中文题名: | 羊粪好氧堆肥技术参数的优化研究 |
姓名: | |
学号: | 2018805109 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 095105 |
学科名称: | 农学 - 农业推广 - 养殖 |
学生类型: | 硕士 |
学位: | 农业硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 羊场养殖废弃物资源化利用 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2020-04-01 |
答辩日期: | 2020-06-05 |
外文题名: | Study on Optimization of Technical Parameters of Sheep Manure Aerobic Composting |
中文关键词: | |
外文关键词: | sheep dung ; fertilizer ; fungicide ; compost ; auxiliary materials ; fermentation tan |
中文摘要: |
羊粪含有机质 24%~27%,氮 0.7%~0.8%,磷 0.45%~0.6%,钾 0.4%~0.5%。 羊粪有机质、氮的含量比其它畜粪多,粪质较细,肥份浓厚。羊粪如果不经过处理, 易二次发酵造成农作物烧根。羊粪经过发酵是一种很好的有机肥。目前对于羊粪的处 理主要以“三化”为主,即“减量化、无害化、资源化”。其中好氧堆肥处理成本低、安 全、生态环保、还可以循环利用,是目前羊粪最行之有效的资源化利用方式。选择合 适的农作物秸秆作为辅料与羊粪混合堆肥是一种很好处理方式,不仅可以解决秸秆的 利用问题,缩短堆肥时间,还可以提高肥料的养分含量。不同的堆肥原料,其物理、 |
外文摘要: |
Sheep dung contains organic matter 24%-27%, nitrogen 0.7%-0.8%, phosphorus 0.45%-0.6%, potassium 0.4%-0.5%. Sheep manure has more organic matter and nitrogen than other animal manures, with finer manure and thicker fat. If the sheep dung is not processed, it is easy for secondary fermentation to cause crop root burning. Sheep manure is a good organic fertilizer after fermentation. At present, the treatment of sheep dung is mainly based on the “three transformations”, that is, “reduction, harmlessness, and recycling”. Among them, aerobic composting treatment is low cost, safe, ecological and environmentally friendly, and can also be recycled. It is currently the most effective resource utilization method of sheep manure. Choosing the right crop straw as auxiliary material and sheep manure mixed composting is a good way to deal with, not only can solve the problem of straw utilization, shorten composting time, but also can increase the nutrient content of fertilizers. Different composting materials have large differences in physical, chemical and biological characteristics, so the choice of auxiliary materials is one of the factors that affect aerobic composting. In addition, the addition of microbial inoculants during the composting process not only improves composting efficiency, reduces composting time, but also has a significant effect on fertilizer maturity. However, there are many kinds of microbial inoculants on the market, and their functions and effects are also different. Therefore, the selection of appropriate microbial inoculants is also one of the main factors affecting the composting effect. In addition, in the process of composting, in addition to the method of natural overturning and oxygen supply, some enterprises adopt a fermentation bin composting system. Composting is carried out in a closed container, which can well control the composting fermentation process and has a high investment cost. Therefore, the purpose of this experiment is to explore the effects of different excipients, different fungi, and composting time of the fermentation bin on the aerobic composting of sheep manure, optimize the technical parameters of composting, choose which excipients and fungi for aerobic composting, and determine the fermentation tank The optimal number of days for composting provides a scientific reference. Experiment 1: Effects of different excipients on the effects of aerobic composting of sheep manure The purpose of this experiment is to investigate the effects of different excipients on the aerobic composting effect of sheep manure. In the experiment, sheep manure, rice straw and fungus bran were used as composting materials for combined composting, which were the fungus bran group (Z1 group) and the rice group (Z2 group). During the composting process, the temperature, pH value, C/N and germination index (GI) and other physical and chemical indicators, the results show that: the average temperature of the two groups in the high temperature period Z2 group > Z1 group, the pH value of the two groups during the entire composting period is maintained between 8.13-8.98, both in line with composting standards; in the two groups, the water content of the Z1 group and the Z2 group decreased from 63.19% and 60.51% to 24.82% and 20.08% respectively, which were 38.37% and 40.43% less than the initial compost; The content decreased from 1.0 mg·g-1 to 0.2 mg·g-1, a decrease of 80%. The Z2 group decreased from 0.6 mg·g-1 to 0.1 mg·g-1, a decrease of 83%; the total potassium content of the Z1 group increased from 20.5 mg·g-1 to 29.5 mg·g-1, an increase of 9.0 mg·g-1. The Z2 group increased from 12.7 mg·g-1 to 31.3 mg·g-1, an increase of 18.6 mg·g-1; the C/N decline in the Z1 and Z2 groups was 37.5% and 38.4%, respectively; the germination index of the