中文题名: |
超声波处理对牛肉宰后成熟期间结缔组织与品质的影响及其机理研究
|
姓名: |
王琳
|
学号: |
2019108067
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
083201
|
学科名称: |
工学 - 食品科学与工程(可授工学、农学学位) - 食品科学
|
学生类型: |
硕士
|
学位: |
工学硕士
|
学校: |
南京农业大学
|
院系: |
食品科技学院
|
专业: |
食品科学与工程
|
研究方向: |
肉品加工与质量控制
|
第一导师姓名: |
张万刚
|
第一导师单位: |
南京农业大学
|
完成日期: |
2022-05-10
|
答辩日期: |
2022-05-30
|
外文题名: |
Study on the Effects and Mechanism of Ultrasound on Connective Tissue and Quality of Beef during Post-mortem Aging
|
中文关键词: |
超声波 ; 牛肉 ; 宰后成熟 ; 品质 ; 结缔组织 ; 内源酶
|
外文关键词: |
Ultrasound ; beef ; quality ; post-mortem aging ; connective tissue ; endogenous enzyme
|
中文摘要: |
︿
结缔组织作为肌肉的重要组成部分之一,对肉的食用品质具有非常重要的影响。在宰后成熟过程中,结缔组织的成分会发生一系列的变化进而影响肉的嫩度,其中肌内膜与肌束膜中胶原蛋白相关特性的变化起到关键的作用。目前超声波嫩化技术主要处于理论阶段,在实际的生产和应用中尚且不够成熟,仍然需进一步的研究与探索。本论文主要研究了超声波处理对牛肉在宰后成熟期间品质的相关影响,并通过观察结缔组织微观结构的变化、测定相关内源酶的活性以及胶原蛋白特性的变化情况等,重点从结缔组织的变化探究其作用机理。为超声波技术应用于牛肉的生产与加工,通过对牛肉结缔组织进行合理的调控从而改善牛肉嫩度提供一定理论与技术支持。具体的研究内容与结果如下:
1. 超声波处理对牛肉宰后成熟期间品质的影响
本章主要探究了经不同超声功率处理后的牛肉在宰后成熟期间品质的变化情况,其中未经超声处理的牛肉样品为对照组。选用体重相近且性别一致的西门塔尔杂交牛的半腱肌作为实验材料,并进行随机分组,分别为对照组、300 W超声处理组和600 W超声处理组,每个处理组均为5个生物学重复。于宰后48 h对牛肉样品进行超声波处理,而后在4 ℃的条件下进行宰后成熟0、4和8 d处理。通过测定各组牛肉样品的pH、色泽、保水性(水分含量、蒸煮损失、低场核磁分析)、剪切力以及质构等指标的变化,来探究超声波处理对宰后成熟期间牛肉品质的影响。本章研究结果表明:在第0、4 d,两个超声功率处理组牛肉样品的pH值较对照组均有显著性增大(P <0.05);超声处理提高了牛肉在宰后3个成熟时间点的亮度值以及红度值(P <0.05);此外,超声波处理的牛肉中水分含量较对照组显著提高,而蒸煮损失显著降低(P <0.05),部分牛肉样品在经超声处理后不易流动水的比例增大;同时超声处理还使牛肉的剪切力值、硬度值、凝聚性以及咀嚼性等指标显著降低(P <0.05),改善了牛肉在宰后成熟期间的嫩度。
2. 超声波处理对牛肉宰后成熟期间结缔组织及相关酶活性的影响
本章主要通过探究超声波处理对牛肉在宰后成熟期间结缔组织的微观结构以及相关内源酶活性的影响,进而分析酶活性与结缔组织结构变化之间的关系及其对牛肉品质的影响。扫描电镜结果表明,在3个宰后成熟时间点,超声处理后的牛肉样品胶原纤维网络变得松散且紊乱,肌束膜的结构明显受到破坏,而对照组的肌束膜整体上仍然保持着相对较为完整的致密结构。同时,在第0 d,经超声处理后的牛肉样品中β-半乳糖苷酶的活性以及经600 W处理的牛肉样品中β-葡糖醛酸酶的活性较对照组均有显著性提高(P <0.05),这有助于结缔组织中蛋白多糖的降解以及胶原蛋白的暴露;并且在宰后的3个成熟时间点,经超声处理的牛肉样品中基质金属蛋白酶的活性均显著高于对照组(P <0.05),在第0、4 d,超声处理还使牛肉样品中组织蛋白酶B+L的活性显著提高(P <0.05),这对于牛肉在宰后成熟过程中胶原蛋白的降解以及结缔组织结构的破坏有促进作用,有利于牛肉嫩度的改善。
3. 超声波处理对牛肉宰后成熟期间胶原蛋白特性的影响
为探讨超声波处理对牛肉中胶原蛋白特性的影响,本章主要分析了超声对牛肉宰后成熟期间胶原蛋白二级结构、内源荧光、表面疏水性、共价交联含量、热稳定性以及溶解度等指标的影响。通过对胶原蛋白的二级结构变化进行分析,发现经超声处理之后酰胺I带的主要吸收峰向着短波方向进行迁移,这表明胶原蛋白的三股螺旋结构受到了一定程度的破坏并变得无序。在第0、8 d,超声处理后的牛肉样品中胶原蛋白的最大荧光强度与对照组相比有显著性增大(P <0.05);在3个宰后成熟时间点,经超声处理后胶原蛋白的表面疏水性同样较对照组有显著性增加(P <0.05)。此外,胶原蛋白中的共价交联含量以及热稳定性降低,同时热溶解度有显著性提高(P <0.05)。这表明了超声波通过空化效应、机械效应等作用破坏了胶原蛋白的分子结构使其展开并变得疏松,有助于牛肉在宰后成熟过程中嫩度的改善。
﹀
|
外文摘要: |
︿
