, 132: 40-48.

[97] Hwang, W., Yoon, S. S. Virulence characteristics and an action mode of antibiotic resistance in multidrug-resistant Pseudomonas aeruginosa[J]. Scientific Reports, 2019, 9: 487.

[98] Iliev, I., Apostolova, E., Hadjieva, N., et al. Bacterial diversity and physiological activity of lettuce (Lactuca sativa) rhizosphere under bio-organic greenhouse management strategies[J]. International Journal of Environmental Science and Technology, 2021, 19: 9945-9956.

[99] Islam, T. M., Koki, T. Effect of moisture conditions and pre-incubation at low temperature on bacterial wilt of tomato caused by Ralstonia solanacearum[J]. Microbes and Environments, 2004, 19: 244-247.

[100] Jalal, R. S., Sonbol, H. S. Resistome signature and antibiotic resistance mechanisms in rhizospheric soil bacteriomes of Mecca Region, Saudi Arabia: Insights into impact on human health[J]. Life, 2024, 14: 928.

[101] Jechalke, S., Focks, A., Rosendahl, I., et al. Structural and functional response of the soil bacterial community to application of manure from difloxacin-treated pigs[J]. FEMS Microbiol Ecol, 2014, 87: 78-88.

[102] Ji, Z. L., Liu, Y., Gao, R. J., et al. Biocontrol potential of Bacillus licheniformis W10 against peach shoot blight caused by Phomopsis amygdali[J]. European Journal of Plant Pathology, 2022, 165: 559-567.

[103] Jiang, G., Wei, Z., Xu, J., et al. Bacterial wilt in China: history, current status, and future perspectives[J]. Frontiers in Plant Science, 2017, 8: 1549.

[104] Jiang, Y. H., Lin, X. Q., Wang, H. B., et al. Evaluation of fertilization on microbial assembly, metabolites of root exudates and rhizosphere soil in tea plant[J]. Scientia Horticulturae, 2024, 338: 113812.

[105] Jin, M. K., Zhang, Q., Xu, N. H., et al. Lipid metabolites as potential regulators of the antibiotic resistome in Tetramorium caespitum[J]. Environmental science and technology, 2024, 58: 4476-4486.

[106] Johnson, T. A., Stedtfeld, R. D., Wang, Q., et al. Clusters of antibiotic resistance genes enriched together stay together in swine agriculture[J]. mBio, 2016, 7: e02214-02215.

[107] Kaissar, F. Z., Benine, M. L., Abbouni, B., et al. Revealing of multifunctional newly isolated Bacillus strains from Algerian wastes with high pectinase activity for sustainable biotechnological application[J]. Biologia, 2025, 80: 1007-1022.

[108] Kemper, N. Veterinary antibiotics in the aquatic and terrestrial environment[J]. Ecological Indicators, 2008, 8: 1-13.

[109] Khalid, M., Liu, X., Zheng, B., et al. Distinct climatic regions drive antibiotic resistance genes dynamics across public parks and pristine soil ecosystems[J]. Journal of Cleaner Production, 2023, 409: 137275.

[110] Khan, S., Hussain, A., Mehmood, A., et al. Ailanthus altissima (Miller) Swingle fruit - new acyl β-sitosteryl glucoside and in vitro pharmacological evaluation[J]. Natural Product Research, 2016, 30: 2629-2636.

[111] Klumper, U., Riber, L., Dechesne, A., et al. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community[J]. ISME J, 2014, 9: 934-945.

[112] Klümper, U., Gionchetta, G., Catão, E., et al. Environmental microbiome diversity and stability is a barrier to antimicrobial resistance gene accumulation[J]. Communications biology, 2024, 7: 1-13.

[113] Kobayashi, D. Y., Guglielmoni, M., Clarke, B. B. Isolation of the chitinolytic bacteria Xanthomonas maltophilia and Serratia marcescens as biological control agents for summer patch disease of turfgrass[J]. Soil Biology and Biochemistry, 1995, 27: 1479-1487.

[114] Kongkiattikajorn, J., Thepa, S. 2007. Increased tomato yields by heat treatment for controlling Ralstonia solanacearum, in soil [M] //P. O. T. T. K. U. A. CONFERENCE. Kasetsart University; Bangkok: 450-457.

[115] Kröber, M., Wibberg, D., Grosch, R., et al. Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing[J]. Front Microbiol, 2014, 5: 252.

[116] Kwak, M.-J., Kong, H. G., Choi, K., et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology, 2018, 36: 1100.

[117] La, S. K., Li, J. F., Ma, S., et al. Protective role of native root-associated bacterial consortium against root-knot nematode infection in susceptible plants[J]. Nature Communications, 2024, 15: 6723.

[118] Laxminarayan, R., Amábile-Cuevas, C. F., Cars, O., et al. 2016. UN High-Level Meeting on antimicrobials-what do we need? [M], Lancet, 2016/08/02 edn: 218-220.

[119] Leclercq, S. O., Wang, C., Sui, Z., et al. A multiplayer game: species of Clostridium, Acinetobacter, and Pseudomonas are responsible for the persistence of antibiotic resistance genes in manure-treated soils[J]. Environmental Microbiology, 2016, 18: 3494-3508.

[120] Lee, J. H., Park, K. S., Jeon, J. H., et al. Antibiotic resistance in soil[J]. Lancet Infect Dis, 2018, 18: 1306-1307.

