- 无标题文档
查看论文信息

中文题名:

 褪黑素对桃果实采后软腐病的控制效果及其机理研究     

姓名:

 董小盼    

学号:

 2021108073    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083203    

学科名称:

 工学 - 食品科学与工程(可授工学、农学学位) - 农产品加工及贮藏工程    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 南京农业大学    

院系:

 食品科技学院    

专业:

 食品科学与工程    

研究方向:

 农产品加工与贮藏    

第一导师姓名:

 郑永华    

第一导师单位:

  南京农业大学    

完成日期:

 2024-04-11    

答辩日期:

 2024-05-20    

外文题名:

 Effects of Melatonin Treatment on Controlling Rhizopus Rot in Postharvest Peach Fruit and Possible Mechanisms    

中文关键词:

 桃果实 ; 褪黑素 ; 软腐病 ; 敏化反应 ; 诱导抗性    

外文关键词:

 Peach fruit ; Melatonin ; Rhizopus rot ; Priming ; Induced resistance    

中文摘要:

桃果实风味浓郁、营养丰富,深受消费者喜爱。但桃属呼吸跃变型果实,采后后熟软化快,极易受到病原菌的入侵而发生腐烂变质。其中,由匍枝根霉(Rhizopus stolonifer)引起的软腐病是桃果实采后贮藏的主要病害。化学杀菌剂是目前常用的桃果实采后病害控制手段,但由于病原菌抗药性上升和化学残留等问题使化学杀菌剂的使用逐渐受到限制。因此,探索绿色环保的激发子处理来提高采后果实抗病性已成为防治果实采后病害发生的发展方向。本文以‘霞晖8号’桃果实为试材,研究不同浓度褪黑素(Melatonin, MT)处理对桃果实采后软腐病的影响,以发病情况确定最适MT处理浓度;以此浓度研究MT处理对桃果实采后贮藏期间品质参数、苯丙烷代谢、能量代谢、活性氧代谢以及内部还原势的影响,明确MT对采后桃果实防卫反应的诱导作用和具体模式,以期为生产上桃果实采后病害绿色控制提供理论依据。主要研究结果如下:

1.研究了不同浓度MT处理对桃果实采后软腐病的控制效果及其最适浓度对果实品质参数的影响。结果表明,不同浓度MT处理(0.05、0.10、0.50和1.00 mmol/L)均可有效降低果实软腐病的发病率和病斑直径,其中0.50 mmol/L的MT处理浓度防治效果最好。此浓度MT处理不仅能显著延缓果实硬度、维生素C和可溶性固形物含量的下降,还能提高总酚和总黄酮含量,促进酚类物质新绿原酸、芦丁、绿原酸和表儿茶素的合成累积。这些结果说明,MT处理能够有效抑制果实软腐病的发生,维持贮藏品质,从而保持果实贮藏期间的商品性。

2.研究了0.50 mmol/L MT处理对桃果实采后贮藏期间品质参数、苯丙烷代谢和抗病相关酶活性及其基因表达水平以及R. stolonifer离体生长的影响。结果表明,MT处理可显著减轻桃果实采后软腐病的发生,维持果实品质;且与单一MT处理和R. stolonifer接种相比,经0.50 mmol/L MT处理后桃果实在遭受病原菌侵染时可表现出更为强烈的抗病反应,其几丁质酶、β-1,3-葡聚糖酶、苯丙氨酸解氨酶、肉桂酸羟化酶、4-香豆酸辅酶A连接酶、过氧化物酶和多酚氧化酶活性、总酚和木质素含量以及PpCHI、PpGLU、PpPAL和PpPOD等防卫基因表达水平显著高于单一接种或MT处理果实。此外,MT对R. stolonifer离体生长无明显抑制作用。以上结果表明,MT可通过间接诱导桃果实采后敏化反应,使果实在病原菌侵染后启动防卫反应,从而减少采后病害的发生。

3.研究了0.50 mmol/L MT处理对桃果实采后贮藏期间能量代谢和活性氧代谢的影响。结果表明,MT处理能够提高果实能量代谢相关酶H+-三磷酸腺苷酶、Ca2+-三磷酸腺苷酶、琥珀酸脱氢酶和细胞色素C氧化酶的基因表达及酶活性,促进三磷酸腺苷和二磷酸腺苷含量的上升,抑制磷酸腺苷的积累,维持较高的能荷水平,从而保证了果实的能量供应;同时,MT处理能够提高果实超氧化物歧化酶和过氧化氢酶的基因表达及酶活性,减少过氧化氢的积累,降低超氧阴离子自由基产生速率,提高1,1-二苯基-2-三硝基苯肼自由基清除率和羟基自由基清除率,从而维持果实内活性氧动态平衡。这些结果表明,MT可通过调控能量代谢和活性氧代谢,保持较高的能量状态和抗氧化活性,从而提高果实抵抗R. stolonifer侵染的能力。

4.研究了0.50 mmol/L MT处理对桃果实采后贮藏期间内部还原势的影响。结果表明,MT处理能够诱导提高磷酸戊糖途径(Pentose phosphate pathway, PPP)关键酶葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶以及抗坏血酸-谷胱甘肽(Ascorbate-glutathione, AsA-GSH)循环关键酶单脱氢抗坏血酸还原酶、脱氢抗坏血酸还原酶、抗坏血酸过氧化物酶和谷胱甘肽还原酶的基因表达及酶活性,增加还原性物质还原型辅酶II、还原型谷胱甘肽和抗坏血酸的积累,降低氧化性产物辅酶II、氧化型谷胱甘肽和脱氢抗坏血酸含量,从而提高果实还原势。这些结果表明,MT可通过激活PPP途径和AsA-GSH循环,提升果实内部还原势,从而增强果实抗病性。

外文摘要:

Peaches are popular with consumers because of their rich flavor and high nutrition. However, peach is a type of climacteric fruit, and its softening process is quite fast after harvest making it susceptible to infection by pathogenic bacteria and postharvest rotting. Wherein, the Rhizopus rot caused by Rhizopus stolonifer is the main disease of peach fruit storage after harvest. Chemical fungicides are commonly used to inhibit peach fruit postharvest diseases, but the application of chemical fungicides has been gradually limited due to problems such as rising pathogen resistance and chemical residues. Therefore, exploring green and environmentally friendly stimulants to improve postharvest fruit disease resistance has become a developmental direction for controlling the occurrence of postharvest fruit diseases. In our current study, we used ‘Xiahui No. 8’ peach fruits as material to investigate the effect of different concentrations of MT on Rhizopus rot in postharvest peach fruit. Disease development was measured to determine the most effective MT concentration. Then the effect of optimal MT treatment on the quality parameters, phenylpropanoid pathway, energy and reactive oxygen metabolism, and internal redox status were investigated in postharvest peach fruit. Moreover, the inducing effect of MT on the defense response was demonstrated, which could be provided as the theoretical basis for the green postharvest decay control of peach fruits. The main results of the study are as follows:

1. The effects of different concentrations of MT treatments on the control of Rhizopus rot and the optimal concentration on quality parameters were investigated in postharvest peach fruit. The results showed that 0.05-1.00 mmol/L MT treatment could all effectively reduce the disease incidence and lesion diameter of Rhizopus rot, with 0.50 mmol/L MT treatment concentration presenting the best inhibitory effect. 0.50 mmol/L MT could not only significantly delay the decline of firmness, Vc and TSS contents, but also increase total phenols and total flavonoids contents, and promote the accumulation of phenolic monomers such as neochlorogenic acid, rutin, chlorogenic acid, and epicatechin. These results indicated that MT treatment could effectively inhibit the occurrence of Rhizopus rot and maintain storage quality, thus maintaining the commercialization of postharvest peach fruit.

