- 无标题文档
查看论文信息

中文题名:

 纤维素复合金属氧化物/新型MOFs材料制备与电化学储能研究    

姓名:

 董亚雯    

学号:

 2021211013    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0710Z3    

学科名称:

 理学 - 生物学 - 天然产物化学    

学生类型:

 博士    

学位:

 理学博士    

学校:

 南京农业大学    

院系:

 理学院    

专业:

 天然产物化学    

研究方向:

 天然产物转化应用    

第一导师姓名:

 吴华    

第一导师单位:

  南京农业大学    

完成日期:

 2025-05-25    

答辩日期:

 2025-05-24    

外文题名:

 Research on the Preparation and Electrochemical Energy Storage of Cellulose-Composited Metal Oxides/Novel MOFs Materials    

中文关键词:

 金属有机框架材料 ; 纤维素 ; 电极材料 ; 电化学储能 ; 超级电容器    

外文关键词:

 Metal organic framework (MOFs) ; Cellulose ; Electrodes material ; Electrochemical energy storage ; Supercapacitor    

中文摘要:

随着不可再生能源的过度消耗,全球正面临着能源短缺与生态污染的双重挑战。在此背景下,构建高效的储能装置以实现可再生能源的有效收集与利用,已成为解决能源问题的关键途径。开发高性能电极材料以提升超级电容器的储能性能,对于应对日益增长的能源需求具有重要意义。纤维素作为自然界中储量最丰富的天然高分子化合物,其独特的多层次结构特征,为其在储能领域的应用提供了良好的基础。然而,传统纤维素材料主要依赖双电层电容机制进行储能,且多局限于负极应用,这严重制约了其在超级电容器领域的进一步发展。针对上述问题,本研究以基于纤维素开发高性能电极材料为目标,通过引入金属有机框架(MOF)和金属氧化物等活性组分,对电极材料的物理化学性质进行调控,从而优化其导电性能与电化学特性。MOF是一种由金属离子或金属簇与有机配体通过配位键连接而成的具有框架结构的材料,具有高比表面积、可调控的孔径结构以及丰富的活性位点等优点,通过将MOF与纤维素材料复合,可以有效提高电极材料的比表面积和孔隙率,从而增强其电化学活性。此外,金属氧化物(如MnO、Bi2O3等)因其高理论比容量和优异的氧化还原活性,也被广泛用作超级电容器电极材料,通过引入金属氧化物可以提升纤维素基复合材料的赝电容性能,从而提高其能量密度。具体研究内容及结果如下:

1. 通过溶剂热法和超声法设计得到基于微晶纤维素的正负极材料。将微晶纤维素与具有独特孔道结构的镍基MOF(5-N-TPPA-MOF)复合,成功制备了一系列复合正极材料,并通过研究掺杂量对电化学性能的影响,制备了具有优异性能的cello-MOF-5-N,并且在微晶纤维素表面负载铋金属,开发了新型cello-Bi负极材料。基于这一设计思路,构建了以微晶纤维素为基底的不对称双电极体系,该体系不仅有效地缓解了电极间的电势差问题,还地提升了导电性能。实验结果表明,在0.2 A g-1电流密度下,该双电极体系的比容量达到222 C g-1,在1 A g-1的电流密度下,功率密度达749 W kg-1时,能量密度达到40 W h kg-1。对电极材料在循环前后结构与价态的变化进行分析发现,微晶纤维素的引入增强了电极材料的导电能力,提升了电荷与离子在材料表面的转移效率;MOF材料中三齿长臂配体的引入,增强了镍活性中心的分散性,提高材料的氧化还原能力,强吸电子集团的存在能够有效提高材料的离子传输能力;掺杂在负极材料中的金属铋带来了丰富的电化学反应位点。

2. 通过在正极材料的MOF中引入氨基化功能配体,在负极材料中引入MnO材料,开发基于微晶纤维素的电极材料,由上述电极材料构筑的不对称超级电容器体系在电流密度为0.2 A g-1时,比容量达到400 C g-1,在电流密度为1 A g-1时,该体系的功率密度为723 W kg-1,能量密度为43 W h kg-1。正极材料中,氨基化功能配体的引入,提高了材料的亲水性,增强了离子与电荷在材料表面的传输,提高了材料的导电性能,而且MOF材料中直径7 Å的一维螺旋孔道结构对于电荷与离子在材料表面的运输也起到了关键作用。负极材料中,氧化锰在纤维素基材料表面的均匀分布且二者以较强化学键相连,既促进了金属活性中心在材料表面的分散性,提升了复合材料的氧化还原活性,同时减少了氧化锰在电解液中的溶出,增强了复合材料的稳定性。

3. 通过进一步优化材料设计策略,引入具有独特三维结构和优异物理特性的细菌纤维素作为新型基底材料,开发了具有更高性能的超级电容器电极材料。将氧化铋与细菌纤维素衍生物复合,开发了bi-cello-Bi2O3负极材料,基于5-羟基间苯二酸的MOF材料(5-H-TPPA-MOF)与细菌纤维素结合,制备了高性能正极材料(bi-cello-MOF-5-H),二者组装构建的不对称超级电容器(bi-cello-MOF-5-H//bi-cello-Bi2O3)在0.2 A g-1电流密度下的比容量为412 C g-1,在1 A g-1的电流密度下,该体系的功率密度为751 W kg-1时,能量密度达到52 W h kg-1。通过在材料体系中引入含羟基配体,其羟基官能团与细菌纤维素分子链上的羟基形成稳定的分子间氢键网络,这种相互作用不仅增强了复合材料的机械稳定性,而且促进了离子和电荷在材料表面的运输。引入具有多价态特性的铋复合氧化铋于负极材料中,通过循环前后XPS分析证实,Bi0/Bi3+/Bi5+氧化还原电对在充放电过程中表现出可逆的价态转变。

4. 通过引入对硝基苯甲酸作为有机配体,成功合成了正极材料(bi-cello-MOF-4-N)。在本章研究中,正极材料的设计得到了优化,还沿用了前一章设计的新型负极材料(bi-cello-Bi2O3),构建了不对称超级电容器双电极体系,即以细菌纤维素功能化的bi-cello-MOF-4-N作为正极材料,结合由细菌纤维素衍生物功能化的铋基复合材料(bi-cello-Bi2O3)作为负极材料,成功组装了高性能的不对称超级电容器。该体系在0.2 A g-1电流密度下可以达到487 C g-1的容量,在1 A g-1的电流密度下,体系的功率密度达到750 W kg-1时,能量密度可以达到87 W h kg-1。本研究采用对硝基苯甲酸作为功能配体构筑MOF材料,材料中直径9 Å的孔道结构以及邻近的镍离子中心缩短了电荷在材料表面的传输路径,并暴露出更多具有氧化还原活性的金属位点。

实验研究表明,通过对微晶纤维素、细菌纤维素等不同来源纤维素进行功能化衍生和复合,所构建的纤维素基复合材料表现出较高的比电容量和循环稳定性,展现出优异的电化学储能性能。