Connective tissue is one of the important components of muscle and plays a very important role in meat quality. The components of connective tissue would change during post-mortem aging which could affect the meat tenderness, wherein the changes in collagen-related characteristics in the endomysium and perimysium play a key role. At present, ultrasonic tenderization technology is mainly in the theoretical stage, and it is not mature enough for the practical production and application, which still needs further research and exploration. This study mainly explored the related effects and mechanism of ultrasonic treatment on the quality of beef during postmortem aging mainly from the aspect of connective tissues by observing their microstructure changes, and measuring the activities of related endogenous enzymes and the changes of collagen properties. It was expected that meat tenderness could be effectively improved by reasonably regulating the intramuscular connective tissue through ultrasonic technology, so as to provide some theoretical and technical support for the production and processing of beef in the future. The specific research contents and results were as follows:
1. Effect of ultrasound treatment on the quality of beef during post-mortem aging
This chapter mainly explored the changes of beef quality treated with different ultrasonic power during post-mortem aging and the beef samples without ultrasonic treatment were used as the control. The semitendinosus muscles of Simmental crossbred beef cattle with similar weight and same gender were selected as the experimental material which were randomly divided into the control group, and ultrasound treatment with 300 W and 600 W groups. There were 5 biological repeats in each treatment group. The beef samples were treated with ultrasound at 48 h after slaughter, and then were aged at 4 ℃ for 0, 4 and 8 d, respectively. The effects of ultrasound treatment on beef quality during post-mortem aging were explored by measuring the pH values, meat color, water-holding capacity (moisture content, cooking loss, Low-Field Nuclear Magnetic Resonance), shear force and texture profile analysis indexes of beef. The results showed that the pH values of beef in the two ultrasonic treatment groups were significantly higher than that in the control at 0 and 4 d (P <0.05). Ultrasound treatment increased the L* of beef at 3 post-mortem aging times and improved a* at 0 and 4 d (P < 0.05). After ultrasound treatment, the moisture content in beef was higher than that in the control, the cooking loss was decreased (P <0.05), and the proportion of immobilized water in beef samples increased. At the same time, ultrasound treatment also significantly reduced the shear force values, hardness, cohesiveness and chewiness of beef (P < 0.05), improving the tenderness of beef during post-mortem aging.