2. The effects of 0.50 mmol/L MT treatment on quality parameters, phenylpropane metabolism, resistance-related enzyme activities and gene expressions, and in vitro growth of R. stolonifer were investigated in postharvest peach fruit. The results showed that MT treatment could notably reduce the occurrence of Rhizopus rot and maintain fruit quality in postharvest peach fruit. Furthermore, compared with those of the single MT treatment and R. stolonifer inoculation, R. stolonifer inoculation after 0.50 mmol/L MT treatment manifested a stronger disease resistance response; could substantially induce and improve the activities of CHI, GLU, PAL, C4H, 4CL, POD and PPO; could increase the total phenols and lignin contents; and could markedly increase the expression levels of PpCHI, PpGLU, PpPAL and PpPOD. Moreover, MT treatment showed no significant inhibitory effect on the growth of R. stolonifer in vitro. Taken together, these results indicated that MT could initiate defense responses upon pathogenic infection indirectly by priming defense, thereby reducing the occurrence of postharvest peach diseases.

3. The effects of 0.50 mmol/L MT treatment on energy and reactive oxygen species metabolisms were investigated in postharvest peach fruit. The results showed that MT treatment could increase the gene expressions and activities of H+-ATPase, Ca2+-ATPase, SDH and CCO, promote the contents of ATP and ADP, and inhibit the accumulation of AMP, thus maintaining a higher level of energy charge and ensuring enough energy supply for the fruit. At the same time, MT treatment increased gene expressions and enzyme activities of SOD and CAT, reduced the accumulation of H2O2, decreased the rate of O2•−, thus enhancing the DPPH radical scavenging rate and •OH scavenging rate, which was beneficial to maintain the homeostasis of reactive oxygen species in postharvest peach fruit. These results suggested that MT enhanced peach resistance to R. stolonifer infestation by regulating energy and reactive oxygen species metabolisms to maintain higher energy status and antioxidant activity.

4. The effects of 0.50 mmol/L MT treatment on the internal redox status were investigated in postharvest peach fruit. The results showed that MT treatment could increase gene expressions and activities of G6PDH and 6PGDH as well as MDHAR, DHAR, GR and APX, known as key enzymes in the PPP and AsA-GSH cycle. Furthermore, postharvest MT application promoted the accumulation of reducing substances NADPH, AsA and GSH, and decreased the contents of the oxidative products NADP+, GSSG and DHA, thus enhancing the reducing potential of peach fruit. These results suggested that MT could enhance fruit disease resistance by activating the PPP and the AsA-GSH cycle and elevating the internal fruit-reducing potential.

参考文献:

[1] 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007.

[2] 陈偲, 汪立, 夏明星等. β-氨基丁酸处理对采后桃果实还原势的影响及抗病性的诱导作用[J]. 食品科学, 2019, 40(1): 209-215.

[3] 陈勇辉, 殷瑞雪, 万园等. 植物激活蛋白提高植物抗病性的机制研究进展[J]. 生物化工, 2022, 8(6): 193-195.

[4] 段春杨, 田登娟, 黄二宾等. 不同浓度褪黑素处理对采后猕猴桃抗灰霉病的影响[J]. 山东农业科学, 2023, 55(5): 141-147.

[5] 冯雪立, 董晓庆, 朱守亮等. 褪黑素处理对蜂糖李果实的保鲜效应[J]. 食品工业科技, 2020, 41(6): 265-271.

[6] 高孟文. 褪黑素结合硒处理对甘薯采后软腐病和贮藏品质的影响[D]. 安徽农业大学, 2023.

[7] 焦凤. 热空气和MeJA复合处理对桃果实软腐病的影响及其机理研究[D]. 南京农业大学, 2013.

[8] 雷长毅, 汪开拓, 黎春红等.β-氨基丁酸诱导采后葡萄果实敏化抗性及促进可溶性糖积累[J]. 食品与发酵工业, 2023, 49(12): 23-32.

[9] 雷长毅, 汪开拓, 谭美琳, 等. 褪黑素处理对采后李果实Priming抗病性的诱导作用[J]. 食品工业科技, 2022, 43(13): 329-335.

[10] 李灿婴, 张丽华, 葛永红等. 采后茉莉酸甲酯处理对桃果实青霉病及细胞壁降解酶的影响[J]. 食品工业科技, 2015, 36(20): 326-330.

[11] 李高潮, 霍强强, 范崇辉等. 不同贮藏温度与采收期对‘秦超’桃果实品质的影响[J]. 北方园艺, 2017, (14): 136-143.

[12] 李思纯, 杜雅珉, 李书悦等. 外源褪黑素处理对油桃采后品质的影响[J]. 中国果菜, 2021, 41(5): 50-56.

[13] 李永才, 陈松江, 毕阳等. 采后一氧化氮处理对油桃抗软腐病的诱导[J]. 食品工业科技, 2012, 33(10): 340-342+357.

[14] 李自芹, 唐湘桂, 郭慧静等. 不同预冷方式结合1-MCP处理对蟠桃冷藏品质的影响[J]. 包装与食品机械, 2023, 41(2): 14-19+27.

[15] 刘建龙. 外源褪黑素对梨果实发育、采后品质和抗轮纹病的影响及其调控机制研究[D]. 西北农林科技大学, 2019.

[16] 马凌云, 赵亮. 采后水杨酸处理对油桃果实抗病性的影响[J]. 河南工业大学学报(自然科学版), 2014, 35(6): 93-96.

[17] 乜兰春, 孙建设, 李明.酚类物质与果蔬品质研究进展[J]. 中国食品学报, 2003(4):93-98.

[18] 明倩倩, 游勇, 王闯等. 几种杀菌剂对桃软腐病菌的室内药效试验[J]. 作物研究, 2012, 26(5): 523-524+528.