外文摘要:

With the excessive consumption of non-renewable energy resources, the world is currently facing dual challenges of energy shortages and ecological pollution. In this context, the development of efficient energy storage devices for the effective collection and utilization of renewable energy has become a crucial approach to addressing energy issues. As a novel energy storage device, supercapacitors have garnered significant attention due to their superior power density. However, constrained by the performance limitations of electrode materials, existing supercapacitors still struggle to meet practical application requirements in terms of energy density and other aspects. Therefore, the development of high-performance electrode materials to enhance the energy storage performance of supercapacitors is of great significance in addressing the ever-increasing energy demands. Cellulose, as an abundant natural polymer compound in nature, is considered a highly promising candidate for electrode materials due to its unique hierarchical structural features. Nevertheless, traditional cellulose materials primarily rely on the electric double-layer capacitance mechanism for energy storage and are mostly limited to negative electrodes applications, which severely restricts their further development in the field of supercapacitors. To address these issues, this study aims to develop high-performance cellulose-based electrode materials by introducing active components such as metal-organic frameworks (MOFs) and metal oxides, thereby regulating the physicochemical properties of the electrode materials to optimize their conductive and electrochemical characteristics. The specific research contents are as follows:

1. A series of positive electrode and negative electrode materials were designed based on microcrystalline cellulose using solvothermal and ultrasonic methods. By compositing microcrystalline cellulose with a nickel-based MOF (5-N-TPPA-MOF) featuring unique channel structures, a series of composite positive electrode materials were successfully prepared. The effects of doping content on electrochemical performance were investigated, leading to the fabrication of high-performance cello-MOF-5-N. For the negative electrode, a novel cello-Bi material was developed by loading bismuth onto microcrystalline cellulose. Based on this design, an asymmetric dual-electrode system using microcrystalline cellulose as the substrate was constructed, effectively mitigating potential differences between electrodes while significantly enhancing conductivity. Experimental results showed that at a current density of a current density of 0.2 A g-1, the specific capacity of this dual-electrode system reached 222 C g-1. At a current density of 1 A g-1, the system achieved a power density of 749 W kg-1 and an energy density of 40 Wh kg-1. Analysis of structural and valence state changes before and after cycling revealed that microcrystalline cellulose significantly improved the conductivity of the electrode materials and enhanced charge/ion transfer efficiency. This study demonstrates that the incorporation of tridentate long-arm ligands in MOF materials significantly improves the dispersion of nickel active centers, thereby enhancing the redox activity of the material. The presence of strong electron-withdrawing groups effectively facilitates ion transport within the material framework. Furthermore, the doping of bismuth metal in the negative electrode material introduces abundant electrochemically active sites, leading to optimized energy storage performance.

2. By introducing amino-functionalized ligands into the MOF structure and incorporating MnO into the negative electrode material, a microcrystalline cellulose-based electrode material was successfully developed. The asymmetric supercapacitor system constructed with these materials achieved a specific capacity of 400 C g-1, at a current density of 0.2 A g-1. The system delivered an energy density of 43 Wh kg-1 and a power density of 723 W kg-1, at a current density of 1 A g-1. The amino-functionalized ligands significantly improved the hydrophilicity of the material, facilitating ion and charge transport on the surface and enhancing conductivity. The one-dimensional helical pore structure (7 Å diameter) in the MOF also played a key role in charge/ion transport. In the negative electrode material, the uniform distribution of manganese oxide on the cellulose substrate and their strong chemical bonding not only promoted the dispersion of metal active centers, enhancing redox activity, but also reduced MnO dissolution in the electrolyte, improving stability.

3. By further optimizing the material design strategy, bacterial cellulose, a substrate with unique 3D porous structure and excellent physical properties, was introduced to develop higher-performance supercapacitor electrode materials. For the negative electrode, a bi-cello-Bi2O3 material was developed by compositing bismuth oxide with bacterial cellulose. For the positive electrode, a high-performance bi-cello-MOF-5-H material was prepared by combining bacterial cellulose with a 5-hydroxyisophthalic acid-based MOF (5-H-TPPA-MOF). The assembled asymmetric supercapacitor exhibited a specific capacity of 412 C g-1 at a current density of 0.2 A g-1. At a current density of 1 A g-1, the system achieved an energy density of 52 Wh kg-1 at a power density of 751 W kg-1. The introduction of hydroxyl-containing ligands formed stable intermolecular hydrogen bonds with hydroxyl groups on the bacterial cellulose chains, enhancing mechanical stability and promoting ion/charge transport. The incorporation of multivalent bismuth-based oxides in the negative electrode was confirmed by XPS analysis, where reversible transitions of Bi0/Bi3+/Bi5+ redox couples during charge/discharge improved electrochemical performance.

4. By using p-nitrobenzoic acid as an organic ligand, a novel positive electrode material (bi-cello-MOF-4-N) was synthesized. Combined with the previously designed bi-cello-Bi2O3 negative electrode, an asymmetric supercapacitor system was assembled, achieving a specific capacity of 487 C g-1 at a current density of 0.2 A g-1. At a current density of 1 A g-1, the system delivered an energy density of 87 Wh kg-1 at a power density of 750 W kg-1. In this study, p-nitrobenzoic acid was employed as a functional ligand to construct MOF materials. The resulting framework features 9 Å diameter pore channels and adjacent nickel ion centers, which collectively shorten the charge transport pathways across the material surface while exposing additional redox-active metal sites, thereby enhancing the electrochemical performance of the material.

Experimental studies demonstrate that functionalized cellulose-based composites derived from microcrystalline cellulose and bacterial cellulose exhibit high specific capacity, cycling stability, and excellent electrochemical energy storage performance.

参考文献:

[1] 方雨田, 白启佳, 王帅, 等.大尺寸MXene的制备及柔性透明锌离子混合超级电容器应用[J].化学学报,2025:1-8.

[2] 高亚辉, 李娟, 许艳杰, 等.石墨烯气凝胶负载铜钴双金属硫化物电极用于高循环稳定性固态超级电容器[J].材料工程,2025:1-22.

[3] 陆赞, 胡春兰, 蒋宇宸, 等.全固态MnO2@CNT/MXene纤维超级电容器的制备与性能研究[J].应用化工,2024,53:1583-1593.

[4] 王军伟.低维铋系纳米材料的合成、结构与性能研究[D]. 2003.

[5] Abe K, Iwamoto S, Yano H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood[J]. Biomacromolecules, 2007, 8: 3276-3278.

[6] Ajith A, Thomas E, Suresh C H, et al. Advances and strategies in nanoarchitectured TiO2-based electrodes for supercapacitors[J]. Journal of Energy Storage, 2025, 111: 115289.

[7] Akbarzadeh M J, Hashemian S, Moktarian N. Structural and magnetic properties of zeolitic imidazolate framework supported on nickel titanate[J]. Journal of Molecular Structure, 2021, 1240: 130555.