Z1 group increased from 28% to 117%. The Z2 group rose from 23% to 111%, of which the Z2 group first reached 110%. And the heavy metal content of the two groups is in line with national standards. Conclusion: The composting effect of rice adjuncts is better than fungus bran adjuncts during aerobic composting of sheep manure. Experiment 2: Effects of different inoculants on aerobic composting of sheep manure The purpose of this experiment is to investigate the effect of different fungi on the aerobic composting effect of sheep manure. The experiment used sheep dung and mushroom dregs as composting materials, and were inoculated with EM bacteria(Effective microorganisms) and mixed bacteria (Bacillus subtilis: Bacillus licheniformis: Trichoderma viride: Aspergillus niger: Saccharomyce=0.5: 0.5: 1: 1: 2) Combined composting is divided into EM bacteria group (Z3 group) and mixed bacteria group (Z4 group). During the composting process, each group of physical and chemical indicators such as temperature, water content, C/N and germination index are tested in order to search for the appropriate bacterial agent to improve the efficiency of sheep manure aerobic composting. The results show that during the composting period, the average temperature of the Z4 group during the high temperature period is higher than that of the Z3 group. The water content of the Z4 group and the Z3 group was 64.07% and 59.50% at the beginning of composting, and the water content decreased to 24.28% and 28.20% at the end of the composting. Compared with the initial stage of composting, they decreased by 39.79% and 31.30% respectively; the Z3 group ammonium nitrogen content decreased from the initial 0.8 mg·g-1 to 0.2 mg·g-1, a reduction of 75%. The Z4 group decreased from the initial 1.1 mg·g-1 to 0.1 mg·g-1, a decrease of 91%; the pH value of the two groups showed a trend of first increasing and then decreasing. The Z3 group increased from the initial 8.53 to a maximum of 8.95 on the 22nd day. The Z4 group gradually increased from the initial 8.43 and rose to a maximum of 8.97 on the 23rd day; the total potassium content of the Z3 group increased from 15.6 mg·g-1 to 28.1 mg·g-1, an increase of 12.5 mg·g-1. The Z4 group increased from 11.7 mg·g-1 to 34.7 mg·g-1, an increase of 23.0 mg·g-1; the C/N of the Z3 group and Z4 group decreased from the initial 23 and 24 to 15 and 14, the decrease was 37.5% and 39.1%; the germination index of the Z3 group increased from 29% at the beginning of composting to 123% at the end of composting. The Z4 group increased from 30% at the beginning of composting to 132%. Among them, the Z4 group took the lead to reach 110%; both groups have passed heavy metal testing and are in line with national standards. Conclusion: During the aerobic composting process of sheep manure, the addition of mixed microbial agent compost is superior to the fertilizer inoculated with EM microbial agent in nitrogen retention and maturity. Experiment 3: Effects of different days on aerobic composting effect of sheep manure fermentation tank The purpose of this experiment was to investigate the effects of different fermentation cycles on the composting of sheep manure fermentation tanks. The experiment used sheep dung as raw material, adjusted the water content to about 65% in advance and put it into the fermentation tank, and controlled the oxygenation system of the fermentation tank and the internal turning system. Collecting fertilizer samples on the 7th day (D7) and 9th day (D9) respectively, and explore the most suitable fermentation time of the fermentor by detecting the maturity and pH value ysical and chemical indicators. The results showed that: during the composting period, the moisture content on the 7th day decreased to 45.30%, a decrease of 19.13% from the initial moisture content; on the 9th day, the moisture content decreased to 41.52%, a decrease of 22.91% from the initial moisture content, and the moisture content fellen by 3.87% on the 7th day. Total nitrogen content increased from 12.36 g/kg on day 7 to 21.82g/kg on day 9, increased by 9.46g/kg; organic carbon content increased from 166.33g/kg on day 7 to 178.33g/kg on day 9, an increase of 12.00 g/kg; C/N decreased from 13 on the 7th day to 8, a decrease of 38%. The germination index increased from 58.6% to 70.6% from day 7 to day 9, an increase of 12%. The total phosphorus content increased from 5.88 mg·g-1 on day 7 to 6.89 mg·g-1 on day 9 and increased by 1.01 mg·g-1; the total potassium content increased from 21.20 mg·g-1 on day 7 to 22.90 mg·g-1 on day 9, an increase of 1.70 mg·g-1. The content of ammonium nitrogen increased from 0.13 mg/kg on the 7th day to 0.17 mg/kg on the 9th day, an increase of 0.04 mg/kg. The nitrate nitrogen content increased from 1.4 mg/kg on the 7th day to 1.73 mg/kg on the 9th day, an increase of 0.33 mg/kg. The content of lead in group D7 (2.83 mg/kg) > group D9 (1.26 mg/kg); the content of arsenic in group D7 (2.62 mg/kg) < group D9 (2.89 mg/kg). Conclusion: In the sheep manure fermentor composting system, the maturity of the sample on the 9th day is significantly higher than that on the 7th day, and the fertilizer has basically matured on the 9th day. |