[19] 彭俊森, 罗登灿, 万璇等. 褪黑素抑制‘贵长’猕猴桃软腐病的生理生化机制[J]. 植物生理学报, 2022, 58(12): 2401-2410.

[20] 生吉萍, 赵瑞瑞, 陈玲玲等. 褪黑素采前喷施对采后番茄果实抗病性和贮藏品质的影响[J]. 食品科学, 2020, 41(9): 188-193.

[21] 孙磊, 寇润蕾, 孙少振等. 气调保鲜技术在粮食储藏中的应用[J]. 粮食加工, 2023, 48(6): 93-96.

[22] 唐建新, 王佳莉, 英丽美等. 果蔬采后生理代谢变化及调控机制研究进展[J]. 包装工程, 2022, 43(5):91-99.

[23] 田雨. 桃种质资源褐腐病抗性评价研究[D]. 扬州大学, 2021.

[24] 汪开拓, 雷长毅, 黎春红等. BABA处理对草莓采后灰霉病的控制及其转录组学分析[J]. 果树学报, 2020, 37(11): 1744-1757.

[25] 汪开拓, 廖云霞, 袁坤明等. β-氨基丁酸处理对桃果实采后灰霉病的影响及其诱导抗病模式研究[J]. 食品与发酵工业, 2016, 42(2): 65-71.

[26] 汪开拓, 王英. BTH诱导采后桃果实抗病性反应对其贮藏品质的影响[J]. 食品与发酵工业, 2013, 39(6): 212-219.

[27] 王春燕. 外源褪黑素和硒对草莓果实抗灰霉病的影响及其机制初探[D]. 四川农业大学, 2023.

[28] 王大将, 刘洪冲, 张梦宇等. 外源绿原酸对苹果自身绿原酸合成及灰霉病抗性的影响[J]. 中国食品学报, 2023, 23(3): 309-317.

[29] 王妹娟, 郝建博, 刘敏彦等. 我国桃产业的标准化、现状、问题与建议[J]. 北方果树, 2023, (6): 43-46.

[30] 文杨, 姜卫兵, 魏家星等. 桃资源多样性、价值综合性与绿化应用的途径[J]. 江苏农业科学, 2016, 44(3): 18-23.

[31] 伍冬志, 汪立, 廖云霞等. BTH处理对采后草莓果实还原势和抗病性的调控作用[J]. 食品工业科技, 2018, 39(18): 251-257.

[32] 向妙莲, 吴帆, 李树成等. 外源褪黑素调控活性氧代谢诱导梨果实抗采后黑斑病[J]. 园艺学报, 2022, 49(5): 1102-1110.

[33] 肖烟云, 张婷婷, 林丽莎等. 中国桃果实采后生理和病害研究进展[J]. 包装与食品机械, 2014, 32(3): 45-51.

[34] 杨睿, 林小翠, 窦媛等. 一氧化氮抑制果蔬病害研究进展[J]. 果树学报, 2019, 36(11): 1591-1599.

[35] 杨艺琳, 张正敏, 李美琳等. 2,4-表油菜素内酯对葡萄果实采后灰霉病的抑制作用机理[J]. 食品科学, 2019, 40(15): 231-238.

[36] 余经, 林育钊, 范中奇等. 果蔬采后病害的发生与活性氧和膜脂代谢的关系研究进展[J]. 亚热带农业研究, 2020, 16(2): 132-137.

[37] 余锐, 赵晓春, 杨英军等. 阿魏酸处理对桃果实采后病害与抗病物质代谢的影响[J]. 果农之友, 2023(12): 1-6.

[38] 袁楚珊, 黄余年, 董欣瑞等. 不同贮藏温度对黄桃采后品质和抗氧化能力的影响[J]. 食品工业科技, 2023, 44(3): 356-364.

[39] 张乐乐, 常璐璐, 王小佳等. 褪黑素诱导采后冬枣抗黑斑病的研究[J]. 保鲜与加工, 2021, 21(12): 1-9.

[40] 张鹏, 朱文月, 李江阔等. 微环境气体调控在果蔬保鲜中的研究进展[J]. 包装工程, 2020, 41(1): 1-10+239.

[41] 张亚琳, 展晓凤, 马海娟等. 外源褪黑素调控活性氧代谢诱导采后杏果实对黑斑病的抗性[J]. 食品工业科技, 2022, 43(24): 355-362.

[42] 张正敏, 杨艺琳, 李美琳等. 2,4-表油菜素内酯处理对桃果实软腐病及能量代谢的影响[J]. 食品科学, 2019, 40(5): 207-213.

[43] 赵杰, 佟伟, 李振茹等. 不同气调贮藏方式对水蜜桃保鲜效果的影响[J]. 中国果树, 2017(3): 38-40.

[44] 周文娟, 陈晨, 胡文忠等. 热水处理对桃果实采后病害及生理变化的影响[J]. 食品工业科技, 2017, 38(7): 311-314+319.

[45] Abeles F B, Bosshart R P, Forrence L E, et al. Preparation and purification of glucanase and chitinase from bean leaves[J]. Plant Physiology, 1971, 47(1): 129-134.

[46] Ackrell B A C, Kearney E B, Singer T P. Mammalian succinate dehydrogenase[M]. Academic Press, 1978, 53: 466-483.

[47] Aghdam M S, Jannatizadeh A, Luo Z, et al. Ensuring sufficient intracellular ATP supplying and friendly extracellular ATP signaling attenuates stresses, delays senescence and maintains quality in horticultural crops during postharvest life[J]. Trends in Food Science & Technology, 2018, 76: 67-81.

[48] Alam M, Fazal-ur-rehman M A K, Sajid M, et al. Physicochemical attributes of peach fruit as influenced by application of salicylic acid in cold storage[J]. Fresenius Environmental Bulletin, 2019: 7058.

[49] Alexieva V, Sergiev I, Mapelli S, et al. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat[J]. Plant, Cell & Environment, 2001, 24(12): 1337-1344.

[50] Almugadam S H, Trentini A, Maritati M, et al. Influence of 6-aminonicotinamide (6AN) on Leishmania promastigotes evaluated by metabolomics: Beyond the pentose phosphate pathway[J]. Chemico-Biological Interactions, 2018, 294: 167-177.

[51] Angeli S S, Mio L L M D, Amorim L. Comparative analysis of Monilinia fructicola and M. laxa isolates from Brazil: monocyclic components of peach brown rot[J]. Ciencia Rural, 2017, 47(6).

[52] Arakawa N, Tsutsumi K, Sanceda N G, et al. A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-l, 10-phenanthroline[J]. Agricultural and Biological Chemistry, 1981, 45(5): 1289-1290.

[53] Arnao M B, Hernández‐Ruiz J. Functions of melatonin in plants: a review[J]. Journal of Pineal Research, 2015, 59(2): 133-150.