[8] Ansari K B, Mashkoor R, Naim M A, et al. A critical review on pure and hybrid electrode supercapacitors, economics of HESCs, and future perspectives[J]. Journal of Energy Storage, 2025, 112: 115564.

[9] Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7: 1597-1614.

[10] Bauer C A, Timofeeva T V, Settersten T B, et al. Influence of connectivity and porosity on ligand-based luminescence in zinc metal-organic frameworks[J]. Journal of the American Chemical Society, 2007, 129: 7136-7144.

[11] Braff W A, Mueller J M, Trancik J E. Value of storage technologies for wind and solar energy[J]. Nature Climate Change, 2016, 6: 964-969.

[12] Cai J, Niu H, Li Z, et al. High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers[J]. ACS Applied Materials & Interfaces, 2015, 7: 14946-14953.

[13] Cai J, Niu H, Wang H, et al. High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers[J]. Journal of Power Sources, 2016, 324: 302-308.

[14] Cao J, Liu Z, Zhang Y, et al. Three-dimensional cellulose acetate nanofiber aerogels: A novel platform for ratiometric fluorescence sensing of volatile amines in aquatic products[J]. Carbohydrate Polymers, 2025, 353: 123275.

[15] Cao J, Li J, Li L, et al. Mn-doped Ni/Co LDH nanosheets grown on the natural n-dispersed pani-derived porous carbon template for a flexible asymmetric supercapacitor[J]. ACS Sustainable Chemistry & Engineering, 2019, 7: 10699-10707.

[16] Chai T, Li X, Feng T, et al. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field[J]. Nanoscale, 2018, 10: 17617-17622.

[17] Chang X, Ma Y, Yang M, et al. In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage[J]. Energy Storage Materials, 2019, 23: 358-366.

[18] Chapman D L. LI. A contribution to the theory of electrocapillarity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1913, 25: 475-481.

[19] Chen G Z. Supercapacitor and supercapattery as emerging electrochemical energy stores[J]. International Materials Reviews, 2017, 62: 173-202.

[20] Chen H, Liu T, Mau J, et al. Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors[J]. Nano Energy, 2019, 63: 103836.

[21] Chen M, Liu T, Zhang X, et al. Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel[J]. Advanced Functional Materials, 2021, 31: 2100106.

[22] Chen S, Yang G, Zheng H. Aligned Ni-Co-Mn oxide nanosheets grown on conductive substrates as binder-free electrodes for high capacity electrochemical energy storage devices[J]. Electrochimica Acta, 2016, 220: 296-303.

[23] Cheng L, Zhang Q, Xu M, et al. Two-for-one strategy: Three-dimensional porous Fe-doped Co3O4 cathode and N-doped carbon anode derived from a single bimetallic metal-organic framework for enhanced hybrid supercapacitor[J]. Journal of Colloid and Interface Science, 2021, 583: 299-309.

[24] Cheng X, Sang M, Zuo D, et al. A low-temperature-tolerant and non-flammable cellulose/HEC/PVA eutectogel for flexible asymmetric supercapacitors[J]. International Journal of Biological Macromolecules, 2024, 291: 138963-138963.

[25] Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313: 1760-1763.

[26] Conway B E, Pell W G. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices[J]. Journal of Solid State Electrochemistry, 2003, 7: 637-644.

[27] Costentin C, Saveant J-M. Energy storage: pseudocapacitance in prospect[J]. Chemical Science, 2019, 10: 5656-5666.

[28] Da Silva L M, Cesar R, Moreira C M R, et al. Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials[J]. Energy Storage Materials, 2020, 27: 555-590.

[29] Das A, Banerjee A, Tayal A, et al. Local structure distortion in Mn, Zn doped Cu2V2O7: Supercapacitor performance and emergent spin-phonon coupling[J]. Advanced materials, 2025: e2416644.

[30] Dong Y, Liu J, Zhang H, et al. Novel isostructural iron-series-MOF calcined derivatives as positive and negative electrodes: A new strategy to obtain matched electrodes in a supercapacitor device[J]. SmartMat, 2022, 4: e1159.

[31] Dou Q, Park H S. Perspective on high-energy carbon-based supercapacitors[J]. Energy & Environmental Materials, 2020, 3: 286-305.

[32] Ebrahimi-Koodehi S, Ghodsi F E, Mazloom J. Ni/Mn metal-organic framework decorated bacterial cellulose (Ni/Mn-MOF@BC) and nickel foam (Ni/Mn-MOF@NF) as a visible-light photocatalyst and supercapacitive electrode[J]. Scientific Reports, 2023, 13: 19260.

[33] Fan E S, Li L, Wang Z P, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects[J]. Chemical Reviews, 2020, 120: 7020-7063.

[34] Fan L, Liu Q, Chen S, et al. Soft carbon as anode for high-performance sodium-based dual ion full battery[J]. Advanced Energy Materials, 2017, 7: 1602778.

[35] Fu L, Zhang J, Yang G. Present status and applications of bacterial cellulose-based materials for skin tissue repair[J]. Carbohydrate Polymers, 2013, 92: 1432-1442.

[36] Gao J, Guo F, Ji C, et al. A flexible and stable zinc-ion hybrid capacitor with polysaccharide-reinforced cross-linked hydrogel electrolyte and binder-free carbon cathode[J]. Journal of Materials Chemistry A, 2022, 10: 24639-24648.

[37] Gao Q-F, Jiang T-L, Li W-Z, et al. Porous and stable Zn-series metal-organic frameworks as efficient catalysts for grafting wood nanofibers with polycaprolactone via a copolymerization approach[J]. Inorganic Chemistry, 2023, 62: 3464-3473.

[38] Gao S, Sui Y, Wei F, et al. Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors[J]. Journal of Colloid and Interface Science, 2018, 531: 83-90.

[39] Gavande S S, Kulkarni P S, Patil V B, et al. An assay of electrodeposited cobalt oxide thin film as a supercapacitor electrode[J]. Macromolecular Symposia, 2020, 393: 2000169.

[40] Ge L. Synthesis and photocatalytic performance of novel metal-free g-C3N4 photocatalysts[J]. Materials Letters, 2011, 65: 2652-2654.

[41] Ghanashyam G, Gu M, Lamouri R, et al. Electrochemical properties of electroless plated FeCoNi on cellulose filter paper[J]. Current Applied Physics, 2024, 68: 71-77.

[42] Ghule B G, Shinde N M, Nakate Y T, et al. Bismuth oxide-doped graphene-oxide nanocomposite electrode for energy storage application[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651: 129690.

[43] Gouy G. Constitution of the electric charge at the surface of an electrolyte[J]. Journal of Theoretical and Applied Physics, 1910, 9: 457-468.

[44] Grove T Z, Carter N. Molecular organization, mechanical properties, and ion transport in hierarchically structured repeat-protein materials[J]. Abstracts of Papers of the American Chemical Society, 2017, 253: 573.

[45] Gu Y, Niu T, Huang J. Functional polymeric hybrid nanotubular materials derived from natural cellulose substances[J]. Journal of Materials Chemistry, 2010, 20: 10217-10223.