参考文献: |
[1] 孙元烽. 羊粪有机肥的研制[D]. 贵州大学, 2019. [2] 全国农业资源环境与农村能源生态工作会议召开[J]. 中国畜牧业, 2019, (1): 10. [3] 成钢, 郭宝琼, 田娟, 等. 洞庭湖区羊粪新型生态堆肥模式及应用[J]. 黑龙江畜牧兽医, 2019, 568(04): 17-19. [4] Zhuang M, Lam S K, Zhang J, et al. Effect of full substituting compound fertilizer with different organic manure on reactive nitrogen losses and crop productivity in intensive vegetable production system of China[J]. Journal of Environmental Management, 2019, 243: 381-384. [5] 周江明, 王利通, 徐庆华, 等. 适宜猪粪与菌渣配比提高堆肥效率[J]. 农业工程学报, 2015, 31(7): 201-207. [6] 邱珊莲, 张少平, 翁伯琦, 等. 鸡粪菌渣好氧堆肥过程中氨氧化古菌及氨氧化细菌群落的动态变化[J]. 农业环境科学学报, 2016, 247(3): 171-181. [7] 郭夏丽, 张静晓, 王静, 等. 菌渣和牛粪联合堆肥中的氮素转化研究[J]. 郑州大学学报(工学版), 2012, 033(1): 71-74. [8] Khan MS, Koizumi N, Olds JL. Biofixation of atmospheric nitrogen in the context of world staple crop production: Policy perspectives.[J]. The Science of the Total Environment, 2020, 701. [9] Xie S, Feng H, Yang F, et al. Does dual reduction in chemical fertilizer and pesticides improve nutrient loss and tea yield and quality? A pilot study in a green tea garden in Shaoxing, Zhejiang Province, China[J]. Environmental Science and Pollution Research International, 2018, 26(3): 2464-2476. [10] Luan H, Gao W, Huang S, et al. Manure substitution of manure for chemical fertilizer affects soil microbial community diversity, structure and function in greenhouse vegetable production systems[J]. PloS One, 2020, 15(2): 1-21. [11] Edina S, Baricz A, Chiriac C M, et al. Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals[J]. Environmental Pollution, 2017, 225: 304-315. [12] Li H, Cheng W, Li B, et al. The fate of antibiotic resistance genes during co-composting of swine manure with cauliflower and corn straw[J]. Bioresource Technology, 2020, 300. [13] Wang J, Ben W, Zhang Y, et al. Effects of thermophilic composting on oxytetracycline, sulfamethazine, and their corresponding resistance genes in swine manure[J]. Environmental Science. Processes & Impacts, 2015, 17(9): 1654-1660. [14] Duan M, Gu J, Wang X, et al. Effects of genetically modified cotton stalks on antibiotic resistance genes, intI1, and intI2 during pig manure composting[J]. Ecotoxicology and Environmental Safety, 2018, 147: 637-642. [15] Zhang K, Gu J, Wang X, et al. Analysis for microbial denitrification and antibiotic resistance during anaerobic digestion of cattle manure containing antibiotic[J]. Bioresource Technology, 2019, 291. [16] Rushan C, Huang L, Li L, et al. Degradation of Tetracyclines in Pig Manure by Composting with Rice Straw[J]. International Journal of Environmental Research & Public Health, 2016, 13(3): 254. [17] Wei Y, Wei Z, Cao Z, et al. A regulating method for the distribution of pHospHorus fractions based on environmental parameters related to the key phosphate-solubilizing bacteria during composting[J]. Bioresource Technology, 2016, 211: 610-617. [18] Zhao Y, Lu Q, Wei Y, et al. Effect of actinobacteria agent inoculation methods on cellulose degradation during composting based on redundancy analysis[J]. Bioresource Technology, 2016, 219: 196-203. [19] 单亚静, 阮欣意, 郑嵘. 不同堆肥材料、含水率对死猪堆肥效率的影响研究[C]. 第三届中国猪业科技大会暨中国畜牧兽医学会2019年学术年会论文集, 2019. [20] Zhang L, Sun X. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste[J]. Waste Management, 2016, 48(02): 115-126. [21] 曹志宏, 黄艳丽, 郝晋珉. 中国作物秸秆资源利用潜力的多适宜性综合评价[J]. 环境科学研究, 2018, 31(01): 179-186. [22] Huang R, Gao M, Wang Y L, et al. Effects of Straw in Combination with Reducing Fertilization Rate on Soil Nutrients and Enzyme Activity in the Paddy-Vegetable Rotation Soils[J]. Huan Jing Ke Xue, 2016, 37(11): 4446-4456. [23] 石祖梁, 贾涛, 王亚静, 等. 我国农作物秸秆综合利用现状及焚烧碳排放估算[J]. 中国农业资源与区划, 2017, 38(9): 32-37. [24] 路丹, 何明菊, 区惠平, 等. 耕作方式对稻田土壤活性有机碳组分、有机碳矿化以及腐殖质特征的影响[J]. 土壤通报, 2014, 45(5): 1144-1150. [25] Yusuff O, Rafii M Y, Norhani A, et al. Fermentation Quality and Additives: A Case of Rice Straw Silage[J]. BioMed Research International, 2016, 2016: 1-14. [26] Oanh N T K, Albina D O, Ping L, et al. Emission of particulate matter and polycyclic aromatic hydrocarbons from select cookstove-fuel systems in Asia[J]. Biomass & Bioenergy, 2005, 28(6): 579-590. [27] Tang H, Xiao X, Xu Y, et al. Utilization of carbon sources in the rice rhizosphere and nonrhizosphere soils with different long-term fertilization management[J]. Journal of Basic Microbiology, 2019, 59(6): 621-631. [28] 罗小芳, 栗海波, 孙银为, 等. 