[54] Arnao M B, Hernández-Ruiz J. Melatonin and its relationship to plant hormones[J]. Annals of Botany, 2018, 121(2): 195-207.

[55] Azevedo I G, Oliveira J G, da Silva M G, et al. P-type H+-ATPases activity, membrane integrity, and apoplastic pH during papaya fruit ripening[J]. Postharvest Biology and Technology, 2008, 48(2): 242-247.

[56] Babenko L M, Smirnov O E, Romanenko K O, et al. Phenolic compounds in plants: Biogenesis and functions[J]. Ukrainian Biochemical Journal, 2019, 91(3): 5-18.

[57] Bal E. Effects of exogenous polyamine and ultrasound treatment to improve peach storability[J]. Chilean Journal of Agricultural Research, 2013, 73(4): 435-440.

[58] Bal E. Physicochemical changes in ‘Santa Rosa’plum fruit treated with melatonin during cold storage[J]. Journal of Food Measurement and Characterization, 2019, 13: 1713-1720.

[59] Balzer I, Hardeland R. Photoperiodism and effects of indoleamines in a unicellular alga, Gonyaulax polyedra[J]. Science, 1991, 253(5021): 795-797.

[60] Bevilaqua J M, Finger-Teixeira A, Marchiosi R, et al. Exogenous application of rosmarinic acid improves saccharification without affecting growth and lignification of maize[J]. Plant Physiology and Biochemistry, 2019, 142: 275-282.

[61] Buswell W, Schwarzenbacher R E, Luna E, et al. Chemical priming of immunity without costs to plant growth[J]. New Phytologist, 2018, 218(3): 1205-1216.

[62] Camejo D, Guzmán-Cedeño Á, Moreno A. Reactive oxygen species, essential molecules, during plant–pathogen interactions[J]. Plant Physiology and Biochemistry, 2016, 103: 10-23.

[63] Camejo D, Guzmán-Cedeño A, Vera-Macias L, et al. Oxidative post-translational modifications controlling plant-pathogen interaction[J]. Plant Physiology and Biochemistry, 2019, 144: 110-117.

[64] Cao S F, Hu Z C, Zheng Y H, et al. Synergistic effect of heat treatment and salicylic acid on alleviating internal browning in cold-stored peach fruit[J]. Postharvest Biology and Technology, 2010, 58(2): 93-97.

[65] Cao S, Cai Y T, Yang Z F, et al. Effect of MeJA treatment on polyamine, energy status and anthracnose rot of loquat fruit[J]. Food Chemistry, 2014, 145: 86-89.

[66] Carrillo-Vico A, Lardone P J, Álvarez-Sánchez N, et al. Melatonin: buffering the immune system[J]. International Journal of Molecular Sciences, 2013, 14(4): 8638-8683.

[67] Ceccarelli D, Simeone A M, Nota P, et al. Phenolic compounds (hydroxycinnamic acids, flavan-3-ols, flavonols) profile in fruit of Italian peach varieties[J]. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 2016, 150(6): 1370-1375.

[68] Chen C Y, Cai N, Wan C P, et al. Carvacrol delays Phomopsis stem-end rot development in pummelo fruit in relation to maintaining energy status and antioxidant system[J]. Food Chemistry, 2022, 372: 131239.

[69] Chen S N, Shang Y, Wang Y, et al. Sensitivity of Monilinia fructicola from peach farms in China to four fungicides and characterization of isolates resistant to carbendazim and azoxystrobin[J]. Plant Disease, 2014, 98(11): 1555-1560.

[70] Chen Y H, Sun J Z, Lin H T, et al. Salicylic acid reduces the incidence of Phomopsis longanae Chi infection in harvested longan fruit by affecting the energy status and respiratory metabolism[J]. Postharvest Biology and Technology, 2020, 160: 111035.

[71] Chumyam A, Shank L, Faiyue B, et al. Effects of chlorine dioxide fumigation on redox balancing potential of antioxidative ascorbate-glutathione cycle in ‘Daw’ longan fruit during storage[J]. Scientia Horticulturae, 2017, 222: 76-83.

[72] Conrath U, Beckers G J M, Flors V, et al. Priming: getting ready for battle[J]. Molecular Plant-Microbe Interactions, 2006, 19(10): 1062-1071.

[73] Conrath U. Molecular aspects of defence priming[J]. Trends in Plant Science, 2011, 16(10): 524-531.

[74] Corpas F J, Barroso J B. NADPH-generating dehydrogenases: their role in the mechanism of protection against nitro-oxidative stress induced by adverse environmental conditions[J]. Frontiers in Environmental Science, 2014, 2: 55.

[75] D'Aquino S, Schirra M, Palma A, et al. Residue levels and storage responses of nectarines, apricots, and peaches after dip treatments with fludioxonil fungicide mixtures[J]. Journal of Agricultural and Food Chemistry, 2007, 55(3): 825-831.

[76] De Curtis F, Ianiri G, Raiola A, et al. Integration of biological and chemical control of brown rot of stone fruits to reduce disease incidence on fruits and minimize fungicide residues in juice[J]. Crop Protection, 2019, 119: 158-165.

[77] Deng J J, Bi Y, Zhang Z K, et al. Postharvest oxalic acid treatment induces resistance against pink rot by priming in muskmelon (Cucumis melo L.) fruit[J]. Postharvest Biology and Technology, 2015, 106: 53-61.

[78] Fan Q, Tian S P. Postharvest biological control of Rhizopus rot of nectarine fruits by Pichia membranefaciens[J]. Plant Disease, 2000, 84(11): 1212-1216.

[79] Fan S L, Xiong T T, Lei Q M, et al. Melatonin treatment improves postharvest preservation and resistance of guava fruit (Psidium guajava L.)[J]. Foods, 2022, 11(3): 262-277.

[80] Ferrer J L, Austin M B, Stewart Jr C, et al. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids[J]. Plant Physiology and Biochemistry, 2008, 46(3): 356-370.

[81] Förster H, Driever G F, Thompson D C, et al. Postharvest decay management for stone fruit crops in California using the “reduced-risk” fungicides fludioxonil and fenhexamid[J]. Plant Disease, 2007, 91(2): 209-215.

[82] Gao S W, Ma W Y, Lyu X N, et al. Melatonin may increase disease resistance and flavonoid biosynthesis through effects on DNA methylation and gene expression in grape berries[J]. BMC Plant Biology, 2020, 20(1): 231-246.

[83] Ge Y H, Wei M L, Li C Y, et al. Effect of acibenzolar-S-methyl on energy metabolism and blue mould of Nanguo pear fruit[J]. Scientia Horticulturae, 2017, 225: 221-225.