[121] Lee, J. H., Kim, N.-H., Jang, K.-M., et al. Prioritization of critical factors for surveillance of the dissemination of antibiotic resistance in Pseudomonas aeruginosa: A systematic review[J]. International Journal of Molecular Sciences, 2023, 24: 15209.

[122] Lee, J. Y., Shim, J. M., Yao, Z., et al. Antimicrobial activity of Bacillus amyloliquefaciens EMD17 isolated from Cheonggukjang and potential use as a starter for fermented soy foods[J]. Food Sci Biotechnol, 2016, 25: 525-532.

[123] Li, B., Chen, Z., Zhang, F., et al. Abundance, diversity and mobility potential of antibiotic resistance genes in pristine Tibetan Plateau soil as revealed by soil metagenomics[J]. FEMS microbiology ecology, 2020a, 96: fiaa172.

[124] Li, B., Li, Q., Xu, Z. H., et al. Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production[J]. Front Microbiol, 2014, 5: 636.

[125] Li, B., Zhang, L., Wei, L. C., et al. Effect of Bacillus amyloliquefaciens QST713 on inter-root substrate environment of cucumber under low-calcium stress[J]. Agronomy, 2024a, 14: 1-21.

[126] Li, D. L., Gao, W. C., Chen, D. H., et al. Exploring microbial dynamics, metabolic functions and microbes–metabolites correlation in a millennium paddy soil chronosequence using metabolome and microbiome[J]. Chemical and Biological Technologies in Agriculture, 2024b, 11: 146.

[127] Li, H., Luo, Q. P., Pu, Q., et al. Earthworms reduce the dissemination potential of antibiotic resistance genes by changing bacterial co-occurrence patterns in soil[J]. Journal of Hazardous Materials, 2022a, 426: 128127.

[128] Li, H. L., Zhao, S. S., Zhang, X. Y., et al. Inoculation of Bacillus velezensis Bv-116 and its bio-organic fertilizer serve as an environmental friendly biocontrol strategy against cucumber Fusarium wilt[J]. Frontiers in Plant Science, 2024c, 15: 1467265.

[129] Li, Q., Zhang, Y., Hu, J., et al. Distribution of tetracycline resistance genes within an organic fertilizer-amended soil–rice continuum[J]. Rhizosphere, 2024d, 31: 100955.

[130] Li, Q. J., Zhang, D. Q., Song, Z. X., et al. Organic fertilizer activates soil beneficial microorganisms to promote strawberry growth and soil health after fumigation[J]. Environmental Pollution, 2022b, 295: 118653.

[131] Li, R. C., Zhang, N., Deng, X. H., et al. Tomato bacterial wilt disease outbreaks are accompanied by an increase in soil antibiotic resistance[J]. Environ Int, 2024e, 190: 108896.

[132] Li, R. L., Li, Y. H., Li, H. Y., et al. Differential drivers on the occurrence of antibiotic resistance genes in agricultural soils and crops: Evidence from the different fertilization regimes[J]. Journal of Environmental Management, 2024f, 367: 121998.

[133] Li, S. M., Fan, W., Xu, G., et al. Bio-organic fertilizers improve Dendrocalamus farinosus growth by remolding the soil microbiome and metabolome[J]. Frontiers in Microbiology, 2023a, 14: 1117355.

[134] Li, T. T., Ou, Y. N., Ling, S. Q., et al. Suppressing Ralstonia solanacearum and bacterial antibiotic resistance genes in tomato rhizosphere soil through companion planting with basil or cilantro[J]. Agronomy, 2024g, 14: 1129.

[135] Li, W. J., Su, H. C., Cao, Y. C., et al. Antibiotic resistance genes and bacterial community dynamics in the seawater environment of Dapeng Cove, South China[J]. Science of The Total Environment, 2020b, 723: 138027.

[136] Li, W. X., Zhang, F. Y., Cui, G. H., et al. Effects of bio-organic fertilizer on soil fertility, microbial community composition, and potato growth[J]. ScienceAsia, 2021a, 47: 347-356.

[137] Li, Y. C., Deng, X. H., Zhang, N., et al. Rhizosphere suppression hinders antibiotic resistance gene (ARG) spread under bacterial invasion[J]. One Health, 2023b, 16: 100481.

[138] Li, Y. J., Wang, M., Li, Q., et al. Biodegradable film drip fertigation is more conducive to reducing the diversity and abundance of antibiotic resistance genes than plastic film drip fertigation[J]. Plant and Soil, 2025: DOI10.1007/s11104-11025-07212-11100.

[139] Li, Z. D., Jiao, Y. Q., Yin, J., et al. Productivity and quality of banana in response to chemical fertilizer reduction with bio-organic fertilizer: Insight into soil properties and microbial ecology[J]. Agriculture, Ecosystems and Environment, 2021b, 322: 107659.

[140] Liang, J. S., Mao, G. N., Yin, X. L., et al. Identification and quantification of bacterial genomes carrying antibiotic resistance genes and virulence factor genes for aquatic microbiological risk assessment[J]. Water Research, 2020a, 168: 115160.

[141] Liang, Z. S., Yu, Y., Ye, Z. K., et al. Pollution profiles of antibiotic resistance genes associated with airborne opportunistic pathogens from typical area, Pearl River Estuary and their exposure risk to human[J]. Environment International, 2020b, 143: 105934.

[142] Lima-Mendez, G., Faust, K., Henry, N., et al. Determinants of community structure in the global plankton interactome[J]. Science, 2015, 348: 1262073.