食用菌菌糠综合开发利用现状[J]. 生物加工过程, 2017, 15(04): 77-81. [29] 周祥, 严媛媛, 陈爱晶. 食用菌菌渣资源化利用研究进展[J]. 食用菌, 2018, 40(1): 9-12. [30] Riahi H, Vahid A H, Masoud S. Use of spent mushroom compost (smc) as a casing soil in cultivation of agaricus bisorus[J]. Pajouhesh-Va-Sazandegi, 2001, 13(49): 27-29. [31] Paula F S, Tatti E, Abram F, et al. Stabilisation of spent mushroom substrate for application as a plant growth-promoting organic amendment[J]. Journal of Environmental Management, 2017, 196: 476-486. [32] 王岩, 李玉红, 李清飞. 添加微生物菌剂对牛粪高温堆肥腐熟的影响[J]. 农业工程学报, 2006, 22(14): 220-223. [33] 席北斗, 刘鸿亮, 黄国, 等.复合微生物菌剂强化堆肥技术研究[J]. 环境污染与防治, 2003, 25(5): 7-9. [34] 耿冬梅, 宣世伟, 王鹏. 高温好氧菌群用于接种垃圾堆肥的实验研究[J]. 上海环境科学, 2003, 10: 699-701. [35] Wan L, Wang X, Cong C, et al. Effect of inoculating microorganisms in chicken manure composting with maize straw[J]. Bioresource Technology, 2020, 301: 1-31. [36] Guo H, Gu J, Wang X, et al. Beneficial effects of bacterial agent/bentonite on nitrogen transformation and microbial community dynamics during aerobic composting of pig manure[J]. Bioresource Technology, 2020, 298. [37] Awasthi M, Duan Y, Awasthi S K, et al. Effect of biochar and bacterial inoculum additions on cow dung composting[J]. Bioresource Technology, 2020, 297. [38] 刘辉, 魏祥法, 井庆川, 等. 一株枯草芽孢杆菌发酵培养基的优化[J]. 山东农业科学, 2007, 1: 100-101. [39] 刘悦秋, 刘克锋, 石爱平, 等. 生活垃圾堆肥优良菌剂的筛选[J]. 农业环境科学学报, 2003, 022(5): 597-601. [40] 敖静, 李杨, 刘晓辉, 等. 一株枯草芽孢杆菌GX7在鸡粪中的定殖及发酵作用的研究[J]. 云南农业大学学报(自然科学), 2019, 34(05): 867-873. [41] 郭浩, 曹忠辉, 王林庚. 浅谈地衣芽孢杆菌在畜禽上的应用[J]. 江西畜牧兽医杂志, 2019, 5: 30. [42] Mpofu E, Chakraborty J, Suzuki-Minakuchi C, et al. Bacillus licheniformisBiotransformation of Monocyclic Phenolic Compounds by TAB7[J]. Microorganisms, 2020, 8(1): 26. [43] 杜珍辉. 地衣芽孢杆菌10182对猪粪液的无害化处理与利用的初步研究[J]. 重庆高教研究, 2007, 4(2): 50-53. [44] 王勇, 高苇, 张春祥, 等. 液体培养条件下绿色木霉Tr9701胞外酶及还原糖动态变化研究[J]. 华北农学报, 2015, 30(4): 226-230. [45] Saleh R M, Kabli S A, Al-Garni S M, et al. Solid-state fermentation by Trichoderma viride for enhancing phenolic content, antioxidant and antimicrobial activities in ginger[J]. Letters in Applied Microbiology, 2018, 67(2): 161-167. [46] 李瑜, 王琦, 陈五岭. 牛粪堆肥高效降解菌的筛选及复合微生物菌剂的制备[J]. 安徽农业科学, 2008, 36(35): 15653-15655. [47] Chaturvedi S, Kumar A, Singh B, et al. Bioaugmented composting of Jatropha de-oiled cake and vegetable waste under aerobic and partial anaerobic conditions[J]. Journal of Basic Microbiology, 2013, 53(4): 327-335. [48] Issoufou I, Harmouchi H, Belliraj L, et al. Aspergillus pyothorax: Is surgery alone sufficient?[J]. Medecine Et Sante Tropicales, 2018, 28(2): 172-175. [49] 王宇, 赵述淼, 胡咏梅, 等. 几种微生物及其组合在猪粪堆肥发酵中的作用[J]. 湖北农业科学, 2009, 48(1): 81-84. [50] 习兴梅, 曾光明, 郁红艳, 等. 黑曲霉Aspergillus niger木质纤维素降解能力及产酶研究[J]. 农业环境科学学报, 2007, 4: 1506-1511. [51] Meyer V, Fiedler M, Nitsche B, et al. The Cell Factory Aspergillus Enters the Big Data Era: Opportunities and Challenges for Optimising Product Formation[J]. Advances in Biochemical Engineering/Biotechnology, 2015, 149: 91-132. [52] 李国基. 酵母菌在食品领域中的应用[J]. 中国食品工业, 1997, 000(6): 14-16. [53] Kiyohiko N, Hidehira H. Temperature control strategy to enhance the activity of yeast inoculated into compost raw material for accelerated composting[J]. Waste Management, 2017, 65: 29-36. [54] Pan L, Yang S X, DeBruyn J. Factor Analysis of Downwind Odours from Livestock Farms[J]. Biosystems Engineering, 2007, 96(3): 387-397. [55] Kiyohiko N, Shogo A, Hiroshi M. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting[J]. Bioresource Technology, 2013, 144: 521-528. [56] Papagianni M. Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling[J]. Biotechnology Advances, 2007, 25(3): 244-263. [57] 张庆国. 羊粪尿的处理与综合利用[J]. 畜牧兽医科技信息, 2018, 503(11): 13-14. [58] 马桢, 张艳花. 羊粪尿的处理与利用[J]. 现代农业科技, 2018, 1:180-181. [59] 陈伯华, 王会金. 羊粪的开发与利用[J]. 山西农业:致富科技, 2001, 7: 22-23. [60] 刘晓利, 许俊香, 王方浩, 等. 畜牧系统中氮素平衡计算参数的探讨[J]. 应用生态学报, 2006, 17(03): 3417-3423 [61] 李文杨, 刘远, 张晓佩, 等. 羊粪污染防治措施及无害化处理技术[J]. 中国畜牧业, 2014, 14: 55-56. [62] 符大来. 武陵山区山羊粪利用与思考——以湖南省龙山县为例[J]. 湖南畜牧兽医, 2019, 2: 11-13. [63] 马常宝, 史梦雅. 我国主要畜禽粪便资源利用现状与分析研究[J]. 中国农技推广, 2016, 32(11): 7-11. [64] 吴信, 万丹, 印遇龙. 畜禽养殖废弃物资源化利用与现代生态养殖模式[J]. 农学学报, 2018, 8(01): 163-166.。 [65] 李发生. 土壤污染防治行动计划[J]. 农村实用技术, 2016, 000(010): 5-12. [66] 王国兴, 徐福利, 王渭玲, 等. 氮磷钾及有机肥对马铃薯生长发育和干物质积累的影响[J]. 干旱地区农业研究, 2013, 31(03): 106-111. [67] 叶素丰. 《全国农业可持续发展规划(2015~2030年)》发布[J]. 湖南农业, 2015, (10): 13. [68] 吴震洋, 李丽, 唐红军, 等. 