[84] Gibon Y, Larher F. Cycling assay for nicotinamide adenine dinucleotides: NaCl precipitation and ethanol solubilization of the reduced tetrazolium[J]. Analytical Biochemistry, 1997, 251(2): 153-157.

[85] Gonzalez-Bosch C. Priming plant resistance by activation of redox-sensitive genes[J]. Free Radical Biology and Medicine, 2018, 122(1): 171-180.

[86] Gu R X, Zhu S H, Zhou J, et al. Inhibition on brown rot disease and induction of defence response in harvested peach fruit by nitric oxide solution[J]. European Journal of Plant Pathology, 2014, 139: 369-378.

[87] Hong J K, Hwang B K, Kim C H. Induction of local and systemic resistance to Colletotrichum coccodes in pepper plants by DL‐β‐aminonbutyric acid[J]. Journal of Phytopathology, 1999, 147(4): 193-198.

[88] Hou F Y, Huang J, Yu S L, et al. The 6‐phosphogluconate dehydrogenase genes are responsive to abiotic stresses in rice[J]. Journal of Integrative Plant Biology, 2007, 49(5): 655-663.

[89] Huang K, Sui Y, Miao C L, et al. Melatonin enhances the resistance of ginger rhizomes to postharvest fungal decay[J]. Postharvest Biology and Technology, 2021, 182: 111706.

[90] Hussain M, Hamid M I, Ghazanfar M U. Salicylic acid induced resistance in fruits to combat against postharvest pathogens: A review[J]. Archives of Phytopathology and Plant Protection, 2015, 48(1): 34-42.

[91] Ji N N, Li Y F, Wang J, et al. Interaction of PpWRKY46 and PpWRKY53 regulates energy metabolism in MeJA primed disease resistance of peach fruit[J]. Plant Physiology and Biochemistry, 2022, 171: 157-168.

[92] Ji N N, Wang J, Li Y F, et al. Involvement of PpWRKY70 in the methyl jasmonate primed disease resistance against Rhizopus stolonifer of peaches via activating phenylpropanoid pathway[J]. Postharvest Biology and Technology, 2021a, 174: 111466.

[93] Ji N N, Wang J, Zuo X X, et al. PpWRKY45 is involved in methyl jasmonate primed disease resistance by enhancing the expression of jasmonate acid biosynthetic and pathogenesis-related genes of peach fruit[J]. Postharvest Biology and Technology, 2021b, 172: 111390.

[94] Jiang J Y, Gong L, Dong Q F, et al. Characterization of PLA-P3, 4HB active film incorporated with essential oil: Application in peach preservation[J]. Food Chemistry, 2020, 313: 126134.

[95] Jiang X J, Lin H T, Lin M S, et al. A novel chitosan formulation treatment induces disease resistance of harvested litchi fruit to Peronophythora litchii in association with ROS metabolism[J]. Food Chemistry, 2018, 266: 299-308.

[96] Jin P, Zheng Y H, Cheng C M, et al. Effect of methyl jasmonate treatment on fruit decay and quality in peaches during storage at ambient temperature[C]//IV International Conference on Managing Quality in Chains-The Integrated View on Fruits and Vegetables Quality 712. 2006: 711-716.

[97] Jin P, Zhu H, Wang J, et al. Effect of methyl jasmonate on energy metabolism in peach fruit during chilling stress[J]. Journal of the Science of Food and Agriculture, 2013, 93(8): 1827-1832.

[98] Karabulut O A, Baykal N. Integrated control of postharvest diseases of peaches with a yeast antagonist, hot water and modified atmosphere packaging[J]. Crop Protection, 2004, 23(5): 431-435.

[99] Karapetyan S, Dong X. Redox and the circadian clock in plant immunity: A balancing act[J]. Free Radical Biology and Medicine, 2018, 119: 56-61.

[100] Ke D, Rodriguez-Sinobas L, Kader A A. Physiology and prediction of fruit tolerance to low-oxygen atmospheres[J]. Journal of the American Society for Horticultural Science, 1991, 116(2): 253-260.

[101] Ke D, Saltveit M E. Effects of calcium and auxin on russet spotting and phenylalanine ammonialyase activity in iceberg lettuce[J]. HortScience, 1986, 21(5): 1169-1171.

[102] Knobloch K H, Hahlbrock K. Isoenzymes of p‐coumarate: CoA ligase from cell suspension cultures of Glycine max[J]. European Journal of Biochemistry, 1975, 52(2): 311-320.

[103] Kochba J, Lavee S, Spiegel-Roy P. Differences in peroxidase activity and isoenzymes in embryogenic ane non-embryogenic ‘Shamouti’ orange ovular callus lines[J]. Plant and Cell Physiology, 1977, 18(2): 463-467.

[104] Kong Q J, Yu X, Song D D, et al. Effect of tricyclazole on morphology, virulence and gene expression of Aspergillus aculeatus for management of soft rot disease in peach[J]. Journal of Applied Microbiology, 2018, 125(6): 1827-1835.

[105] Larrauri J A, Sánchez-Moreno C, Saura-Calixto F. Effect of temperature on the free radical scavenging capacity of extracts from red and white grape pomace peels[J]. Journal of Agricultural and Food Chemistry, 1998, 46(7): 2694-2697.

[106] Lerner A B, Case J D, Takahashi Y, et al. Isolation of melatonin, the pineal gland factor that lightens melanocyteS1[J]. Journal of the American Chemical Society, 1958, 80(10): 2587-2587.

[107] Li C H, Du M Y, Wang K T. 2, 4-Epibrassionolide activates priming resistance against Rhizopus stolonifer infection in peach fruit[J]. Acta Alimentaria, 2020a, 49(2): 135-143.

[108] Li C H, Lei C Y, Huang Y X, et al. PpWRKY22 physically interacts with PpHOS1/PpTGA1 and positively regulates several SA-responsive PR genes to modulate disease resistance in BABA-primed peach fruit[J]. Scientia Horticulturae, 2021a, 290: 110479.

[109] Li C H, Wang J, Ji N N, et al. PpHOS1, a RING E3 ubiquitin ligase, interacts with PpWRKY22 in the BABA-induced priming defense of peach fruit against Rhizopus stolonifer[J]. Postharvest Biology and Technology, 2020b, 159: 111029.

[110] Li C H, Wang K T, Huang Y X, et al. Activation of the BABA‐induced priming defence through redox homeostasis and the modules of TGA1 and MAPKK5 in postharvest peach fruit[J]. Molecular Plant Pathology, 2021b, 22(12): 1624-1640.

[111] Li C H, Wang K T, Xu F, et al. Sucrose metabolism and sensory evaluation in peach as influenced by β-aminobutyric acid (BABA)-induced disease resistance and the transcriptional mechanism involved[J]. Postharvest Biology and Technology, 2021c, 174: 111465.