2. Effects of ultrasound treatment on connective tissue and related enzyme activities of beef during post-mortem aging
This chapter mainly explored the effects of ultrasound treatment on the microstructure of connective tissue and the activities of the above five enzymes during post-mortem aging, and then analyzed the relationship between enzyme activity and the changes of connective tissue structure and its impact on beef quality. The results observed by scanning electron microscope showed that at three post-mortem aging time points, the collagen fiber network of beef samples treated by ultrasound became disorganized and visibly loosened, and the structure of perimysium was obviously damaged, while the overall dense structure of the perimysium in the control was still relatively complete. At the same time, the β-galactosidase activities of beef samples treated with ultrasound and the β-glucuronidase activities of beef samples treated with 600 W were significantly higher than that of the control (P <0.05) at 0 d, which was conducive to the degradation of proteoglycan and the exposure of collagen. At the three post-mortem aging time points, the matrix metalloproteinases activity of beef samples treated with ultrasound was significantly higher than the control (P <0.05). Ultrasound treatment significantly increased the activities of cathepsin B and L in beef samples at 0 and 4 d (P <0.05). The increased enzyme activity was conducive to the degradation of collagen and the destruction of connective tissue structure during post-mortem aging, and promoted beef tenderness.
3. Effect of ultrasound treatment on collagen properties of beef during post-mortem aging
In order to analyze the effects of ultrasound treatment on the characteristics of collagen in beef, this chapter mainly explored the effects of ultrasound on the secondary structure, intrinsic fluorescence, surface hydrophobicity, intramolecular crosslinks content, thermal stability and solubility of beef collagen during post-mortem aging. The analysis of the secondary structure of collagen showed that the main absorption peak of amide I band was shifted to short wave after ultrasound treatment, which indicated that the triple helix structure of collagen was damaged and became disordered. At 0 and 8 d, the intrinsic fluorescence of collagen in beef treated with ultrasound treatment was significantly higher than the control (P <0.05). The surface hydrophobicity of collagen in ultrasound treatment groups was also significantly higher than the control at three post-mortem aging time points (P <0.05). The covalent cross-linking content and thermal stability of collagen decreased, while the thermal solubility increased significantly (P <0.05). These results showed that ultrasound destroyed the molecular structure of collagen through cavitation effect, making it expand and become loose which was instrumental for the improvement of beef tenderness during post-mortem aging.
﹀
|
参考文献: |
︿
第一章: [1] Swatland H. Meat science: An introductory text. p.d. warriss. CABI Publishing[J]. Meat science, 2000, 56(3): 319-319. [2] 常海军, 王强, 徐幸莲, 等. 肌内胶原蛋白与肉品质关系研究进展[J]. 食品科学, 2011, 32(01): 286-290. [3] 汪洋, 王稳航. 肌内结缔组织与肉嫩度的关联机制及相关肉嫩化技术的研究进展[J]. 