畜禽粪便资源化利用现状分析[J]. 甘肃畜牧兽医, 2018, 48(12): 21-22. [69] Peiretti P, Tassone S, Gai F, et al. Rabbit Feces as Feed for Ruminants and as an Energy Source[J]. Animals : An Open Access Journal From MDPI, 2014, 4(4): 755-766. [70] 朱凤连, 马友华, 周静, 等. 我国畜禽粪便污染和利用现状分析[J]. 安徽农学通报, 2008, 14(13): 48-50. [71] 董淑红. 畜禽粪便再生饲料资源的开发与利用[J]. 广东饲料, 2009, 18(12): 33-35. [72] Minich J J, Zhu Q, Xu Z Z, et al. Microbial effects of livestock manure fertilization on freshwater aquaculture ponds rearing tilapia (Oreochromis shiranus) and North African catfish (Clarias gariepinus)[J]. Microbiologyopen, 2018, 7(6): 716. [73] Li K, Petersen G, Barco L, et al. Salmonella Weltevreden in integrated and non-integrated tilapia aquaculture systems in Guangdong, China[J]. Food Microbiology, 2017, 65: 19-24. [74] 黎运红. 畜禽粪便资源化利用潜力研究[D].华中农业大学, 2015. [75] 贾庆稳. 畜禽废弃物资源化利用[J]. 自然科学, 2019, 2: 105. [76] Liliana P G, Ortiz-Cornejo N L, Luna-Guido M, et al. Archaeal and Bacterial Community Structure in an Anaerobic Digestion Reactor (Lagoon Type) Used for Biogas Production at a Pig Farm[J]. Journal of Molecular Microbiology and Biotechnology, 2017, 27(5): 306-317. [77] Gomaa M A, Abed R M M. Potential of fecal waste for the production of biomethane, bioethanol and biodiesel[J]. Journal of Biotechnology, 2017, 253: 14-22. [78] 王景成, 杨秋凤, 周佳萍, 等. 利用沼气工程实现规模养猪业可持续、循环发展[J]. 饲料工业, 2010, 31(11): 52-55. [79] Zubair M, Wang S, Zhang P, et al. Biological nutrient removal and recovery from solid and liquid livestock manure: Recent advance and perspective[J]. Bioresource Technology, 2020, 301. [80] Ozlu E, Sandhu S S, Kumar S, et al. Soil health indicators impacted by long-term cattle manure and inorganic fertilizer application in a corn-soybean rotation of South Dakota[J]. Scientific Reports, 2019, 9(1): 1-11. [81] 陈悦. 畜禽粪污无害化处理技术[J]. 当代畜禽养殖业, 2017, 000(6): 50. [82] Zhang X, Fang Q, Zhang T, et al. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis[J]. Global Change Biology, 2020, 26(2): 888-900. [83] Shehata E, Liu Y, Feng Y, et al. Changes in Arsenic and Copper Bioavailability and Oxytetracycline Degradation during the Composting Process[J]. Molecules (Basel, Switzerland), 2019, 24(23): 4240. [84] Gruter R, Costerousse B, Mayer J, et al. Long-term organic matter application reduces cadmium but not zinc concentrations in wheat[J]. The Science of the Total Environment, 2019, 669(15): 608-620. [85] 王权. 添加剂对猪粪好氧堆肥过程的影响及其机制研究[D].西北农林科技大学环境工程, 2018. [86] 沙玉圣, 董红敏, 赵小丽, 等. 畜禽粪便无害化处理技术规范[J]. 饲料与畜牧, 2018, 12: 20-22. [87] 唐珠. 猪粪堆肥的理化特征及腐熟度评价研究[D]: [硕士学位论文].南京农业大学, 2011. [88] Lin H, Zhang J, Chen H, et al. Effect of temperature on sulfonamide antibiotics degradation, and on antibiotic resistance determinants and hosts in animal manures[J]. The Science of the Total Environment, 2017, 607(608): 725-732. [89] Yu Y, Chen L, Fang Y, et al. High temperatures can effectively degrade residual tetracyclines in chicken manure through composting[J]. Journal of Hazardous Materials, 2019, 380. [90] 孙利鑫. 中药渣堆肥的理化特征及温室气体排放研究[D]. 甘肃中医学院, 2014. [91] Luan R Y, Gao S, Xu Y, et al. Effect of Different Passivating Agents on the Stabilization of Heavy Metals in Chicken Manure Compost and Its Maturity Evaluating Indexes[J]. Huan Jing Ke Xue, 2020, 41(1): 469-478. [92] Nobile C M, Bravin M N, Becquer T, et al. Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: Importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation[J]. Chemosphere, 2020, 239: 1-10. [93] Shen Y, Zhao L, Meng H , et al. Effect of aeration rate, moisture content and composting period on availability of copper and lead during pig manure composting[J]. Waste Management & Research : The Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 2016, 34(6): 578-583. [94] 邬欣慧. 堆肥过程中纤维素降解菌的筛选及N素原位保全技术研究[D]:[硕士学位论文]. 东北农业大学农业资源利用, 2018. [95] 徐莹莹, 许修宏, 任广明, 等. 接种菌剂对牛粪堆肥反硝化细菌群落的影响[J]. 农业环境科学学报, 2015, 000(3): 570-577. [96] Thomas C, Idler C, Ammon C, et al. Effects of the C/N ratio and moisture content on the survival of ESBL-producing Escherichia coli during chicken manure composting[J]. Waste Management (New York, N.Y.), 2020, 105: 110-118. [97] Haug R. The practical handbook of compost engineering[M]. Routledge, 2018. [98] Gao S, Thomas H D, Cleveland C C. Biochar additions alter pHospHorus and nitrogen availability in agricultural ecosystems: A meta-analysis[J]. The Science of the Total Environment, 2019, 654: 463-472. [99] 荆红俊. 不同堆积高度对羊粪堆肥效果的影响[D]. 内蒙古农业大学, 2015. [100] 栾冬梅, 关静姝, 徐瑨, 等. 碳氮比对牛粪好氧堆肥过程的影响[J]. 东北农业大学学报, 2008, 8: 77-81. [101] Zhao S, Schmidt S, Qin W, et al. Towards the circular nitrogen economy - A global meta-analysis of composting technologies reveals much potential for mitigating nitrogen losses[J]. The Science of the Total Environment, 2020, 704. [102] 田伟. 