[46] Guo Z, Tian Z, Duan G, et al. Cellulose intercalation activation of natural ramie fiber derived carbon electrode for flexible supercapacitors[J]. Chemical Engineering Journal, 2024, 501: 157702.

[47] Hao Y, Guo H, Yang F, et al. Hydrothermal synthesis of MWCNT/Ni-Mn-S composite derived from bimetallic MOF for high-performance electrochemical energy storage[J]. Journal of Alloys and Compounds, 2022, 911: 164726.

[48] Harker A H. Physics and chemistry of interfaces [J]. Contemporary Physics, 2023, 64: 250-251.

[49] He S, Li Z, Wang J, et al. MOF-derived NiCo1-x(OH)2 composite microspheres for high-performance supercapacitors[J]. RSC Advances, 2016, 6: 49478-49486.

[50] Hesse S, Jäger C. Determination of the 13C chemical shift anisotropies of cellulose I and cellulose II[J]. Cellulose, 2005, 12: 5-14.

[51] Hofmann P. The surfaces of bismuth: Structural and electronic properties[J]. Progress in Surface Science, 2006, 81: 191-245.

[52] Hu W, Chen S, Yang J, et al. Functionalized bacterial cellulose derivatives and nanocomposites[J]. Carbohydrate Polymers, 2014, 101: 1043-1060.

[53] Hua C, Baldansuren A, Tuna F, et al. In situ spectroelectrochemical investigations of the redox-active tris 4-(pyridin-4-yl)phenyl amine ligand and a Zn2+ coordination framework[J]. Inorganic Chemistry, 2016, 55: 7270-7280.

[54] Huang Y, Zhu C, Yang J, et al. Recent advances in bacterial cellulose[J]. Cellulose, 2014, 21: 1-30.

[55] Imai T, Naruse M, Horikawa Y, et al. Disturbance of the hydrogen bonding in cellulose by bacterial expansin[J]. Cellulose, 2023, 30: 8423-8438.

[56] Islam S, Alfaruqi M H, Song J, et al. Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications[J]. Journal of Energy Chemistry, 2017, 26: 815-819.

[57] Jermy B R, Asaoka S, Al-Khattaf S. Influence of calcination on performance of Bi-Ni-O/gamma-alumina catalyst for n-butane oxidative dehydrogenation to butadiene[J]. Catalysis Science & Technology, 2015, 5: 4622-4635.

[58] Ji B, Li W, Zhang F, et al. MOF-derived transition metal phosphides for supercapacitors[J]. Small, 2025: 2409273.

[59] Jia H, Cai Y, Lin J, et al. Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high-performance supercapacitors[J]. Advanced Science, 2018, 5: 1700887.

[60] Jing C, Dong B, Zhang Y. Chemical modifications of layered double hydroxides in the supercapacitor[J]. Energy & Environmental Materials, 2020, 3: 346-379.

[61] Johnson E M, Ilic S, Morris A J. Design strategies for enhanced conductivity in metal-organic frameworks[J]. Acs Central Science, 2021, 7: 445-453.

[62] Johnson William J, Manohara Babu I, Muralidharan G. Nickel bismuth oxide as negative electrode for battery-type asymmetric supercapacitor[J]. Chemical Engineering Journal, 2021, 422: 130058.

[63] Karaca E. Electrosynthesis of binder-free polypyrrole/nano- Bi2O3-B2O2CO3 composite for supercapacitor anode[J]. Journal of Energy Storage, 2023, 71: 108210.

[64] Ko J, Kim S K, Yoon Y, et al. Eco-friendly cellulose based solid electrolyte with high performance and enhanced low humidity performance by hybridizing with aluminum fumarate MOF[J]. Materials Today Energy, 2018, 9: 11-18.

[65] Kolavada H, Gajjar P N, Gupta S K. Unraveling quantum capacitance in supercapacitors: Energy storage applications[J]. Journal of Energy Storage, 2024, 81: 110354.

[66] Kong D, Cao L, Fang Z, et al. Low-cost high-performance asymmetric supercapacitors based on ribbon-like Ni(OH)2 and biomass carbon nanofibers enriched with nitrogen and phosphorus[J]. Ionics, 2019, 25: 4341-4350.

[67] Kumar K S, Choudhary N, Jung Y, et al. Recent Advances in Two-Dimensional Nanomaterials for Supercapacitor Electrode Applications[J]. ACS Energy Letters, 2018, 3: 482-495.

[68] Kunusa W R, Isa I, Laliyo L A R, et al., 2017: FTIR, XRD and SEM Analysis of Microcrystalline Cellulose (MCC) Fibers from Corncorbs in Alkaline Treatment[C]. 2nd International Conference on Statistics, Mathematics, Teaching, and Research (ICSMTR), Makassar, INDONESIA, 2018, 1028: 012199.

[69] Lee C S, Lim J M, Park J T, et al. Direct growth of highly organized, 2D ultra-thin nano-accordion Ni-MOF@NiS2@C core-shell for high performance energy storage device[J]. Chemical Engineering Journal, 2021, 406: 126810.

[70] Lee J W, Hall A S, Kim J-D, et al. A Facile and Template-free hydrothermal synthesis of mn3o4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability[J]. Chemistry of Materials, 2012, 24: 1158-1164.

[71] Lei Z, Zhang J, Zhao X S. Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes[J]. Journal of Materials Chemistry, 2012, 22: 153-160.

[72] Li H, Zu J, Zhang S, et al. Facile synthesis of foamed-nickel supporting MnO2 as binder-less electrodes for high electrochemical performance supercapacitors[J]. Journal of Nanoparticle Research, 2019, 21: 34.

[73] Li L, Yang Y W, Li G H, et al. Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes[J]. Small, 2006, 2: 548-553.

[74] Li N, Li Y, Li Q, et al. NiO nanoparticles decorated hexagonal nickel-based metal-organic framework: Self-template synthesis and its application in electrochemical energy storage[J]. Journal of Colloid and Interface Science, 2021, 581: 709-718.

[75] Li W, Chen J, Xie F, et al. NiCoP firmly anchored on Mn-treated carbon cloth enabling enhanced supercapacitor performance[J]. Journal of Energy Storage, 2024, 104: 114492.

[76] Li Y, Zhang J, Chen Z, et al. Nickel-based materials: Toward practical application of the aqueous hybrid supercapacitors[J]. Sustainable Materials and Technologies, 2022a, 33: e00479.

[77] Li Z, Ji C, Guo F, et al. A multi-interface CoNi-SP/C heterostructure for quasi-solid-state hybrid supercapacitors with a graphene oxide-containing hydrogel electrolyte[J]. Journal of Materials Chemistry A, 2022b, 10: 4671-4682.

[78] Liang H, Xia C, Jiang Q, et al. Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors[J]. Nano Energy, 2017, 35: 331-340.

[79] Lin J, Yan Y, Zheng X, et al. Designing and constructing core-shell NiCo2S4@Ni3S2 on Ni foam by facile one-step strategy as advanced battery-type electrodes for supercapattery[J]. Journal of Colloid and Interface Science, 2019, 536: 456-462.