食品科学, 2021, 42(11): 332-340. [4] Smith N B, Cannon J E, Novakofski J E, et al. Tenderization of semitendinosus muscle using high-intensity ultrasound[C]. Ultrasonics Symp, 1991: 1371-1373. [5] Wang A, Kang D, Zhang W, et al. Changes in calpain activity, protein degradation and microstructure of beef M-semitendinosus by the application of ultrasound[J]. Food Chemistry, 2018, 245: 724-730. [6] Lyng J G, Allen P, Mckenna B M. The effect on aspects of beef tenderness of pre- and post-rigor exposure to a high intensity ultrasound probe[J]. Journal of the Science of Food and Agriculture, 1998, 78(3): 308-314. [7] Meiboom S, Gill D. Modified spinecho method for measuring nuclear relaxation times[J]. Review of Scientific Instruments, 1958, 29(8). [8] Carr H Y, Purcell E M. Effects of diffusion on free precession in nuclear magnetic resonance experiments[J]. Physical Review, 1954, 94(3). [9] Fu Q Q, Liu R, Zhang W G, et al. Effects of different packaging systems on beef tenderness through protein modifications[J]. Food and Bioprocess Technology, 2015, 8(3): 580-588. [10] Dondero M, Figueroa V, Morales X, et al. Transglutaminase effects on gelation capacity of thermally induced beef protein gels[J]. Food Chemistry, 2006, 99(3): 546-554. [11] Jayasooriya S D, Torley P J, D'arcy B R, et al. Effect of high power ultrasound and ageing on the physical properties of bovine Semitendinosus and Longissimus muscles[J]. Meat Science, 2007, 75(4): 628-639. [12] 孙慧琳, 代媛媛, 孟兰奇, 等. 牛肉低温储藏过程中水分迁移与蛋白质氧化的相关性研究[J].保鲜与加工, 2021, 21(05): 28-33+46. [13] 王安然. 超声处理对牛肉品质的影响及机理研究[D]. 南京农业大学, 2018. [14] Esmeralda P G, Alma D A, Ivan G G, et al. Ultrasound as a potential process to tenderize beef: Sensory and technological parameters[J]. Ultrasonics Sonochemistry, 2019, 53: 134-141. [15] Neethling N E, Suman S P, Sigge G O, et al. Exogenous and endogenous factors influencing color of fresh meat from ungulates[J]. Meat and Muscle Biology, 2010, 1(1). [16] 刘策, 罗海玲. 羊肉色泽的影响因素及调控方式研究[C]. 第十二届(2015)中国羊业发展大会, 2015: 262-273. [17] 康大成. 超声波辅助腌制对牛肉品质的影响及其机理研究[D]. 南京农业大学, 2017. [18] 左惠心, 温彬, 朱立贤, 等. 不同部位冷却牛肉成熟过程中水分变化研究[J]. 农业机械学报, 2021, 52(05): 350-357+323. [19] Zuo H, Han L, Yu Q, et al. Proteome changes on water-holding capacity of yak longissimus lumborum during postmortem aging[J]. Meat Science, 2016, 121: 409-419. [20] Huff-Lonergan E, Lonergan S M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes[J]. Meat Science, 2005, 71(1): 194-204. [21] Honikel K O, Kim C J. Causes of the development of pse pork[J]. Fleischwirtschaft, 1986, 66(3): 349-353. [22] 曹银娟. 反复冻融对牛瘤胃平滑肌胶原蛋白特性及品质的影响[D]. 甘肃农业大学, 2021. [23] Lindahl G, Lagerstedt A, Ertbjerg P, et al. Ageing of large cuts of beef loin in vacuum or high oxygen modified atmosphere - Effect on shear force, calpain activity, desmin degradation and protein oxidation[J]. Meat Science, 2010, 85(1): 160-166. [24] Brondum J, Munck L, Henckel P, et al. Prediction of water-holding capacity and composition of porcine meat by comparative spectroscopy[J]. Meat Science, 2000, 55(2): 177-185. [25] Bertram H C, Andersen H J. Applications of NMR in meat science[J]. Annual Reports on Nmr Spectroscopy, 2004: 157-202. [26] 张昕. 不同解冻工艺对鸡胸肉品质的影响[D]. 南京农业大学, 2017. [27] 郭兆斌, 余群力, 陈骋, 等. 宰后牦牛肉水分分布变化与持水性能关系研究[J]. 农业机械学报, 2019, 50(10): 343-351. [28] Straadt I K, Rasmussen M, Young J F, et al. Any link between integrin degradation and water-holding capacity in pork?[J]. Meat Science, 2008, 80(3): 722-727. [29] Bertram H C, Purslow P P, Andersen H J. Relationship between meat structure, water mobility, and distribution: A low-field nuclear magnetic resonance study[J]. Journal of Agricultural and Food Chemistry, 2002, 50(4): 824-829. [30] Li C, Liu D, Zhou G, et al. Meat quality and cooking attributes of thawed pork with different low field NMR T-21[J]. Meat Science, 2012, 92(2): 79-83. [31] 高天丽, 李林强, 张婷, 等. 微波和超声波辅助处理对干制横山羊肉中脂肪酸的影响[J]. 