[143] Lin, H., Chapman, S. J., Freitag, T. E., et al. Fate of tetracycline and sulfonamide resistance genes in a grassland soil amended with different organic fertilizers[J]. Ecotoxicology and Environmental Safety, 2019, 170: 39-46.

[144] Lin, X. L., Xu, G. H., Li, Y. J., et al. Chemical fertilizers promote dissemination of ARGs in maize rhizosphere: An overlooked risk revealed after 37-year traditional agriculture practice[J]. Science of The Total Environment, 2024, 941: 173737.

[145] Liu, H. J., Xiong, W., Zhang, R. F., et al. Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora[J]. Plant and Soil, 2017, 423: 229-240.

[146] Liu, J. P., Ma, Y. X., Sun, Y. C., et al. Epidemiological characteristics of antibiotic resistance genes in various bacteria worldwide[J]. Environment International, 2025a, 198: 109410.

[147] Liu, L., Mu, B. R., Zhou, Y., et al. Research trends and development dynamics of qPCR-based biomarkers: A comprehensive bibliometric analysis[J]. Molecular Biotechnology, 2025b: DOI10.1007/s12033-12024-01356-12037.

[148] Liu, Q., Pang, Z. Q., Sun, H. R., et al. Unveiling the maize-benefit: Synergistic impacts of organic-inorganic fertilizer cooperation on rhizosphere microorganisms and metabolites[J]. Applied Soil Ecology, 2024a, 193: 105171.

[149] Liu, T. B., Qu, J., Fang, Y. Y., et al. Polyamines: The valuable bio-stimulants and endogenous signaling molecules for plant development and stress response[J]. Journal of Integrative Plant Biology, 2024b: 582-595.

[150] Liu, W. B., Cheng, Y. F., Guo, J. J., et al. Long-term manure inputs induce a deep selection on agroecosystem soil antibiotic resistome[J]. Journal of Hazardous Materials, 2022, 436: 129163.

[151] Liu, W. B., Cui, S. Y., Wu, L. T., et al. Effects of bio-organic fertilizer on soil fertility, yield, and quality of tea[J]. Journal of Soil Science and Plant Nutrition, 2023a, 23: 5109-5121.

[152] Liu, W. X., Wang, Q. L., Wang, B. Z., et al. Changes in the abundance and structure of bacterial communities under long-term fertilization treatments in a peanut monocropping system[J]. Plant and Soil, 2015, 395: 415-427.

[153] Liu, W. Y., Zhao, Q. Q., Zhang, Z. Y., et al. Enantioselective effects of imazethapyr on Arabidopsis thaliana root exudates and rhizosphere microbes[J]. Science of The Total Environment, 2020, 716: 137121.

[154] Liu, X. Q., Liu, H. R., Zhang, Y. S., et al. Straw return drives soil microbial community assemblage to change metabolic processes for soil quality amendment in a rice-wheat rotation system[J]. Soil Biology and Biochemistry, 2023b, 185: 109131.

[155] Liu, Y. X., Shi, J. X., Feng, Y. G., et al. Tobacco bacterial wilt can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer[J]. Biology and Fertility of Soils, 2012, 49: 447-464.

[156] Liu, Y. Y., Xu, Y. M., Huang, Q. Q., et al. Effects of chicken manure application on cadmium and arsenic accumulation in rice grains under different water conditions[J]. Environmental Science and Pollution Research, 2019, 26: 30847-30856.

[157] Lu, X. M., Lu, L. B., Lin, Y. H., et al. Exploring the interaction between agronomic practices and soil characteristics on the presence of antibiotic resistance genes in soil[J]. Applied Soil Ecology, 2023, 187: 104837.

[158] Lu, X. M., Lu, P. Z., Liu, X. P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil[J]. Science of The Total Environment, 2020, 709: 136276.

[159] Luan, X., Han, Z. M., Shen, Y. P., et al. Assessing the effect of treated erythromycin fermentation residue on antibiotic resistome in soybean planting soil: In situ field study[J]. Science of The Total Environment, 2021, 779: 146329.

[160] Luo, C. W., Tsementzi, D., Kyrpides, N., et al. Direct Comparisons of Illumina vs. Roche 454 Sequencing Technologies on the Same Microbial Community DNA Sample[J]. PLoS One, 2012, 7: e30087.

[161] M., M. G., M, G. R. Plant growth promotion and disease suppression ability of Pseudomonas fluorescens on acid lime[J]. 2006.

[162] MacLean, D., Jones, J. D. G., Studholme, D. J. Application of 'next-generation' sequencing technologies to microbial genetics[J]. Nature Reviews Microbiology, 2009, 7: 96-97.

[163] Mahapatra, S., Yadav, R., Ramakrishna, W. Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde[J]. Journal Applied Microbiology, 2022, 132: 3543-3562.

[164] Mahdi, I., Fahsi, N., Hijri, M., et al. Antibiotic resistance in plant growth promoting bacteria: A comprehensive review and future perspectives to mitigate potential gene invasion risks[J]. Frontiers in Microbiology, 2022, 13: 999988.

[165] Martínez, J. L., Baquero, F., Andersson, D. I. Predicting antibiotic resistance[J]. 2007, 38: 1195-1208.

[166] Martínez, J. L. Antibiotics and antibiotic resistance genes in natural environments[J]. Science, 2008, 321: 365-367.