[80] Lin Z, Goikolea E, Balducci A, et al. Materials for supercapacitors: When Li-ion battery power is not enough[J]. Materials Today, 2018, 21: 419-436.

[81] Liu L-l, Zhang M, Guo M, et al. Hydrothermal preparation and oxygen storage capacity of nano CeO2-based materials[J]. Chinese Journal of Chemical Physics, 2007, 20: 711-716.

[82] Liu P, Bao Y, Bu R, et al. Rational construction of MOF derived hollow leaf-like Ni/Co(VO3)x(OH)2-x for enhanced supercapacitor performance[J]. Applied Surface Science, 2020, 533: 147308.

[83] Liu Q, Zhang L-Y, Bao Y-M, et al. Structures and catalytic oxidative coupling reaction of four Co-MOFs modified with R-isophthalic acid (R= H, OH and COOH) and trigonal ligands[J]. Crystengcomm, 2021, 23: 7590-7601.

[84] Liu R, Ma L, Niu G, et al. Oxygen-deficient bismuth oxide/graphene of ultrahigh capacitance as advanced flexible anode for asymmetric supercapacitors[J]. Advanced Functional Materials, 2017, 27: 1701635.

[85] Liu X, Zhu W, Deng P, et al. Redesigning natural materials for energy, water, environment, and devices[J]. ACS Nano, 2023, 17: 18657-18668.

[86] Liu Y, Xu S, Zhang Z. A Chlorine dioxide sustained-release system based on cellulose porous microspheres: A novel approach for grape preservation[J]. Packaging Technology and Science, 2024, 38: 293-308.

[87] Lu H, Zhuang L, Gaddam R R, et al. Microcrystalline cellulose-derived porous carbons with defective sites for electrochemical applications[J]. Journal of Materials Chemistry A, 2019, 7: 22579-22587.

[88] Lu Q, Liu J, Wang X, et al. Construction and characterizations of hollow carbon microsphere@polypyrrole composite for the high performance supercapacitor[J]. Journal of Energy Storage, 2018, 18: 62-71.

[89] Lu Y, Zhao Y, Zhao J, et al. Induced Aqueous Synthesis of Metastable β-Bi2O3 Microcrystals for Visible-Light Photocatalyst Study[J]. Crystal Growth & Design, 2015, 15: 1031-1042.

[90] Luo Q, Suzuki S, Horii F, et al. CELL 93-Characterization of hydrogen bonding in native cellulose by high-resolution solid-state 1H, 13C, and 2H NMR spectroscopies[J]. Abstracts of Papers of the American Chemical Society, 2008, 235: 93-CELL.

[91] Lv N, Li M, Chen X, et al. Tunable hierarchical pore structure of nickel-cobalt bimetallic organic framework materials for high-performance supercapacitor[J]. Langmuir, 2025, 41: 7419-7428.

[92] Ma L, Liu R, Liu L, et al. Facile synthesis of Ni(OH)2/graphene/bacterial cellulose paper for large areal mass, mechanically tough and flexible supercapacitor electrodes[J]. Journal of Power Sources, 2016, 335: 76-83.

[93] Maheshwaran G, Pandi P, Suganya S, et al. Fabrication of self charging supercapacitor based on two dimensional bismuthene-graphitic carbon nitride nanocomposite powered by dye sensitized solar cells[J]. Journal of Energy Storage, 2022, 56: 105900.

[94] Manikandan M, Subramani K, Sathish M, et al. Hydrothermal synthesis of cobalt telluride nanorods for a high performance hybrid asymmetric supercapacitor[J]. RSC Advances, 2020, 10: 13632-13641.

[95] Mao J, Wu F-F, Shi W-H, et al. Preparation of polyaniline-coated composite aerogel of MnO2 and reduced graphene oxide for high-performance zinc-ion battery[J]. Chinese Journal of Polymer Science, 2020, 38: 514-521.

[96] Mendez-Morales T, Ganfoude N, Li Z, et al. Performance of microporous carbon electrodes for supercapacitors: Comparing graphene with disordered materials[J]. Energy Storage Materials, 2019, 17: 88-92.

[97] Meng Q, Cai K, Chen Y, et al. Research progress on conducting polymer based supercapacitor electrode materials[J]. Nano Energy, 2017, 36: 268-285.

[98] Miller J R, Simon P. Materials science - electrochemical capacitors for energy management[J]. Science, 2008, 321: 651-652.

[99] Mohammadi T, Hosseini M G, Sadeghi Z, et al. Ru/Co metal-organic framework nanosheets arrayed on activated carbon felt as boosted flexible electrodes for symmetric supercapacitors[J]. Journal of Energy Storage, 2025, 110: 115288.

[100] Nandihalli N. Microwave-driven synthesis and modification of nanocarbons and hybrids in liquid and solid phases[J]. Journal of Energy Storage, 2025, 111: 115315.

[101] Naveenkumar P, Maniyazagan M, Kang N, et al. MoF-derived CuCo2S4@FeS2 nanohybrids for supercapacitor applications[J]. Electrochimica Acta, 2025, 513: 145546.

[102] Nogi M, Iwamoto S, Nakagaito A N, et al. Optically Transparent Nanofiber Paper[J]. Advanced Materials, 2009, 21: 1595-1598.

[103] Ojeda L, Velazquez-Galvan Y, Gonzalez-Contreras G, et al. A composite electrode of graphene/Bi2Te3 for the fabrication of flexible supercapacitors/thermoelectric devices with high output voltage[J]. Materials Chemistry and Physics, 2024, 318: 129317.

[104] Peng S, Fan L, Wei C, et al. Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes[J]. Carbohydrate Polymers, 2017, 157: 344-352.

[105] Pholauyphon W, Charoen-amornkitt P, Suzuki T, et al. Guidelines for supercapacitor electrochemical analysis: A comprehensive review of methodologies for finding charge storage mechanisms[J]. Journal of Energy Storage, 2024, 98: 112833.

[106] Prakruthi R, Deepakumari H N, Mallikarjunaswamy C, et al. Multifunctional applications of bismuth vanadate nanoparticles: enhanced photocatalytic, good sensor and supercapacitor property[J]. Journal of Materials Science-Materials in Electronics, 2024, 35: 1922.

[107] Qi D, Liu Y, Liu Z, et al. Design of architectures and materials in in-plane micro-supercapacitors: Current status and future challenges[J]. Advanced Materials, 2017, 29: 9233-9280.

[108] Qi J, Yan Y, Cai Y, et al. Nanoarchitectured design of vertical-standing arrays for supercapacitors: Progress, challenges, and perspectives[J]. Advanced Functional Materials, 2021, 31: 2006030.

[109] Rabani I, Zafar R, Subalakshmi K, et al. A facile mechanochemical preparation of Co3O4@g-C3N4 for application in supercapacitors and degradation of pollutants in water[J]. Journal of hazardous materials, 2021, 407: 124360.