肉类研究, 2017, 31(01): 7-12. [32] 王颂萍, 王雪羽, 杨欣悦, 等. 超声波技术嫩化机理及其在肉制品中应用效果的研究进展[J].食品工业科技,2021: 1-12. [33] 王晶, 田莹俏, 张艳花. 菠萝蛋白酶和超声波对羊肉嫩度的影响[J]. 肉类工业, 2015(03): 14-18. [34] 徐玉婷, 董华发, 曾晓房, 等. 肉品品质评定方法研究进展[J]. 食品安全质量检测学报, 2017, 8(06): 1967-1972. [35] 何凡, 王振宇, 张彩霞, 等. 不同品种羊肉滴水损失与肌肉品质的关系[J]. 中国食品学报, 2018, 18(09): 239-247. [36] 张坤, 邹烨, 王道营, 等. 肉品嫩化方法及超声波技术应用于肉品嫩化的研究进展[J]. 江苏农业科学, 2019, 47(02): 33-37. [37] Harper G S. Trends in skeletal muscle biology and the understanding of toughness in beef[J]. Australian Journal of Agricultural Research, 1999, 50(7): 1105-1129. [38] Stadnik J, Dolatowski Z J. Influence of sonication on Warner-Bratzler shear force, colour and myoglobin of beef (m. semimembranosus)[J]. European Food Research and Technology, 2011, 233(4): 553-559. [39] Lonergan E H, Zhang W, Lonergan S M. Biochemistry of postmortem muscle - Lessons on mechanisms of meat tenderization[J]. Meat Science, 2010, 86(1): 184-195. [40] Monson F, Sanudo C, Sierra I. Influence of breed and ageing time on the sensory meat quality and consumer acceptability in intensively reared beef[J]. Meat Science, 2005, 71(3): 471-479. [41] Jayasooriya S D, Bhandari B R, Torley P, et al. Effect of high power ultrasound waves on properties of meat: A review[J]. International Journal of Food Properties, 2004, 7(2): 301-319. [42] Kang D C, Gao X Q, Ge Q F, et al. Effects of ultrasound on the beef structure and water distribution during curing through protein degradation and modification[J]. Ultrasonics Sonochemistry, 2017, 38: 317-325. [43] Zou Y, Zhang W, Kang D, et al. Improvement of tenderness and water holding capacity of spiced beef by the application of ultrasound during cooking[J]. International Journal of Food Science and Technology, 2018, 53(3): 828-836. [44] Chang H J, Xu X L, Zhou G H, et al. Effects of characteristics changes of collagen on meat physicochemical properties of beef semitendinosus muscle during ultrasonic processing[J]. Food and Bioprocess Technology, 2012, 5(1): 285-297. [45] Chang H J, Wang Q, Tang C H, et al. Effects of ultrasound treatment on connective tissue collagen and meat quality of beef semitendinosus muscle[J]. Journal of Food Quality, 2015, 38(4): 256-267. [46] Barekat S, Soltanizadeh N. Improvement of meat tenderness by simultaneous application of high-intensity ultrasonic radiation and papain treatment[J]. Innovative Food Science & Emerging Technologies, 2017, 39: 223-229. [47] Pena-Gonzalez E M, Alarcon-Rojo A D, Renteria A, et al. Quality and sensory profile of ultrasound-treated beef[J]. Italian Journal of Food Science, 2017, 29(3): 463-475. [48] 苏建军. 肌肉pH变化及其意义[J]. 肉类工业, 1997(02): 43-45. 第二章: [1] 郎玉苗. 肌纤维类型对牛肉嫩度的影响机制研究[D]. 中国农业科学院, 2016. [2] 周建伟, 孟倩, 高德, 等. 超声加工技术对牛肉及其制品品质影响的研究进展[J]. 现代食品科技, 2020, 36(01): 296-302. [3] Koohmaraie M. Biochemical factors regulating the toughening and tenderization processes of meat[J]. Meat Science, 1996, 43: S193-S201. [4] 王颂萍, 王雪羽, 杨欣悦, 等. 超声波技术嫩化机理及其在肉制品中应用效果的研究进展[J]. 食品工业科技,2021: 1-12. [5] Kim H W, Choi Y S, Choi J H, et al. Tenderization effect of soy sauce on beef M. biceps femoris[J]. Food Chemistry, 2013, 139(1-4): 597-603. [6] Light N, Champion A E, Voyle C, et al. The role of epimysial, perimysial and endomysial collagen in determining texture in 6 bovine muscles[J]. Meat Science, 1985, 13(3): 137-149. [7] 王安然. 超声处理对牛肉品质的影响及机理研究[D]. 南京农业大学, 2018. [8] Yin Y, Pereira J, Zhou L, et al. Insight into the effects of sous vide on cathepsin B and L activities, protein degradation and the ultrastructure of beef[J]. Foods, 2020, 9(10). [9] 常海军. 不同加工条件下牛肉肌内胶原蛋白特性变化及其对品质影响研究[D]. 