[167] Maseda, H., Uwate, M., Nakae, T. Transcriptional regulation of the mexEF-oprN multidrug efflux pump operon by MexT and an unidentified repressor in nfxC-type mutant of Pseudomonas aeruginosa[J]. FEMS Microbiol Lett, 2010, 311: 36-43.

[168] Massalha, H., Korenblum, E., Tholl, D., et al. Small molecules below-ground: the role of specialized metabolites in the rhizosphere[J]. Plant J, 2017, 90: 788-807.

[169] Mendes, L. W., Kuramae, E. E., Navarrete, A. A., et al. Taxonomical and functional microbial community selection in soybean rhizosphere[J]. ISME J, 2014, 8: 1577-1587.

[170] Monier, J.-M., Demaneche, S., Delmont, T. O., et al. Metagenomic exploration of antibiotic resistance in soil[J]. Curr Opin Microbiol, 2011, 14: 229-235.

[171] Moore, J. D., Gerdt, J. P., Eibergen, N. R., et al. Active efflux influences the potency of quorum sensing inhibitors in Pseudomonas aeruginosa[J]. Chembiochem, 2014, 15: 435-442.

[172] Mori, T., Takenaka, K., Domoto, F., et al. Development of a method to rapidly assess resistance/susceptibility of Micro-Tom tomatoes to Tomato yellow leaf curl virus via agroinoculation of cotyledons[J]. BMC Research Notes, 2021, 14: 237.

[173] Mukaihara, T., Hatanaka, T., Nakano, M., et al. Ralstonia solanacearum type III effector RipAY is a glutathione-degrading enzyme that is activated by plant cytosolic thioredoxins and suppresses plant immunity[J]. mBio, 2016, 7: e00359-00316.

[174] Nadarajah, K. Role of microbiome in the generation of disease-suppressive soil for sustainable agriculture[J]. ScienceAsia, 2024, 50: 1-8.

[175] Nesme, J., Simonet, P. The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria[J]. Environmental Microbiology, 2015, 17: 913-930.

[176] Odhiambo, B. O. Antimicrobial Compounds Biosynthesis and Biocontrol Mechanisms of Lysobacter enzymogenes[J]. Pan Africa Science Journal, 2021, 1: DOI: 10.47787/pasj.42021.47701.47722.

[177] Ou, Y. N., Shen, Z. Z., Wang, B. B., et al. Microbial diversity assembled from series-diluted suspensions of disease-suppressive soil determines pathogen invasion resistance[J]. Pedosphere, 2021, 31: 221-225.

[178] Padda, K. P., Puri, A., Chanway, C. P. Paenibacillus polymyxa: A prominent biofertilizer and biocontrol agent for sustainable agriculture[C]//Agriculturally Important Microbes for Sustainable Agriculture.2017:165-191. 10.1007/978-981-10-5343-6_6.

[179] Pan, T. W., Chen, Y. L., Wang, L., et al. Integrated anaerobic soil disinfestation and bio-organic fertilizers to alleviate continuous cropping obstacles: Improving soil health and changing bacterial communities[J]. Agriculture, Ecosystems and Environment, 2025a, 385: 109562.

[180] Pan, X., Yu, H. J., Zhang, B., et al. Effects of organic fertilizer replacement on the microbial community structure in the rhizosphere soil of soybeans in albic soil[J]. Scientific Reports, 2025b, 15: 12271.

[181] Pascale, A., Proietti, S., Pantelides, I. S., et al. Modulation of the root microbiome by plant molecules: The basis for targeted disease suppression and plant growth promotion[J]. Frontiers in Plant Science, 2019, 10: 1741.

[182] Pawlowski, A. C., Wang, W., Koteva, K., et al. A diverse intrinsic antibiotic resistome from a cave bacterium[J]. Nat Commun, 2016, 7: 13803.

[183] Pehrsson, E. c., Tsukayama, P., Patel, S., et al. Interconnected microbiomes and resistomes in low-income human habitats[J]. Nature, 2016, 533: 212-216.

[184] Peng, S., Feng, Y. Z., Wang, Y. M., et al. Prevalence of antibiotic resistance genes in soils after continually applied with different manure for 30 years[J]. Journal of Hazardous Materials, 2017, 340: 16-25.

[185] Pruden, A., Pei, R., Storteboom, H., et al. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado[J]. Environmental science and technology, 2006, 40: 7445-7450.

[186] Pu, Q., Zhao, L. X., Li, Y. T., et al. Manure fertilization increase antibiotic resistance in soils from typical greenhouse vegetable production bases, China[J]. Journal of Hazardous Materials, 2020, 391: 122267.

[187] Qi, Z., Qi, Y., Le, Z. W., et al. The interactions between antibiotic resistance genes and heavy metal pollution under co-selective pressure influenced the bio-enzyme activity[J]. Frontiers in Chemistry, 2021, 9: 691565.

[188] Qiao, C. C., Pentonb, C. R., Xiong, W., et al. Reshaping the rhizosphere microbiome by bio-organic amendment to enhance crop yield in a maize-cabbage rotation system[J]. Applied Soil Ecology, 2019, 142: 136-146.

[189] Qiao, M., Ying, G. G., Singer, A. C., et al. Review of antibiotic resistance in China and its environment[J]. Environment International, 2018, 110: 160-172.

[190] Qiu, M., Zhang, R., Xue, C., et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil[J]. Biology and Fertility of Soils, 2012, 48: 807-816.