[110] Ramachandran R, Rajavel K, Xuan W, et al. Influence of Ti3C2Tx (MXene) intercalation pseudocapacitance on electrochemical performance of Co-MOF binder-free electrode[J]. Ceramics International, 2018a, 44: 14425-14431.

[111] Ramachandran R, Zhao C, Luo D, et al. Synthesis of copper benzene-1, 3, 5-tricarboxylate metal organic frameworks with mixed phases as the electrode material for supercapacitor applications[J]. Applied Surface Science, 2018b, 460: 33-39.

[112] Ramachandran R, Xuan W, Zhao C, et al. Enhanced electrochemical properties of cerium metal-organic framework based composite electrodes for high-performance supercapacitor application[J]. RSC Advances, 2018c, 8: 3462-3469.

[113] Ramzan M, Amara U, Faurooqi M Z U R, et al. A roadmap to nickel-based bimetallic metal-organic frameworks for supercapacitor applications[J]. Coordination Chemi stry Reviews, 2025, 532: 216547.

[114] Ran F, Xu X, Pan D, et al. Ultrathin 2D metal-organic framework nanosheets in situ interpenetrated by functional CNTs for hybrid energy storage device[J]. Nano-Micro Letters, 2020, 12: 46.

[115] Ran F, Yang X, Xu X, et al. Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor[J]. Chemical Engineering Journal, 2021, 412: 128673.

[116] Rauda I E, Augustyn V, Dunn B, et al. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials[J]. Accounts of Chemical Research, 2013, 46: 1113-1124.

[117] Shang T, Xu Y, Li P, et al. A bio-derived sheet-like porous carbon with thin-layer pore walls for ultrahigh-power supercapacitors[J]. Nano Energy, 2020, 70: 104531.

[118] Shao J, Zhou H, Zhu M, et al. Facile synthesis of metal-organic framework-derived Co3O4 with different morphologies coated graphene foam as integrated anodes for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 768: 1049-1057.

[119] Shao Y, Gu M, Li X, et al. Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries[J]. Nano Letters, 2014, 14: 255-260.

[120] Shi X, Hu Y, Li M, et al. Highly specific capacitance materials constructed via in situ synthesis of polyaniline in a cellulose matrix for supercapacitors[J]. Cellulose, 2014, 21: 2337-2347.

[121] Shinde N M, Xia Q X, Yun J M, et al. Ultra-rapid chemical synthesis of mesoporous Bi2O3 micro-sponge-balls for supercapattery applications[J]. Electrochimica Acta, 2019, 296: 308-316.

[122] Shu Y, Bai Q, Fu G, et al. Hierarchical porous carbons from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid for supercapacitor[J]. Carbohydrate Polymers, 2020, 227: 115346.

[123] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7: 845-854.

[124] Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin?[J]. Science, 2014, 343: 1210-1211.

[125] Singh D L, Ghosh T K, Mishra V, et al. Three-dimensional lanthanide-based nanoporous metal-organic frameworks for high-performance supercapacitors[J]. ACS Applied Nano Materials, 2022, 5: 15237-15249.

[126] Spek A L. Single-crystal structure validation with the program PLATON[J]. Journal of Applied Crystallography, 2003, 36: 7-13.

[127] Srinivasan S, 2006: Electrode/electrolyte interfaces: Structure and kinetics of charge transfer. Fuel Cells: From fundamentals to applications, Springer, 27-92.

[128] Sun F, Qu Z, Gao J, et al. In Situ Doping boron atoms into porous carbon nanoparticles with increased oxygen graft enhances both affinity and durability toward electrolyte for greatly improved supercapacitive performance[J]. Advanced Functional Materials, 2018, 28: 1804190.

[129] Sun J, Wang J, Li Z, et al. Controllable synthesis of 3D hierarchical bismuth compounds with good electrochemical performance for advanced energy storage devices[J]. RSC Advances, 2015, 5: 51773-51778.

[130] Sun J X, Sun X F, Zhao H, et al. Isolation and characterization of cellulose from sugarcane bagasse[J]. Polymer Degradation and Stability, 2004, 84: 331-339.

[131] Sun Y, Li C, Liu D, et al. Surface and Interfacial Engineering for Multifunctional Nanocarbon Materials[J]. ACS Nano, 2025, 19: 1944-1980.

[132] Sundarraj N k, Pandiyan J Q S, Souwaileh A A, et al. Sonochemical synthesis of Ni-MOF using 2-methylimidazole as an organic linker: Pushing the boundaries of energy storage[J]. Electrochimica Acta, 2025, 523: 145975.

[133] Tan Y-C, Wang R-N, Liu W, et al. Robust redox-active tetrathiafulvalene-cobalt metal-organic frameworks for supercapatteries with promoting electrochemical performances[J]. Inorganic Chemistry, 2025, 64: 6023-6031.

[134] Tang X, Song H, Liang J, et al. Synchronous N-doping and activation of carbon aerogels derived from bamboo waste for high-performance supercapacitors[J]. Diamond and Related Materials, 2025, 151: 111809.

[135] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367.

[136] Teng Z, Han K, Cao Y, et al. N-doped porous carbon derived from different lignocellulosic biomass models for high-performance supercapacitors: the role of lignin, cellulose and hemicellulose[J]. International Journal of Biological Macromolecules, 2025, 289: 138815.

[137] Tian D, Lu X, Nie G, et al. Direct growth of Ni-Mn-O nanosheets on flexible electrospun carbon nanofibers for high performance supercapacitor applications[J]. Inorganic Chemistry Frontiers, 2018, 5: 635-642.

[138] Tian W, Ren P, Hou X, et al. MnO2 porous carbon composite from cellulose enabling high gravimetric/volumetric performance for supercapacitor[J]. International Journal of Biological Macromolecules, 2024, 261: 129977.

[139] Trache D, Hussin M H, Hui Chuin C T, et al. Microcrystalline cellulose: Isolation, characterization and bio-composites application-A review[J]. International Journal of Biological Macromolecules, 2016, 93: 789-804.

[140] Tran C C H, Santos-Pena J, Damas C. Electrodeposited manganese oxide supercapacitor microelectrodes with enhanced performance in neutral aqueous electrolyte[J]. Electrochimica Acta, 2020, 335: 135564.

[141] Uddin M S, Das H T, Maiyalagan T, et al. Influence of designed electrode surfaces on double layer capacitance in aqueous electrolyte: Insights from standard models[J]. Applied Surface Science, 2018, 449: 445-453.

[142] van Zyl E M, Coburn J M. Hierarchical structure of bacterial-derived cellulose and its impact on biomedical applications[J]. Current Opinion in Chemical Engineering, 2019, 24: 122-130.

[143] Vandana M, Bijapur K, Soman G, et al. Recent advances in the development, design and mechanism of negative electrodes for asymmetric supercapacitor applications[J]. Critical Reviews in Solid State and Materials Sciences, 2024, 49: 335-370.