[112] Li D, Li L, Ge Z W, et al. Effects of hydrogen sulfide on yellowing and energy metabolism in broccoli[J]. Postharvest Biology and Technology, 2017, 129: 136-142.

[113] Li S E, Huan C, Liu Y, et al. Melatonin induces improved protection against Botrytis cinerea in cherry tomato fruit by activating salicylic acid signaling pathway[J]. Scientia Horticulturae, 2022a, 304: 111299.

[114] Li S E, Xu Y H, Bi Y, et al. Melatonin treatment inhibits gray mold and induces disease resistance in cherry tomato fruit during postharvest[J]. Postharvest Biology and Technology, 2019a, 157: 110962-110971.

[115] Li T T, Wu Q X, Zhu H, et al. Comparative transcriptomic and metabolic analysis reveals the effect of melatonin on delaying anthracnose incidence upon postharvest banana fruit peel[J]. BMC Plant Biology, 2019b, 19: 289-304.

[116] Li Y C, Ma Y Y, Zhang T T, et al. Exogenous polyamines enhance resistance to Alternaria alternata by modulating redox homeostasis in apricot fruit[J]. Food Chemistry, 2019c, 301: 125303.

[117] Li Y F, Ji N N, Zuo X X, et al. Involvement of PpMYB306 in Pichia guilliermondii-induced peach fruit resistance against Rhizopus stolonifer[J]. Biological Control, 2023, 177: 105130.

[118] Li Z Z, Zhang S J, Xue J X, et al. Exogenous melatonin treatment induces disease resistance against Botrytis cinerea on post-harvest grapes by activating defence responses[J]. Foods, 2022b, 11(15): 2231.

[119] Liang W S, Pan J, Liang H G. Activation of cyanide resistant respiration by pyruvate in mitochondria of aged potato uber slices[J]. Journal of Plant Physiology and Molecular Biology, 2003, 29(4): 317-321.

[120] Lin Y F, Chen M Y, Lin H T, et al. DNP and ATP induced alteration in disease development of Phomopsis longanae Chi-inoculated longan fruit by acting on energy status and reactive oxygen species production-scavenging system[J]. Food Chemistry, 2017, 228: 497-505.

[121] Lin Y L, Fan L Q, Xia X H, et al. Melatonin decreases resistance to postharvest green mold on citrus fruit by scavenging defense-related reactive oxygen species[J]. Postharvest Biology and Technology, 2019, 153: 21-30.

[122] Liu C H, Zheng H H, Sheng K L, et al. Effects of melatonin treatment on the postharvest quality of strawberry fruit[J]. Postharvest Biology and Technology, 2018, 139: 47-55.

[123] Liu C X, Chen L L, Zhao R R, et al. Melatonin induces disease resistance to Botrytis cinerea in tomato fruit by activating jasmonic acid signaling pathway[J]. Journal of Agricultural and Food Chemistry, 2019, 67(22): 6116-6124.

[124] Liu H X, Jiang W B, Bi Y, et al. Postharvest BTH treatment induces resistance of peach (Prunus persica L. cv. Jiubao) fruit to infection by Penicillium expansum and enhances activity of fruit defense mechanisms[J]. Postharvest Biology and Technology, 2005a, 35(3): 263-269.

[125] Liu H X, Wang B G, Bi Y, et al. Improving disease resistance in peach fruit during storage using benzo-(1, 2, 3)-thiodiazole-7-carbothioic acid S-methyl ester (BTH)[J]. The Journal of Horticultural Science and Biotechnology, 2005b, 80(6): 736-740.

[126] Liu H, Jiang Y M, Luo Y B, et al. A simple and rapid determination of ATP, ADP and AMP concentrations in pericarp tissue of litchi fruit by high performance liquid chromatography[J]. Food Technology & Biotechnology, 2006, 44(4).

[127] Liu J, Sui Y, Wisniewski M, et al. Effect of heat treatment on inhibition of Monilinia fructicola and induction of disease resistance in peach fruit[J]. Postharvest Biology and Technology, 2012, 65: 61-68.

[128] Liu Y X, Li Y C, Bi Y, et al. Induction of defense response against Alternaria rot in Zaosu pear fruit by exogenous L-lysine through regulating ROS metabolism and activating defense-related proteins[J]. Postharvest Biology and Technology, 2021, 179: 111567.

[129] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 2001, 25(4): 402–408.

[130] Ma Y Y, Huang D D, Chen C B, et al. Regulation of ascorbate-glutathione cycle in peaches via nitric oxide treatment during cold storage[J]. Scientia Horticulturae, 2019, 247: 400-406.

[131] Mandal M K, Suren H, Ward B, et al. Differential roles of melatonin in plant‐host resistance and pathogen suppression in cucurbits[J]. Journal of Pineal Research, 2018, 65(3):1-23.

[132] Martinez-Medina A, Flors V, Heil M, et al. Recognizing plant defense priming[J]. Trends in Plant Science, 2016, 21(10): 818-822.

[133] Mathooko F M, Tsunashima Y, Owino W Z O, et al. Regulation of genes encoding ethylene biosynthetic enzymes in peach (Prunus persica L.) fruit by carbon dioxide and 1-methylcyclopropene[J]. Postharvest Biology and Technology, 2001, 21(3): 265-281.

[134] Mittler R. ROS are good[J]. Trends in Plant Science, 2017, 22(1): 11-19.

[135] Morrison I M . A semi-micro method for the determination of lignin and its use in predicting the digestibility of forage crops[J]. Journal of the Science of Food and Agriculture, 1972, 23(4):455-463.

[136] Mustafa M H, Bassi D, Corre M N, et al. Phenotyping brown rot susceptibility in stone fruit: A literature review with emphasis on peach[J]. Horticulturae, 2021, 7(5): 115.

[137] Nahar K, Hasanuzzaman M, Alam M M, et al. Exogenous spermidine alleviates low temperature injury in mung bean (Vigna radiata L.) seedlings by modulating ascorbate-glutathione and glyoxalase pathway[J]. International Journal of Molecular Sciences, 2015, 16(12): 30117-30132.

[138] Pan J, Shi Y Y, Zhu S H, et al. Enhancing the resistance of peach fruit against Monilinia fructicola using exogenous nitric oxide by activating the gamma-aminobutyric acid shunt[J]. Postharvest Biology and Technology, 2023, 200: 112314.

[139] Pang L L, Chen L, Jiang Y Q, et al. Role of exogenous melatonin in quality maintenance of sweet cherry: Elaboration in links between phenolic and amino acid metabolism[J]. Food Bioscience, 2023, 56: 103223.

[140] Pei Q H, Li Y, Ge X Z, et al. Multipath effects of berberine on peach Brown rot fungus Monilinia fructicola[J]. Crop Protection, 2019, 116: 92-100.