[191] Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., et al. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms[J]. Plant and Soil, 2008, 321: 341-361.

[192] Rafiq, M., Hayat, M., Anesio, A. M., et al. Recovery of metallo-tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier, Pakistan[J]. PLoS One, 2017, 12: e0178180.

[193] Rais, A., Jabeen, Z., Shair, F., et al. Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae[J]. PLoS One, 2017, 12: e0187412.

[194] Ramesh, M., Thankaraj, S. R. Genomic analysis and antibiotic resistance profiling of Bacillus amyloliquefaciens AUPP2: implication for biocontrol agent against the fruit rot of banana[J]. Journal of Plant Pathology, 2024, 106: 1221-1233.

[195] Ramesh, R., Phadke, G. S. Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum[J]. Crop Protection, 2012, 37: 35-41.

[196] Roberts, D. P., Denny, T. P., Schell, M. A. Cloning of the egl gene of Pseudomonas solanacearum and analysis of its role in phytopathogenicity[J]. Journal of Bacteriology, 1988, 170: 1445-1451.

[197] Ryffel, F., Helfrich, E. J., Kiefer, P., et al. Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves[J]. ISME J, 2016, 10: 632-643.

[198] Sang, Y. Y., Wang, Y. R., Ni, H., et al. The Ralstonia solanacearum type III effector RipAY targets plant redox regulators to suppress immune responses[J]. Molecular Plant Pathology, 2018, 19: 129-142.

[199] Santos, B. M., Gilreath, J. P., Motis, T. N., et al. Comparing methyl bromide alternatives for soilborne disease, nematode and weed management in fresh market tomato[J]. Crop Protection, 2006, 25: 690-695.

[200] Seifert, H., Baginski, R., Chulze, A., et al. Antimicrobial susceptibility of Acinetobacter species[J]. Antimicrobial Agents and Chemotherapy, 1993, 37: 750-753.

[201] Sethi, M., Mohanty, V., Mishra, S., et al. Targeted (PCR-based) screening of antibiotic resistance genes' prevalence in the gut microbiota of tribal people of Nabarangpur, Odisha, India[J]. Lett Appl Microbiol, 2022, 74: 577-585.

[202] Shafi, J., Tian, H., Ji, M. Bacillus species as versatile weapons for plant pathogens: a review[J]. Biotechnology and Biotechnological Equipment, 2017, 31: 446-459.

[203] Shen, C., He, M. Y., Zhang, J. H., et al. Response of soil antibiotic resistance genes and bacterial communities to fresh cattle manure and organic fertilizer application[J]. Journal of Environmental Management, 2024, 349: 119453.

[204] Shen, Z. Z., Ruan, Y. Z., Wang, B. B., et al. Effect of biofertilizer for suppressing Fusarium wilt disease of banana as well as enhancing microbial and chemical properties of soil under greenhouse trial[J]. Applied Soil Ecology, 2015, 93: 111-119.

[205] Shen, Z. Z., Wang, B. B., Zhu, J. X., et al. Lime and ammonium carbonate fumigation coupled with bio-organic fertilizer application steered banana rhizosphere to assemble a unique microbiome against Panama disease[J]. Microbial Biotechnology, 2019, 12: 515-527.

[206] Shi, L. M., Zhang, J. Y., Lu, T. D., et al. Metagenomics revealed the mobility and hosts of antibiotic resistance genes in typical pesticide wastewater treatment plants[J]. Science of The Total Environment, 2022, 817: 153033.

[207] Singer, A. C., Shaw, H., Rhodes, V., et al. Review of antimicrobial resistance in the environment and its relevance to environmental regulators[J]. Frontiers in Microbiology, 2016, 7: 1728.

[208] Smith, E. F. A bacterial disease of the tomato, eggplant, and Irish potato[J]. US Dept. Agric. Div. Veg. Phys. Path. Bull, 1896, 12: 1-26.

[209] Song, M. K., Song, D. D., Jiang, L. F., et al. Large-scale biogeographical patterns of antibiotic resistome in the forest soils across China[J]. Journal of Hazardous Materials, 2021, 403: 123990.

[210] Song, T. T., Teng, H. H., Li, Y. S., et al. Exploring potential ecological risks of antibiotic–resistance genes in soil–plant systems caused by manure application[J]. Sustainable Horizons, 2025, 14: 100128.

[211] Song, W. F., Shu, A. P., Liu, J. A., et al. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil[J]. Pedosphere, 2022, 32: 637-648.

[212] Spengler, G., Rodrigues, L., Martins, A., et al. Genetic response of Salmonella enterica serotype Enteritidis to thioridazine rendering the organism resistant to the agent[J]. Int J Antimicrob Agents, 2012, 39: 16-21.

[213] Spooren, J., Bentum, S. v., Thomashow, L. S., et al. Plant-driven Aassembly of disease-suppressive soil microbiomes[J]. Annual Review of Phytopathology, 2024, 62: 1-30.

[214] Stokes, H. W., Gillings, M. R. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens[J]. FEMS Microbiol Rev, 2011, 35: 790-819.

[215] Su, L. X., Bai, T. Y., Qin, X. W., et al. Organic manure induced soil food web of microbes and nematodes drive soil organic matter under jackfruit planting[J]. Applied Soil Ecology, 2021, 166: 103994.

[216] Sun, R. B., Zhang, X. X., Guo, X. S., et al. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J]. Soil Biology and Biochemistry, 2015, 88: 9-18.