[144] Vermisoglou E C, Jakubec P, Bakandritsos A, et al. Chemical tuning of specific capacitance in functionalized fluorographene[J]. Chemistry of Materials, 2019, 31: 4698-4709.

[145] Vivier V, Régis A, Sagon G, et al. Cyclic voltammetry study of bismuth oxide Bi2O3 powder by means of a cavity microelectrode coupled with Raman microspectrometry[J]. Electrochimica Acta, 2001, 46: 907-914.

[146] Wang C, Wang F, Liu Z, et al. N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors[J]. Nano Energy, 2017, 41: 674-680.

[147] Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41: 797-828.

[148] Wang J, Li Z, Ramesh S, et al. Recent advances in metal oxides for sodium-ion capacitors: Mechanism, materials, and future prospects[J]. Chemical Engineering Journal, 2023, 478: 147767.

[149] Wang J, Zhu J, Li C, et al. Effect of nitro-substituted ending group on the photovoltaic and photocatalytic performance of non-fullerene acceptors[J]. Chemical Engineering Journal, 2024, 490: 151467.

[150] Wang K, Wang Z, Wang X, et al. Flexible long-chain-linker constructed Ni-based metal-organic frameworks with 1D helical channel and their pseudo-capacitor behavior studies[J]. Journal of Power Sources, 2018a, 377: 44-51.

[151] Wang K, Wang Z, Liu J, et al. Enhancing the performance of a battery-supercapacitor hybrid energy device through narrowing the capacitance difference between two electrodes via the utilization of 2D MOF-nanosheet-derived Ni@nitrogen-doped-carbon core-shell rings as both negative and positive electrodes[J]. ACS Applied Materials & Interfaces, 2020a, 12: 47482-47489.

[152] Wang K, Li Q, Ren Z, et al. 2D metal-organic frameworks (MOFs) for high-performance batcap hybrid devices[J]. Small, 2020b, 16: 2001987.

[153] Wang M, Zhang J, Yi X, et al. High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel[J]. Beilstein Journal of Nanotechnology, 2020c, 11: 240-251.

[154] Wang P, Zheng T, Gan S, et al. Lignosulfonate-modified corncob cellulose biochar as an electrode material for high-performance supercapacitor application[J]. International Journal of Biological Macromolecules, 2025, 307: 142128.

[155] Wang S, Tian J, Wang Q, et al. Development of CuO coated ceramic hollow fiber membrane for peroxymonosulfate activation: a highly efficient singlet oxygen-dominated oxidation process for bisphenol a degradation[J]. Applied Catalysis B-Environment and Energy, 2019, 256: 117783.

[156] Wang S, Lin J, Yuan Z, et al. Tunable architecture of cobalt-nickel metal-organic framework/activated carbon composites for superior electrochemical performance in asymmetric supercapacitors[J]. Journal of Colloid and Interface Science, 2025, 684: 647-657.

[157] Wang S X, Jin C C, Qian W J. Bi2O3 with activated carbon composite as a supercapacitor electrode[J]. Journal of Alloys and Compounds, 2014, 615: 12-17.

[158] Wang Y, Wang Y, Jiang L. Freestanding carbon aerogels produced from bacterial cellulose and its Ni/MnO2/Ni(OH)2 decoration for supercapacitor electrodes[J]. Journal of Applied Electrochemistry, 2018b, 48: 495-507.

[159] Wang Y, Chen N, Liu Y, et al. MXene/graphdiyne nanotube composite films for free-standing and flexible solid-state supercapacitor[J]. Chemical Engineering Journal, 2022, 450: 138398.

[160] Wei C, Huang Y, Xue S, et al. One-step hydrothermal synthesis of flaky attached hollow-sphere structure NiCo2S4 for electrochemical capacitor application[J]. Chemical Engineering Journal, 2017, 317: 873-881.

[161] Wei J, Hu F, Lv C, et al. Fabrication of dual-functional MXene@NiCo2S4 composites with enhanced nonlinear optical and electrochemical properties[J]. Small, 2025: e2411146-e2411146.

[162] Wu H, Guo J, Yang D a. Facile autoreduction synthesis of core-shell Bi-Bi2O3/CNT with 3-dimensional neural network structure for high-rate performance supercapacitor[J]. Journal of Materials Science & Technology, 2020, 47: 169-176.

[163] Wu S, Cai D, Wang Y. One-step synthesis of oxygen-vacancy-rich nickel cobalt sulfides quantum dots@metal-organic framework/Ni3S2 heterostructures for supercapacitors[J]. International Journal of Hydrogen Energy, 2025, 103: 64-74.

[164] Wu Y B, Yu S H, Mi F L, et al. Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends[J]. Carbohydrate Polymers, 2004, 57: 435-440.

[165] Wu Z-Y, Li C, Liang H-W, et al. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose[J]. Angewandte Chemie International Edition, 2013, 52: 2925-2929.

[166] Xiao Y, Wang X, Wang W, et al. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode[J]. ACS Applied Materials & Interfaces, 2014, 6: 2051-2058.

[167] Xing T, Sun M, Guo S, et al. Smart confinement of MnO enabling highly reversible Mn(II)/Mn(III) redox for asymmetric supercapacitors[J]. Journal of Power Sources, 2021, 495: 229801.

[168] Xiong C, Zhang Y, Zheng C, et al. Fabrication of metal-organic framework@cellulose nanofibers/reduced graphene oxide-Vitrimer composite electrode materials with shape memory for supercapacitors[J]. Electrochimica Acta, 2024, 493: 144373.

[169] Xu B, Yue S, Sui Z, et al. What is the choice for supercapacitors: Graphene or graphene oxide?[J]. Energy & Environmental Science, 2011, 4: 2826-2830.

[170] Xu K, Shao H, Lin Z, et al. Computational insights into charge storage mechanisms of supercapacitors[J]. Energy & Environmental Materials, 2020, 3: 235-246.

[171] Xu M, Niu Y, Teng X, et al. High-capacity Bi2O3 anode for 2.4 V neutral aqueous sodium-ion battery-supercapacitor hybrid device through phase conversion mechanism[J]. Journal of Energy Chemistry, 2022a, 65: 605-615.

[172] Xu O, Wan S, Yang J, et al. Ni-MOF functionalized carbon dots with fluorescence and adsorption performance for rapid detection of Fe (III) and ascorbic acid[J]. Journal of Fluorescence, 2022b, 32: 1743-1754.

[173] Xu Z, Jia S R, Wang W, et al. Heteromultivalent peptide recognition by co-assembly of cyclodextrin and calixarene amphiphiles enables inhibition of amyloid fibrillation[J]. Nature Chemistry, 2019, 11: 86-93.

[174] Yan L, Gu Z, Zheng X, et al. Elemental bismuth-graphene heterostructures for photocatalysis from ultraviolet to infrared light[J]. ACS Catalysis, 2017, 7: 7043-7050.

[175] Yang J, Xiong P, Zheng C, et al. Metal-organic frameworks: a new promising class of materials for a high performance supercapacitor electrode[J]. Journal of Materials Chemistry A, 2014, 2: 16640-16644.