牛粪高温堆肥过程中的物质变化、微生物多样性以及腐熟度评价研究[D]. 南京农业大学, 2012. [103] 黄晓凤, 杨旭生, 王启贵, 等. 碳氮比对鹅粪渣-玉米秸秆混合堆肥效果的影响[J]. 西南农业学报, 2019, 32(5): 1127-1132. [104] 沙玉圣, 董红敏, 赵小丽, 等. 畜禽粪便无害化处理技术规范[J]. 饲料与畜牧, 2018, (12): 20-22. [105] Jiménez E I, Garcia V P. Composting of domestic refuse and sewage sludge. II. Evolution of carbon and some “humification” indexes[J]. Resources Conservation and Recycling, 1992, 6(3): 243-257. [106] Zhang W, Yu C, Wang X, et al. Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn stover mix composting[J]. Bioresource Technology, 2020, 297. [107] Zhang W, Yu C, Wang X, et al. Increased abundance of nitrogen fixing bacteria by higher C/N ratio reduces the total losses of N and C in cattle manure and corn stover mix composting[J]. Waste Management (New York, N.Y.), 2020, 103: 416-425. [108] Qiao C, Ryan P C, Liu C, et al. Key extracellular enzymes triggered high-efficiency composting associated with bacterial community succession[J]. Bioresource Technology, 2019, 288: 1-8. [109] 韦中. 生物有机肥防控土传番茄青枯病的效果及其机制研究[D]. 南京农业大学, 2012. [110] Bernai M P, Paredes C, Sánchez-Monedero M A, et al. Maturity and stability parameters of composts prepared with a wide range of organic wastes[J]. Bioresource Technology, 1998, 63(1): 91-99. [111] 钱晓雍, 沈根祥, 黄丽华, 等. 畜禽粪便堆肥腐熟度评价指标体系研究[J]. 农业环境科学学报, 2009, 28(3): 131-136. [112] 徐同宝, 李吕木. 畜粪堆肥的腐熟度评价[J]. 家畜生态学报, 2007, 28(06): 175-177. [113] Ko H J, Kim K Y, Kim H T, et al. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure[J]. Waste Management, 2008, 28(5): 813-820. [114] Barrena R, Vázquez F, Sánchez A. Dehydrogenase activity as a method for monitoring the composting process[J]. Bioresour Technol, 2008, 99(4): 905-908. [115] Zubair M, Wang S Q, Zhang P, et al. Biological nutrient removal and recovery from solid and liquid livestock manure: Recent advance and perspective[J]. Bioresource Technology, 2020, 301. [116] Li H, Zhang T, Tsang D, et al. Effects of external additives: Biochar, bentonite, phosphate, on co-composting for swine manure and corn straw[J]. Chemosphere, 2020, 248. [117] Nie W H, Qi Z P, Feng H W, et al. Straw Composts with Composite Inoculants and Their Effects on Soil Carbon and Nitrogen Contents and Enzyme Activity[J]. Huan Jing Ke Xue, 2017, 38(2): 783-791. [118] Velasco-Velasco J, Parkinson R, Kuri V. Ammonia emissions during vermicomposting of sheep manure[J]. Bioresource Technology, 2011, 102(23): 10959-10964. [119] 卫智涛, 周国英, 胡清秀. 食用菌菌渣利用研究现状[J]. 中国食用菌, 2010, 29(05): 3-6. [120] 王詝. 食用菌菌渣利用方向的探讨[J]. 农民致富之友, 2018, 586(17): 37. [121] 陆艳, 蔡其刚, 王戈平, 等. 不同发酵剂对牛羊屠宰粪便发酵效果的比较不同发酵剂对牛羊屠宰粪便发酵效果的比较[J]. 青海畜牧兽医杂志, 2010, 40(2): 17-19. [122] 刘超, 王若斐, 操一凡, 等. 不同碳氮比下牛粪高温堆肥腐熟进程研究[J]. 土壤通报, 2017, 48(03): 662-668. [123] 王若斐, 刘超, 操一凡, 等. 不同碳氮比猪粪堆肥及其产品肥效[J]. 中国土壤与肥料, 2017, (06): 127-134. [124] 夏婕. 添加秸秆等物料生产优质有机肥技术探讨[D]. 西北农林科技大学, 2018. [125] 刘超, 徐谞, 顾文文, 等. 典型畜禽粪便配伍食用菌菌渣堆肥研究[J]. 中国农学通报, 2018, 34(21): 84-90. [126] 沈玉君, 李冉, 孟海波, 等. 国内外堆肥标准分析及其对中国的借鉴启示[J]. 农业工程学报, 2019, 35(12): 265-271. [127] 鲍艳宇, 周启星, 颜丽, 等. 畜禽粪便堆肥过程中各种氮化合物的动态变化及腐熟度评价指标[J]. 应用生态学报, 2008, 19(02): 374-380. [128] 胡斌, 刘延生, 于蕾, 等. 添加菌剂对羊粪和菌渣好氧堆肥进程的影响[J]. 山东农业科学, 2018, 50(09): 95-99. [129] 于子旋. 畜禽粪便堆肥理化特征及腐熟度评价研究[D]. 安徽农业大学, 2016. [130] 李承强, 魏源送, 樊耀波, 等. 不同填充料污泥好氧堆肥的性质变化及腐熟度[J]. 环境科学, 2001, 1(03): 60-65. [131] Emeterio L J, Garcia V P. Evaluation of city refuse compost maturity: a review[J]. Biological Wastes, 1989, 27(2): 115-142. [132] 翟红, 张衍林, 艾平, 等. 不同初始含水率对沼渣和秸秆混合堆肥过程的影响[J]. 湖北农业科学, 2011, 50(21): 4357-4360. [133] Murwira H K, Kirchmann H, Swift M J. The effect of moisture on the decomposition rate of cattle manure[J]. Plant & Soil, 1990, 122(2): 197-199. [134] Garcia C, Hernandez T, Costa F, et al. Evaluation of the maturity of municipal waste compost using simple chemical parameters[J]. Communications in Soil Science & Plant Analysis, 1992, 23(13-14): 1501-1512. [135] 龚建英, 田锁霞, 王智中, 等. 微生物菌剂和鸡粪对蔬菜废弃物堆肥化处理的影响[J]. 