[217] Sun, Y. M., Qiu, T. L., Gao, M., et al. Inorganic and organic fertilizers application enhanced antibiotic resistome in greenhouse soils growing vegetables[J]. Ecotoxicology and Environmental Safety, 2019, 179: 24-30.

[218] Takahashi, H., Shimizu, A., Arie, T., et al. Catalog of Micro-Tom tomato responses to common fungal, bacterial, and viral pathogens[J]. Journal of General Plant Pathology, 2005, 71: 8-22.

[219] Tan, L., Li, L. Y., Ashbolt, N., et al. Arctic antibiotic resistance gene contamination, a result of anthropogenic activities and natural origin[J]. Science of The Total Environment, 2018, 621: 1176-1184.

[220] Tan, S., Jiang, Y., Song, S., et al. Two Bacillus amyloliquefaciens strains isolated using the competitive tomato root enrichment method and their effects on suppressing Ralstonia solanacearum and promoting tomato plant growth[J]. Crop Protection, 2013a, 43: 134-140.

[221] Tan, S. Y., Gu, Y., Yang, C. L., et al. Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion[J]. Biology and Fertility of Soils, 2015, 52: 341-351.

[222] Tan, S. Y., Dong, Y., Liao, H. P., et al. Antagonistic bacterium Bacillus amyloliquefaciens induces resistance and controls the bacterial wilt of tomato[J]. Pest Manag Science, 2013b, 69: 1245-1252.

[223] Tang, M. R., Wei, X., Wan, X., et al. The role and relationship with efflux pump of biofilm formation in Klebsiella pneumoniae[J]. Microbial Pathogenesis, 2020a, 147: 104244.

[224] Tang, T. T., Sun, X., Liu, Q., et al. Different effects of soil bacterial communities affected by biocontrol agent YH-07 on tomato Fusarium wilt inhibition[J]. RSC Advances, 2020b, 10: 34977-34985.

[225] Tao, C. Y., Li, R., Xiong, W., et al. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression[J]. Microbiome, 2020, 8: 137.

[226] Tong, Y. Y., Zheng, X. Q., Liu, H. W., et al. Bio-organic fertilizer enhances soil mineral solubilization, microbial community stability, and fruit quality in an 8-year watermelon continuous cropping system[J]. Biology and Fertility of Soils, 2025, 61: 747-760.

[227] Turker, G., Akyol, C., Ince, O., et al. Operating conditions influence microbial community structures, elimination of the antibiotic resistance genes and metabolites during anaerobic digestion of cow manure in the presence of oxytetracycline[J]. Ecotoxicol Environ Saf, 2018, 147: 349-356.

[228] Vaillancourt, M., Limsuwannarot, S. P., Bresee, C., et al. Pseudomonas aeruginosa mexR and mexEF antibiotic efflux pump variants exhibit increased virulence[J]. Antibiotics, 2021, 10: 1664.

[229] Vurukonda, S. S. K. P., Giovanardi, D., Stefani, E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes[J]. International Journal of Molecular Sciences, 2018, 19: 952.

[230] Wang, F., Fu, Y. H., Sheng, H. J., et al. Antibiotic resistance in the soil ecosystem: A One Health perspective[J]. Current Opinion in Environmental Science and Health, 2021, 20: 100230.

[231] Wang, F. H., Hu, C. S., Han, W. X., et al. Fifteen-year application of manure and chemical fertilizers differently impacts soil ARGs and microbial community structure[J]. Frontiers in Microbiology, 2020, 11: 62.

[232] Wang, Z. R., Zhang, N., Li, C. M., et al. Diversity of antibiotic resistance genes in soils with four different fertilization treatments[J]. Frontiers in Microbiology, 2023, 14: 1291599.

[233] Wei, Z., Gu, Y., Friman, V.-P., et al. Initial soil microbiome composition and functioning predetermine future plant health[J]. Science advances, 2019, 5: eaaw0759.

[234] Wei, Z., Yang, X. M., Yin, S. X., et al. Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field[J]. Applied Soil Ecology, 2011, 48: 152-159.

[235] Wei, Z. Y., Shen, W. L., Feng, K., et al. Organic fertilizer potentiates the transfer of typical antibiotic resistance gene among special bacterial species[J]. J Hazard Mater, 2022, 435: 128985.

[236] Wu, C. C., Ma, Y. J., Wang, D., et al. Integrated microbiology and metabolomics analysis reveal plastic mulch film residue affects soil microorganisms and their metabolic functions[J]. Journal of Hazardous Materials, 2022, 423: 127258.

[237] Wu, G. W., Liu, Y. P., Xu, Y., et al. Exploring elicitors of the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways[J]. Molecular Plant-Microbe Interactions, 2018a, 31: 560-567.

[238] Wu, J., Guo, S. M., Li, K. J., et al. Effect of fertilizer type on antibiotic resistance genes by reshaping the bacterial community and soil properties[J]. Chemosphere, 2023, 336: 139272.

[239] Wu, L., Huang, Z., Li, X., et al. Stomatal closure and SA-, JA/ET-Signaling pathways are essential for Bacillus amyloliquefaciens FZB42 to restrict keaf disease caused by phytophthora nicotianae in nicotiana benthamiana[J]. Frontiers in Microbiology, 2018b, 9: doi: 10.3389/fmicb.2018.00847.