[176] Yang L, Zhu G, Wen H, et al. Constructing a highly oriented layered MOF nanoarray from a layered double hydroxide for efficient and long-lasting alkaline water oxidation electrocatalysis[J]. Journal of Materials Chemistry A, 2019, 7: 8771-8776.

[177] Yang M-X, Liu Y-Q, Cen F-Y, et al. Syntheses, structures and properties of 2D metal-organic coordination polymers constructed from 5-substituted isophthalic acid and bis(imidazole) ligands[J]. Chinese Journal of Inorganic Chemistry, 2018, 34: 569-578.

[178] Yang Y, Zhang C, Zhao G, et al. Regulating the electron structure of covalent organic frameworks by strong electron-withdrawing nitro to construct specific Li+ Oriented channel[J]. Advanced Energy Materials, 2023, 13: 2300725.

[179] Yang Y J, Liu M, Jiang C, et al. One-step hydrothermal growth of reduced graphene oxide/nickel hexacyanoferrate nanocomposite on Ni foam for binder-free supercapacitor electrode[J]. Journal of Energy Storage, 2021, 44: 103462.

[180] Ye B, Gong C, Huang M, et al. Improved performance of a CoTe//AC asymmetric supercapacitor using a redox additive aqueous electrolyte[J]. RSC Advances, 2018, 8: 7997-8006.

[181] Yu Z, Duong B, Abbitt D, et al. Highly ordered MnO2 nanopillars for enhanced supercapacitor performance[J]. Advanced Materials, 2013, 25: 3302-3306.

[182] Yu Z, Li C, Abbitt D, et al. Flexible, sandwich-like Ag-nanowire/PEDOT:PSS-nanopillar/MnO2 high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2: 10923-10929.

[183] Yuan C, Zhang M, Ni X, et al. Preparation of cellulose-based carbon nanofibers/NiCo2S4 composites for high-performance all-solid-state symmetric supercapacitors[J]. Journal of Energy Storage, 2022, 47: 103589.

[184] Yue X, Yang H-B, Han Z-M, et al. Tough and moldable sustainable cellulose-based structural materials via multiscale interface engineering[J]. Advanced Materials, 2024, 36: 2306451.

[185] Zhan C, Lian C, Zhang Y, et al. Computational insights into materials and interfaces for capacitive energy storage[J]. Advanced Science, 2017, 4: 1700059.

[186] Zhang G, Ma Z, Piao Y, et al. Revealing the potential of star anise essential oil: Comparative analysis and optimization of innovative extraction methods for enhanced yield, aroma characteristics, chemical composition, and biological activities[J]. Food Science & Nutrition, 2024a, 12: 9540-9554.

[187] Zhang L, Shi D, Liu T, et al. Nickel-based materials for supercapacitors[J]. Materials Today, 2019, 25: 35-65.

[188] Zhang L, Zhan B, He Y, et al. Novel diacid-superbase ionic liquids for efficient dissolution of cellulose and simultaneous preparation of multifunctional cellulose materials[J]. Green Chemistry, 2024b, 26: 8794-8807.

[189] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38: 2520-2531.

[190] Zhang M-D, Di C-M, Qin L, et al. Chiral 3D/3D hetero-interpenetrating framework with six kinds of helices, 3D polyrotaxane and 2D network via one-pot reaction[J]. Crystengcomm, 2013, 15: 227-230.

[191] Zhang Q, Xu W, Sun J, et al. Constructing ultrahigh-capacity zinc-nickel-cobalt oxide@Ni(OH)2 core-shell nanowire arrays for high-performance coaxial fiber-shaped asymmetric supercapacitors[J]. Nano Letters, 2017a, 17: 7552-7560.

[192] Zhang Y, Hu S, Li C-e, et al. Advanced strategies for enhancing electrochemical performance of NiAl LDH electrodes in supercapacitors[J]. Coordination Chemistry Reviews, 2025a, 531: 216497.

[193] Zhang Y, Liu Y, Liu Z, et al. MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries[J]. Journal of Energy Chemistry, 2022a, 64: 23-32.

[194] Zhang Z, Lv P, Zhen F, et al. Multi layered porous nitrogen-rich biochar materials derived from soybean cellulose for lithium metal anode three-dimensional skeleton in lithium batteries[J]. International Journal of Biological Macromolecules, 2025b, 293: 139301.

[195] Zhang Z-H, Liu L C, Zhang C X, et al. The doped Co on Rh/Ni@Ni-N-C that weakened the catalytic performance for ammonia borane hydrolysis[J]. International Journal of Hydrogen Energy, 2023, 48: 2640-2651.

[196] Zhang Z-W, Lu C-Y, Liu G-H, et al. Preparation of N/Ni co-doped cellulose-based porous carbon and its supercapacitor performance[J]. Journal of Materials Research and Technology, 2022b, 19: 3034-3045.

[197] Zhang Z J, Zheng Q C, Sun L. Synthesis of 2-D nanostructured BiVO4:Ag hybrid as an efficient electrode material for supercapacitors[J]. Ceramics International, 2017b, 43: 16217-16224.

[198] Zheng G, Cui Y, Karabulut E, et al. Nanostructured paper for flexible energy and electronic devices[J]. Mrs Bulletin, 2013, 38: 320-325.

[199] Zheng L, Song J, Ye X, et al. Construction of self-supported hierarchical NiCo-S nanosheet arrays for supercapacitors with ultrahigh specific capacitance[J]. Nanoscale, 2020, 12: 13811-13821.

[200] Zheng W, Fan L, Meng Z, et al. Flexible quasi-solid-state supercapacitors for anti-freezing power sources based on polypyrrole@cation-grafted bacterial cellulose[J]. Carbohydrate Polymers, 2024, 324: 121502.

[201] Zhong C, Deng Y, Hu W, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44: 7484-7539.

[202] Zhou D, Guo X, Zhang Q, et al. Nickel-based materials for advanced rechargeable batteries[J]. Advanced Functional Materials, 2022, 32: 2107928.

[203] Zhou J, Chen J, Chen M, et al. Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries[J]. Advanced Materials, 2019a, 31: 1807874.

[204] Zhou S, Kong X, Zheng B, et al. Cellulose nanofiber @ conductive metal-organic frameworks for high-performance flexible supercapacitors[J]. ACS Nano, 2019b, 13: 9578-9586.

[205] Zhu H, Xie Y. Hydrogen-bonding interaction promoted supercapacitance of polylactic acid-graphene-microcrystalline cellulose/polyaniline nanofiber[J]. Materials Today Chemistry, 2023, 30: 101535.

[206] Zhu Z, Xia Q, Wang L, et al. In situ grown VO2/V2C MXene and its supercapacitor applications[J]. Journal of Energy Storage, 2024, 88: 111484.

[207] Zong W, Lai F, He G, et al. SYYYapacitors[J]. Small, 2018, 14: 1801562.

中图分类号:

 O62    

开放日期:

 2025-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式