环境工程学报, 2012, 6(08): 2813-2817. [136] Rastogi M, Nandal M, Khosla B. Microbes as vital additives for solid waste composting[J]. Heliyon, 2020, 6(2): e03343. [137] Yang X, Hu Q, Han Z, et al. Effects of exogenous microbial inoculum on the structure and dynamics of bacterial communities in swine carcass composting[J]. Canadian Journal of Microbiology, 2018, 64(12): 1042-1053. [138] Ma V G, Suárez-Estrella F F, López M J, et al. Influence of microbial inoculation and co-composting material on the evolution of humic-like substances during composting of horticultural wastes[J]. Process Biochemistry, 2006, 41(6): 1438-1443. [139] Juan L I, Zhao B Q, Xiu-Ying L I, et al. Effects of Long-Term Combined Application of Organic and Mineral Fertilizers on Microbial Biomass, Soil Enzyme Activities and Soil Fertility[J]. Agricultural Sciences in China, 2008, 007(003): 336-343. [140] Xi B D, He X S, Wei Z M, et al. Effect of inoculation methods on the composting efficiency of municipal solid wastes[J]. ChemospHere, 2012, 88(6): 744-750. [141] Zhou S Z, Zhang X Y, Liao X D, et al. Effect of Different Proportions of Three Microbial Agents on Ammonia Mitigation during the Composting of Layer Manure[J]. Molecules (Basel, Switzerland), 2019, 24(13): 2513. [142] Li C N, Li H Y, Yao T, et al. Microbial inoculation influences bacterial community succession and physicochemical characteristics during pig manure composting with corn straw[J]. Bioresource Technology, 2019, 289. [143] Wang J, Liu Z, Xia J, et al. Effect of microbial inoculation on physicochemical properties and bacterial community structure of citrus peel composting[J]. Bioresource Technology, 2019, 291: 121843. [144] 辛树权, 沈永, 赵骥民. EM菌剂在牛粪堆肥中应用的研究[J]. 长春师范学院学报, 2012, 31(12): 50-52. [145] 谷加坤, 聂志娟, 陈春光, 等. EM菌发酵有机肥在水产养殖中的应用[J]. 科学养鱼, 2019, (08): 86. [146] 席北斗, 刘鸿亮, 孟伟, 等. 高效复合微生物菌群在垃圾堆肥中的应用[J]. 环境科学, 2001, 22(05): 122-125. [147] 王楠, 刘镔娴, 徐伟宸, 等. 枯草芽孢杆菌和绿色木霉对落叶及草坪碎屑腐解的影响[J]. 江苏农业科学, 2017, 45(23): 258-262. [148] 席北斗, 李英军, 刘鸿亮, 等. 温度对生活垃圾堆肥效率的影响[J]. 环境工程学报, 2005, 6(7): 33-36. [149] Choi H L, Richard T L, Ahn H K. Composting High Moisture Materials: Biodrying Poultry Manure in a Sequentially Fed Reactor[J]. Compost Science & Utilization, 2001, 9(4): 303-311. [150] 李红燕. 畜禽粪便堆肥过程中有机肥腐熟研究[J]. 安徽农业科学, 2019, 47(12): 70-72. [151] Mao H L, Wang K, Wang Z, et al. Metabolic function, trophic mode, organics degradation ability and influence factor of bacterial and fungal communities in chicken manure composting[J]. Bioresource Technology, 2020, 302. [152] Guo Y T, Rene E R, Wang J J, et al. Biodegradation of polyaromatic hydrocarbons and the influence of environmental factors during the co-composting of sewage sludge and green forest waste[J]. Bioresource Technology, 2020, 297: 1-39. [153] 赵明梅, 牛明芬, 何随成, 等. 不同微生物菌剂对牛粪堆肥发酵影响的研究[J]. 农业环境科学学报, 2007, 026(10): 587-590. [154] 易荣菲. 牛粪堆肥中理化性质及酶活性动态变化特征研究[D]. 南京农业大学, 2015. [155] 雷大鹏, 黄为一, 王效华. 发酵基质含水率对牛粪好氧堆肥发酵产热的影响[J]. 生态与农村环境学报, 2011, 27(05): 54-57. [156] 卢秉林, 王文丽, 李娟, 等. 小麦秸秆添加量对羊粪高温堆肥腐熟进程的影响[J]. 中国农业大学学报, 2010, 15(02): 30-34. [157] Garcia F R, Carrion C, Botella S, et al. Biological oxidation of elemental sulphur added to three composts from different feedstocks to reduce their pH for horticultural purposes[J]. Bioresource Technology, 2007, 98(18): 3561-3569. [158] 单谷, 罗廉, 余世袁. pH值对纤维素酶制备的影响[J]. 南京林业大学学报(自然科学版), 1999, 23(03): 51-53. [159] Mondini C, Dell’Abate M T, Leita L, et al. An Integrated Chemical, Thermal, and Microbiological Approach to Compost Stability Evaluation[J]. J.Environ.Qual, 2003, 32(6): 2379-2386. [160] 胡雨彤, 时连辉, 刘登民, 等. 添加硫酸对牛粪堆肥过程及其养分变化的影响[J]. 植物营养与肥料学报, 2014, 20(03): 718-725. [161] 卢秉林, 王文丽, 李娟, 等. 小麦秸秆添加量对羊粪高温堆肥腐熟进程的影响[J]. 中国农业大学学报, 2010, 15(02): 30-34. [162] Liu H, Huang Y, Wang H, et al. Enzymatic activities triggered by the succession of microbiota steered fiber degradation and humification during co-composting of chicken manure and rice husk[J]. Journal of Environmental Management, 2020,258:110014. [163] 马丽红. 牛粪高温堆肥化中氮素转化的微生物机理研究[D]. 西北农林科技大学, 2009. [164] 黄懿梅, 曲东, 李国学, 等. 两种外源微生物对鸡粪高温堆肥的影响[J]. 农业环境保护, 2002, 21(03): 208-210. [165] 王卫平, 汪开英, 薛智勇, 等. 不同微生物菌剂处理对猪粪堆肥中氨挥发的影响[J]. 应用生态学报, 2005, 16(04): 693-697. [166] Wang M, Awasthi M K, Wang Q, et al. Comparison of additives amendment for mitigation of greenhouse gases and ammonia emission during sewage sludge co-composting based on correlation analysis[J]. Bioresource Technology: 2017, 243: 520-527. [167] Awasthi M K, Pandey A K, Khan J, et al. Evaluation of thermophilic fungal consortium for organic municipal solid waste composting[J]. Bioresource Technology, 2014, 168: 214-221. [168] Li J B, Wang X T, Cong C, et al. Inoculation of cattle manure with microbial agents increases efficiency and promotes maturity in composting[J]. Biotech, 2020,10(3):128. [169] Wan L B, Wang X T, Cong C, et al. Effect of inoculating microorganisms in chicken manure composting with maize straw[J]. Bioresource Technology, 2020, 301: 1-30. [170] Heidarzadeh M H, Amani H, Javadian B. Aspergillus nigerImproving municipal solid waste compost process by cycle time reduction through inoculation of[J]. Journal of Environmental Health Science & Engineering, 2019, 17(1): 295-303. [171] Zucconi F, Forte M, Monaco A, et al. Biological Evaluation of Compost Maturity[J]. Biocycle, 1981, 22: 27-29. [172] Duan Y, Awasthi SK, Liu T, et al. Evaluation of integrated biochar with bacterial consortium on gaseous emissions mitigation and nutrients sequestration during pig manure composting[J]. Bioresource Technology, 2019, 291. [173] Liu T, Awasthi M K, Chen H Y, et al. Performance of black soldier fly larvae (Diptera: Stratiomyidae) for manure composting and production of cleaner compost[J]. Journal of Environmental Management, 2019, 251: 1-10. [174] Gou X X , Liu H T, Wu S B. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions[J]. The Science of the Total Environment, 2019, 662: 501-510. [175] Hasan K M M, Sarkar G, Alamgir M, et al. Study on the quality and stability of compost through a Demo Compost Plant[J]. Waste Management , 2012, 32(11): 2046-2055. [176] 黄川, 黄珊, 李家祥. 不同堆肥方式对鸡粪与秸秆混合堆肥效果[J]. 环境工程学报, 2013, 7(10): 4090-4096. [177] Mengesha W K, Powell S M, Evans K J, et al. Diverse microbial communities in non-aerated compost teas suppress bacterial wilt[J]. World Journal of Microbiology & Biotechnology, 2017, 33(3): 49. [178] Manuel J D B, Madejón E, López F, et al. Composting of vinasse and cotton gin waste by using two different systems[J]. Resources, Conservation & Recycling, 2002, 34(4): 235-248. [179] 王星. 有机固废好氧发酵过程中氨氧化特性和变化规律研究[D]. 广西大学, 2014. [180] Medina J, Monreal C M, Antilén M, et al. Influence of inorganic additives on wheat straw composting: Characterization and structural composition of organic matter derived from the process[J]. Journal of Environmental Management, 2020, 260: 1-10. [181] Sura S, Degenhardt D, Cessna A J, et al. Dissipation of Three Veterinary Antimicrobials in Beef Cattle Feedlot Manure Stockpiled over Winter[J]. Journal of Environmental Quality, 2014, 43(3): 1061-1070. [182] Aydn G A, Kocasoy G. Investigation of appropriate initial composition and aeration method for co-composting of yard waste and market wastes[J]. Journal of Environmental Science and Health, 2003, 38(2): 221-231. [183] Zhao C Y, Wei Y S, Ge Z, et al. Emissions of greenhouse gas and ammonia from sewage sludge composting by continuous aerated turning pile[J]. Huan Jing Ke Xue, 2014, 35(7): 2798-2806. [184] Jiang Z, Lu Y, Xu J, et al. Exploring the characteristics of dissolved organic matter and succession of bacterial community during composting[J]. Bioresource Technology, 2019, 292. [185] Tiquia S M, Tam N F Y. Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge[J]. Bioresource Technology, 1998, 65(2): 43-49. [186] Zhang J, Ying Y, Yao X. Effects of turning frequency on the nutrients of Camellia oleifera?shell co-compost with goat dung and evaluation of co-compost maturity[J]. Plos One, 2019, 14(9): e0222841. [187] Bernai M P, Paredes C, Sánchez-Monedero M A, et al. Maturity and stability parameters of composts prepared with a wide range of organic wastes[J]. Bioresource Technology, 1998, 63(1): 91-99. [188] Ferial M R, Walid D S, Monhamed A M. Bioconversion of rice straw and certain agro-industrial wastes to amendments for organic farming systems: 1. Composting, quality, stability and maturity indices[J]. Bioresource Technology, 2010, 101(15): 5952-5960. [189] Qasim W, Moon B E, Okyere FG, et al. Influence of aeration rate and reactor shape on the composting of poultry manure and sawdust[J]. Journal of the Air & Waste Management Association (1995), 2019, 69(5): 633-645. [190] Meng X, Liu B, Zhang H, et al. Co-composting of the biogas residues and spent mushroom substrate: Physicochemical properties and maturity assessment[J]. Bioresource Technology, 2019, 276: 281-287. [191] Awasthi M K, Wang Q, Huang H, et al. Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting[J]. Bioresource Technology, 2016, 216: 172-181. [192] Meng Q, Han Y, Zhu H, et al. Differences in distribution of functional microorganism at DNA and cDNA levels in cow manure composting[J]. Ecotoxicology and Environmental Safety, 2020, 191. [193] Cáceres R, Malińska K, Marfà O. Nitrification within composting: A review[J]. Waste Management , 2018, 72: 119-137. [194] Zhi Q C, Shi H Z, Qin X W, et al. Effect of aeration rate on composting of penicillin mycelial dreg[J]. Journal of Environmental Sciences (China), 2015, 37: 172-178. [195] Zhou G X, Qiu X W, Zhang J B, et al. Effects of seaweed fertilizer on enzyme activities, metabolic characteristics, and bacterial communities during maize straw composting[J]. Bioresource Technology, 2019, 286. [196] Vázquez M A, Sen R, Soto M. Physico-chemical and biological characteristics of compost from decentralised composting programmes[J]. Bioresource Technology, 2015, 198: 520-532. |
中图分类号: | S82 |
开放日期: | 2020-06-27 |