[240] Xie, W. Y., Yuan, S. T., Xu, M. G., et al. Long-term effects of manure and chemical fertilizers on soil antibiotic resistome[J]. Soil Biology and Biochemistry, 2018, 122: 111-119.

[241] Xie, W. Y., Wang, Y. T., Yuan, J., et al. Prevalent and highly mobile antibiotic resistance genes in commercial organic fertilizers[J]. Environment International, 2022, 162: 107157.

[242] Xing, J. J., Jia, X., Wang, H. Z., et al. The legacy of bacterial invasions on soil native communities[J]. Environmental Microbiology, 2021, 23: 669-681.

[243] Xiong, W., Guo, S., Jousset, A., et al. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome[J]. Soil Biology and Biochemistry, 2017, 114: 238-247.

[244] Xu, S., Qasim, M. Z., Zhang, T., et al. Diversity, abundance and expression of the antibiotic resistance genes in a Chinese landfill: Effect of deposit age[J]. Journal of Hazardous Materials, 2021, 417: 126027.

[245] Xu, Y., Li, H. Y., Tan, L., et al. What role does organic fertilizer actually play in the fate of antibiotic resistome and pathogenic bacteria in planting soil?[J]. J Environ Manage, 2022, 317: 115382.

[246] Yang, F. X., Shen, S. Z., Gao, W. X., et al. Deciphering discriminative antibiotic resistance genes and pathogens in agricultural soil following chemical and organic fertilizer[J]. Journal of Environmental Management, 2022a, 322: 116110.

[247] Yang, L. Y., Zhou, S. Y. D., Lin, C. S., et al. Effects of biofertilizer on soil microbial diversity and antibiotic resistance genes[J]. Science of The Total Environment, 2022b, 820: 153170.

[248] Yang, Q. Y., Zhang, M. K. Effect of bio-organic fertilizers partially substituting chemical fertilizers on labile organic carbon and bacterial community of citrus orchard soils[J]. Plant and Soil, 2022, 483: 255-272.

[249] Yang, X., Lai, J. L., Zhang, Y., et al. Microbial community structure and metabolome profiling characteristics of soil contaminated by TNT, RDX, and HMX[J]. Environmental Pollution, 2021, 285: 117478.

[250] Yang, Y., Li, T., Liu, P., et al. The formation of specific bacterial communities contributes to the enrichment of antibiotic resistance genes in the soil plastisphere[J]. Journal of Hazardous Materials, 2022c, 436: 129247.

[251] Yang, Y. H., Huang, X. C., Li, Y., et al. Characteristics of the soil microbial community structure under long-term chemical fertilizer application in yellow soil paddy felds[J]. Agronomy, 2024, 14: 1-14.

[252] Yang, Y. Y., Liu, G. H., Ye, C., et al. Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the Qinghai-Tibetan Plateau[J]. Journal ofHazardous Materials, 2019, 361: 283-293.

[253] Yimer, D., Abena, T. Components, mechanisms of action, success under greenhouse and field condition, market availability, formulation and inoculants development on biofertilizer[J]. Biomedical Journal of Scientific and Technical Research, 2019, 12: DOI: 10.26717/BJSTR.22019.26712.002279.

[254] Yu, P., He, X. M., Baer, M., et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation[J]. Nature Plants, 2021, 7: 481-499.

[255] Yu, T., Liu, Z. S., Hu, B. L., et al. Field-based investigation reveals selective enrichment of companion microbes in vegetables leading to specific accumulation of antibiotic resistance genes[J]. Sci Total Environ, 2024, 929: 172636.

[256] Yuan, J., Li, B., Zhang, N., et al. Production of bacillomycin- and macrolactin-type antibiotics by Bacillus amyloliquefaciens NJN-6 for suppressing soilborne plant pathogens[J]. Journal of Agricultural and Food Chemistry, 2012, 60: 2976-2981.

[257] Yuliar, Nion, Y. A., Toyota, K. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum[J]. Microbes and Environments, 2015, 30: 1-11.

[258] Zhalnina, K., Louie, K. B., Hao, Z., et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 2018, 3: 470-480.

[259] Zhang, M., He, L. Y., Liu, Y. S., et al. Variation of antibiotic resistome during commercial livestock manure composting[J]. Environment International, 2020, 136: 105458.

[260] Zhang, R. M., Liu, X., Wang, S. L., et al. Distribution patterns of antibiotic resistance genes and their bacterial hosts in pig farm wastewater treatment systems and soil fertilized with pig manure[J]. Science of The Total Environment, 2021a, 758: 143654.

[261] Zhang, S. H., Yang, G. L., Hou, S. G., et al. Distribution of ARGs and MGEs among glacial soil, permafrost, and sediment using metagenomic analysis[J]. Environmental Pollution, 2018, 234: 339-346.

[262] Zhang, S. N., Sun, L. T., Shi, Y. J., et al. The application of enzymatic fermented soybean effectively regulates associated microbial communities in tea soil and positively affects lipid metabolites in tea new shoots[J]. Frontiers in Microbiology, 2022a, 13: 992823.

[263] Zhang, X. X., Zhang, T., Fang, H. H. P. Antibiotic resistance genes in water environment[J]. Appl Microbiol Biotechnol, 2009, 82: 397-414.

[264] Zhang, Y., Cheng, D. M., Xie, J., et al. Long-term field application of manure induces deep selection of antibiotic resistomes in leaf endophytes of Chinese cabbage[J]. Science of The Total Environment, 2023, 882: 163334.