[141] Qian C L, Ji Z J, Zhu Q, et al. Effects of 1-MCP on proline, polyamine, and nitric oxide metabolism in postharvest peach fruit under chilling stress[J]. Horticultural Plant Journal, 2021, 7(3): 188-196.

[142] Qu G F, Ba L J, Wang R, et al. Effects of melatonin on blueberry fruit quality and cell wall metabolism during low temperature storage[J]. Food Science and Technology, 2022a, 42: e40822.

[143] Qu G F, Wu W N, Ba L J, et al. Melatonin enhances the postharvest disease resistance of blueberries fruit by modulating the jasmonic acid signaling pathway and phenylpropanoid metabolites[J]. Frontiers in Chemistry, 2022b, 10: 957581.

[144] Rao M V, Paliyath G, Ormrod D P. Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana[J]. Plant Physiology, 1996, 110(1): 125-136.

[145] Richmond R, Halliwell B, Chauhan J, et al. Superoxide-dependent formation of hydroxyl radicals: detection of hydroxyl radicals by the hydroxylation of aromatic compounds[J]. Analytical Biochemistry, 1981, 118(2): 328-335.

[146] Ruperti B, Bonghi C, Rasori A, et al. Characterization and expression of two members of the peach 1‐aminocyclopropane‐1‐carboxylate oxidase gene family[J]. Physiologia Plantarum, 2001, 111(3): 336-344.

[147] Schoch G A, Nikov G N, Alworth W L, et al. Chemical inactivation of the cinnamate 4-hydroxylase allows for the accumulation of salicylic acid in elicited cells[J]. Plant Physiology, 2002, 130(2): 1022-1031.

[148] Sels J, Mathys J, De Coninck B M A, et al. Plant pathogenesis-related (PR) proteins: a focus on PR peptides[J]. Plant Physiology and Biochemistry, 2008, 46(11): 941-950.

[149] Siedow J N, Umbach A L. Plant mitochondrial electron transfer and molecular biology[J]. The Plant Cell, 1995, 7(7): 821.

[150] Skelly M J, Loake G J. Synthesis of redox-active molecules and their signaling functions during the expression of plant disease resistance[J]. Antioxidants & Redox Signaling, 2013, 19(9): 990-997.

[151] Sondergaard T E, Schulz A, Palmgren M G. Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase[J]. Plant Physiology, 2004, 136(1): 2475-2482.

[152] Spadoni A, Guidarelli M, Sanzani S M, et al. Influence of hot water treatment on brown rot of peach and rapid fruit response to heat stress[J]. Postharvest Biology and Technology, 2014, 94: 66-73.

[153] Spadoni A, Neri F, Bertolini P, et al. Control of Monilinia rots on fruit naturally infected by hot water treatment in commercial trials[J]. Postharvest Biology and Technology, 2013, 86: 280-284.

[154] Sun C C, Huang Y, Lian S, et al. Improving the biocontrol efficacy of Meyerozyma guilliermondii Y-1 with melatonin against postharvest gray mold in apple fruit[J]. Postharvest Biology and Technology, 2021, 171: 111351-111361.

[155] Sun Y K, Liu Z Y, Lan G P, et al. Effect ofexogenous melatonin on resistance of cucumber to downy mildew[J]. Scientia Horticulturae, 2019, 255: 231-241.

[156] Surjadinata B B, Cisneros-Zevallos L. Biosynthesis of phenolic antioxidants in carrot tissue increases with wounding intensity[J]. Food Chemistry, 2012, 134(2): 615-624.

[157] Swain T, Hillis W E. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents[J]. Journal of the Science of Food and Agriculture, 1959, 10(1): 63-68.

[158] Tang Q, Li C Y, Ge Y H, et al. Exogenous application of melatonin maintains storage quality of jujubes by enhancing anti-oxidative ability and suppressing the activity of cell wall-degrading enzymes[J]. Lwt-Food Science and Technology, 2020, 127: 109431.

[159] Tian S P, Fan Q, Xu Y, et al. Effects of calcium on biocontrol activity of yeast antagonists against the postharvest fungal pathogen Rhizopus stolonifer[J]. Plant Pathology, 2002a, 51(3): 352-358.

[160] Tian S P, Qin G Z, Li B Q. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity[J]. Plant Molecular Biology, 2013, 82: 593-602.

[161] Tian S P, Xu Y, Jiang A L, et al. Physiological and quality responses of longan fruit to high O2 or high CO2 atmospheres in storage[J]. Postharvest Biology and Technology, 2002b, 24(3): 335-340.

[162] Tiwari R K, Lal M K, Naga K C, et al. Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops[J]. Scientia Horticulturae, 2020, 272: 109592.

[163] Toor R K, Savage G P. Antioxidant activity in different fractions of tomatoes[J]. Food Research International, 2005, 38(5): 487-494.

[164] Vallad G E, Goodman R M. Systemic acquired resistance and induced systemic resistance in conventional agriculture[J]. Crop Science, 2004, 44(6): 1920-1934.

[165] Van Loon L C. Induced resistance in plants and the role of pathogenesis-related proteins[J]. European Journal of Plant Pathology, 1997, 103: 753-765.

[166] Veitch K, Hombroeckx A, Caucheteux D, et al. Global ischaemia induces a biphasic response of the mitochondrial respiratory chain[J]. Biochemical Journal, 1992, 281(3): 709-715.

[167] Vorwerk S, Somerville S, Somerville C. The role of plant cell wall polysaccharide composition in disease resistance[J]. Trends in Plant Science, 2004, 9(4): 203-209.

[168] Walters D R, Paterson L, Walsh D J, et al. Priming for plant defense in barley provides benefits only under high disease pressure[J]. Physiological and Molecular Plant Pathology, 2008, 73(4-5): 95-100.

[169] Wang B, Bi Y. The role of signal production and transduction in induced resistance of harvested fruits and vegetables[J]. Food Quality and Safety, 2021, 5:1-8.

[170] Wang H B, Kou X H, Wu C E, et al. Methyl jasmonate induces the resistance of postharvest blueberry to gray mold caused by Botrytis cinerea[J]. Journal of the Science of Food and Agriculture, 2020a, 100(11): 4272-4281.

[171] Wang J, Cao S F, Wang L, et al. Effect of β-aminobutyric acid on disease resistance against Rhizopus rot in harvested peaches[J]. Frontiers in Microbiology, 2018, 9: 1505.

[172] Wang K T, Jin P, Han L, et al. Methyl jasmonate induces resistance against Penicillium citrinum in Chinese bayberry by priming of defense responses[J]. Postharvest Biology and Technology, 2014, 98: 90-97.

[173] Wang K T, Wu D Z, Bo Z Y, et al. Regulation of redox status contributes to priming defense against Botrytis cinerea in grape berries treated with β-aminobutyric acid[J]. Scientia Horticulturae, 2019, 244: 352-364.