[265] Zhang, Y., Cheng, D. M., Zhang, Y. T., et al. Soil type shapes the antibiotic resistome profiles of long-term manured soil[J]. Science of The Total Environment, 2021b, 786: 147361.

[266] Zhang, Z. Y., Zhang, Q., Wang, T. Z., et al. Assessment of global health risk of antibiotic resistance genes[J]. Nature Communications, 2022b, 13: 1553.

[267] Zhao, G. R., Wu, K. X., An, T. X., et al. Integrated analysis of changes in soil microbiota and metabolites following long-term fertilization in a subtropical maize-wheat agroecosystem[J]. Pedosphere, 2023, 33: 521-533.

[268] Zhao, J., Liu, J., Liang, H., et al. Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health[J]. PLoS One, 2018, 13: e0192967.

[269] Zhao, M. L., Zhao, J., Yuan, J., et al. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth[J]. Plant Cell Environment, 2021, 44: 613-628.

[270] Zhao, Z. Z., Gao, B. Q., Li, G., et al. Mitigating the vertical migration and leaching risks of antibiotic resistance genes through insect fertilizer application[J]. Environmental Research, 2025, 276: 121389.

[271] Zhao, Z. Z., Gao, B. Q., Yang, C. R., et al. Stimulating the biofilm formation of Bacillus populations to mitigate soil antibiotic resistome during insect fertilizer application[J]. Environ Int, 2024, 190: 108831.

[272] Zhou, Z. M., Yao, H. Y. Effects of composting different types of organic fertilizer on the microbial community structure and antibiotic resistance genes[J]. Microorganisms, 2020, 8: 268.

[273] Zhu, Y. G., Johnson, T. A., Su, J. Q., et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences, 2013, 110: 3435-3440.

[274] Zong Zhuan Shen, Wang, B., Lv, N. N., et al. Effect of the combination of bio-organic fertiliser with Bacillus amyloliquefaciens NJN-6 on the control of banana Fusariumwilt disease, crop production and banana rhizosphere culturable microflora[J]. Biocontrol Science and Technology, 2015, 25: 716-731.

[275] Zou, H. Y., Gao, F. Z., He, L. Y., et al. Prevalence of antibiotic resistance genes in mining-impacted farmland environments[J]. Ecotoxicology and Environmental Safety, 2025, 289: 117651.

[276] Zou, Y., Zhang, Y., Zhou, J., et al. Effects of composting pig manure at different mature stages on ARGs in different types of soil-vegetable systems[J]. Journal of Environmental Management, 2022, 321: 116042.

[277] 王涛, 王占利, 李术娜,等. 棉花黄萎病拮抗细菌DS45-2 菌株在土壤和棉花根内的定殖[J]. 棉 花 学 报, 2010, 22: 169-174.

[278] 张娜. 番茄抑病型土壤培育及其稳定性的微生物生态学机制[D]. 南京农业大学, 2018

[279] 周丽洪, 姬广海, 王永吉,等. 魔芋内生拮抗细菌生防机理研究[J]. 湖南农业大学学报(自然科学版), 2014, 40: 262-266.

[280] 陈晓芬, 李忠佩, 刘明,等. 不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响[J]. 中国农业科学, 2013, 46: 950-960.

[281] 杜天宇. 长期施肥对核桃产量品质影响的土壤微生物学机制[D]. 西北农林科技大学, 2024

[282] 贺纪正, 袁超磊, 沈菊培,等. 土壤宏基因组学研究方法与进展[J]. 土壤学报, 2012, 4: 155-164.

[283] 贺纪正, 张丽梅, 沈菊培,等. 宏基因组学(Metagenomics)的研究现状和发展趋势[J]. 环境科学学报, 2008, 28: 9.

[284] 李娟, 赵秉强, 李秀英,等. 长期不同施肥制度下几种土壤微生物学特征变化[J]. 植物生态学报, 2008, 32: 8.

[285] 李森. 东北黑土农田抗生素抗性基因污染及调控研究[D]. 中国科学院东北地理与农业生态研究所, 2021

[286] 吕丰娟, 张志华, 汪瑞清,等. 不同生育期芝麻根系分泌物对连作障碍的响应及其自毒作用[J]. 中国油料作物学报, 2021, 43: 1087-1098.

[287] 孙家骏, 付青霞, 谷洁,等. 生物有机肥对猕猴桃土壤酶活性和微生物群落的影响[J]. 应用生态学报, 2016, 27: 829-837.

[288] 孙欣, 高莹, 杨云锋. 环境微生物的宏基因组学研究新进展[J]. 生物多样性, 2014, 21: 393-400.

[289] 汪盼盼, 杨野, 刘迪秋,等. 宏基因组学在植物病害研究中的应用[J]. 生物技术通报, 2020, 36: 146-154.

[290] 王海斌, 陈晓婷, 丁力,等. 连作茶树根际土壤自毒潜力、酶活性及微生物群落功能多样性分析[J]. 热带作物学报, 2018, 39: 5.

[291] 夏围围, 贾仲君. 高通量测序和DGGE分析土壤微生物群落的技术评价[J]. 微生物学报, 2014, 54: 1489-1499.

[292] 张锡洲, 余海英, 王永东,等. 不同形态氮肥对设施土壤速效养分的影响[J]. 西南农业学报, 2010, 23: 5.

中图分类号:

 S15    

开放日期:

 2025-09-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式