[174] Wang M, Li Y H, Li C Y, et al. Melatonin induces resistance against Penicillium expansum in apple fruit through enhancing phenylpropanoid metabolism[J]. Physiological and Molecular Plant Pathology, 2023a: 102082.

[175] Wang Q, Ding T, Zuo J H, et al. Amelioration of postharvest chilling injury in sweet pepper by glycine betaine[J]. Postharvest Biology and Technology, 2016, 112: 114-120.

[176] Wang S Y, Shi X C, Liu F Q, et al. Effects of exogenous methyl jasmonate on quality and preservation of postharvest fruits: A review[J]. Food Chemistry, 2021, 353: 129482.

[177] Wang S Y, Shi X C, Wang R, et al. Melatonin in fruit production and postharvest preservation: A review[J]. Food Chemistry, 2020b, 320: 126642.

[178] Wang W J, Ling Y, Deng L L, et al. Effect of L-cysteine treatment to induce postharvest disease resistance of Monilinia fructicola in plum fruits and the possible mechanisms involved[J]. Pesticide Biochemistry and Physiology, 2023b, 191: 105367.

[179] Wang X L, Wang L, Wang J, et al. Bacillus cereus AR156-induced resistance to Colletotrichum acutatum is associated with priming of defense responses in loquat fruit[J]. PLoS One, 2014, 9(11): e112494.

[180] Wang X L, Xu F, Wang J, et al. Bacillus cereus AR156 induces resistance against Rhizopus rot through priming of defense responses in peach fruit[J]. Food Chemistry, 2013, 136(2): 400-406.

[181] Wang X L, Zhu J F, Wei H, et al. Biological control efficacy of Bacillus licheniformis HG03 against soft rot disease of postharvest peach[J]. Food Control, 2023c, 145: 109402.

[182] Wei M L, Ge Y H, Li C Y, et al. G6PDH regulated NADPH production and reactive oxygen species metabolism to enhance disease resistance against blue mold in apple fruit by acibenzolar-S-methyl[J]. Postharvest Biology and Technology, 2019, 148: 228-235.

[183] Xu L L, Yue Q Y, Bian F E, et al. Melatonin enhances phenolics accumulation partially via ethylene signaling and resulted in high antioxidant capacity in grape berries[J]. Frontiers in Plant Science, 2017, 8: 1426.

[184] Yang Z F, Cao S F, Cai Y T, et al. Combination of salicylic acid and ultrasound to control postharvest blue mold caused by Penicillium expansum in peach fruit[J]. Innovative Food Science & Emerging Technologies, 2011, 12(3): 310-314.

[185] Yao H J, Tian S P. Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved[J]. Journal of Applied Microbiology, 2005, 98(4): 941-950.

[186] Yi C, Jiang Y M, Shi J, et al. ATP-regulation of antioxidant properties and phenolics in litchi fruit during browning and pathogen infection process[J]. Food Chemistry, 2010, 118(1): 42-47.

[187] Yi C, Qu H X, Jiang Y M, et al. ATP‐induced changes in energy status and membrane integrity of harvested litchi fruit and its relation to pathogen resistance[J]. Journal of Phytopathology, 2008, 156(6): 365-371.

[188] Yu Z F, Cao J X, Zhu S H, et al. Exogenous nitric oxide enhances disease resistance by nitrosylation and inhibition of S-Nitrosoglutathione reductase in peach fruit[J]. Frontiers in Plant Science, 2020, 11: 543.

[189] Yuan N N, Chen S N, Zhai L X, et al. Baseline sensitivity of Monilia yunnanensis to the DMI fungicides tebuconazole and triadimefon[J]. European Journal of Plant Pathology, 2013, 136: 651-655.

[190] Zang H, Ma J J, Wu Z L, et al. Synergistic effect of melatonin and selenium improves resistance to postharvest gray mold disease of tomato fruit[J]. Frontiers in Plant Science, 2022, 13: 903936.

[191] Zhang J Y, Wang C , Chen C K, et al. Glycine betaine inhibits postharvest softening and quality decline of winter jujube fruit by regulating energy and antioxidant metabolism[J]. Food Chemistry, 2023a, 410: 135445.

[192] Zhang L L, Yu Y W, Chang L L, et al. Melatonin enhanced the disease resistance by regulating reactive oxygen species metabolism in postharvest jujube fruit[J]. Journal of Food Processing and Preservation, 2022, 46(3): ): 1-11.

[193] Zhang S W, Zheng Q, Xu B L, et al. Identification of the fungal pathogens of postharvest disease on peach fruits and the control mechanisms of Bacillus subtilis JK-14[J]. Toxins, 2019, 11(6): 322.

[194] Zhang S, Lin H T, Lin Y F, et al. Energy status regulates disease development and respiratory metabolism of Lasiodiplodia theobromae (Pat.) Griff. & Maubl.-infected longan fruit[J]. Food Chemistry, 2017, 231: 238-246.

[195] Zhang Y, Jin P, Huang Y P, et al. Effect of hot water combined with glycine betaine alleviates chilling injury in cold-stored loquat fruit[J]. Postharvest Biology and Technology, 2016, 118: 141-147.

[196] Zhang Y, Zhu X, Ma H J, et al. Exogenous glucose reduces the incidence of black rot disease in apricot (Prunus armeniaca L.) by regulating energy metabolism and ROS[J]. Scientia Horticulturae, 2023b, 313: 111903.

[197] Zhang Z K, Wang T, Liu G S, et al. Inhibition of downy blight and enhancement of resistance in litchi fruit by postharvest application of melatonin[J]. Food Chemistry, 2021, 347: 129009-129019.

[198] Zhao Y N, Yu H, Zhou J M, et al. Malate circulation: linking chloroplast metabolism to mitochondrial ROS[J]. Trends in Plant Science, 2020b, 25(5): 446-454.

[199] Zhao Y, Li Y F, Yin J J. Effects of hot air treatment in combination with Pichia guilliermondii on postharvest preservation of peach fruit[J]. Journal of the Science of Food and Agriculture, 2019, 99(2): 647-655.

[200] Zhao Y, Li Y F, Zhang B. Induced resistance in peach fruit as treated by Pichia guilliermondii and their possible mechanism[J]. International Journal of Food Properties, 2020a, 23(1): 34-51.

[201] Zheng Y Q, Liu Z N, Wang H, et al. Transcriptome and genome analysis to identify C2H2 genes participating in low-temperature conditioning-alleviated postharvest chilling injury of peach fruit[J]. Food Quality and Safety, 2022, 6: 1–10.

[202] Zhou Y H, Xia X J, Yu G B, et al. Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants[J]. Scientific Reports, 2015, 5(1): 9018.

中图分类号:

 TS2    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式