南京农业大学, 2010. [10] Hibbs M S, Hoidal J R, Kang A H. Expression of a metalloproteinase that degrades native type-v collagen and denatured collagens by cultured human alveolar macrophages[J]. Journal of Clinical Investigation, 1987, 80(6): 1644-1650. [11] Toldra F, Etherington D J. Examination of cathepsin-B, cathepsin-D, cathepsin-H and cathepsin-L activities in dry-cured hams[J]. Meat Science, 1988, 23(1): 1-7. [12] 汪洋, 王稳航. 肌内结缔组织与肉嫩度的关联机制及相关肉嫩化技术的研究进展[J]. 食品科学, 2021, 42(11): 332-340. [13] Chang H J, Wang Q, Tang C H, et al. Effects of ultrasound treatment on connective tissue collagen and meat quality of beef semitendinosus muscle[J]. Journal of Food Quality, 2015, 38(4): 256-267. [14] Purslow P P. Contribution of collagen and connective tissue to cooked meat toughness; some paradigms reviewed[J]. Meat Science, 2018, 144: 127-134. [15] Povey M.J.W. Ultrasonics in food engineering Part II: Applications[J]. Journal of Food Engineering, 1989, 9(1). [16] 万云飞. 超声与氯化钙联合处理影响牛肉超微结构与嫩度的机理研究[D]. 西北农林科技大学, 2019. [17] 颜龙杰. 刺参(Stichopus japonicas)胶原蛋白及自溶相关蛋白酶的研究[D]. 集美大学, 2019. [18] Suelves M, Lopez-Alemany R, Lluis F, et al. Plasmin activity is required for myogenesis in vitro and skeletal muscle regeneration in vivo[J]. Blood, 2002, 99(8): 2835-2844. [19] Barbut S, Sosnicki A A, Lonergan S M, et al. Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry meat[J]. Meat Science, 2008, 79(1): 46-63. [20] 朱琪. 超声波与辐照处理对欧拉藏羊肉品质及肌内结缔组织特性的影响[D]. 甘肃农业大学, 2018. [21] Alarcon-Rojo A D, Janacua H, Rodriguez J C, et al. Power ultrasound in meat processing[J]. Meat Science, 2015, 107: 86-93. [22] Dutson T R, Lawrie R A. Release of lysosomal enzymes during post mortem conditioning and their relationship to tenderness[J]. International Journal of Food Science & Technology, 1974, 9(1). [23] 李春保. 牛肉肌内结缔组织变化对其嫩度影响的研究[D]. 南京农业大学, 2006. [24] Christensen S, Purslow P P. The role of matrix metalloproteinases in muscle and adipose tissue development and meat quality: A review[J]. Meat Science, 2016, 119: 138-146. [25] Birkedalhansen H, Moore W G I, Bodden M K, et al. Matrix metalloproteinases - a review[J]. Critical Reviews in Oral Biology & Medicine, 1993, 4(2): 197-250. [26] Parsons S L, Watson S A, Brown P D, et al. Matrix metalloproteinases[J]. British Journal of Surgery, 1997, 84(2): 160-166. [27] Sentandreu M A, Coulis G, Ouali A. Role of muscle endopeptidases and their inhibitors in meat tenderness[J]. Trends in Food Science & Technology, 2002, 13(12): 400-421. [28] Balcerzak D, Querengesser L, Dixon W T, et al. Coordinate expression of matrix-degrading proteinases and their activators and inhibitors in bovine skeletal muscle[J]. Journal of Animal Science, 2001, 79(1): 94-107. [29] Guerin C W, Holland P C. Synthesis and secretion of matrix-degrading metalloproteases by human skeletal-muscle satellite cells[J]. Developmental Dynamics, 1995, 202(1): 91-99. [30] Frisdal E, Teiger E, Lefaucheur J P, et al. Increased expression of gelatinases and alteration of basement membrane in rat soleus muscle following femoral artery ligation[J]. Neuropathology and Applied Neurobiology, 2000, 26(1): 11-21. [31] Yamada H, Saito F, Fukuta-Ohi H, et al. Processing of beta-dystroglycan by matrix metalloproteinase disrupts the link between the extracellular matrix and cell membrane via the dystroglycan complex[J]. Neuromuscular Disorders, 2001, 11(6-7): 650-651. [32] Skiles J W, Gonnella N C, Jeng A Y. The design, structure, and therapeutic application of matrix metalloproteinase inhibitors[J]. Current Medicinal Chemistry, 2001, 8(4): 425-474. [33] Jiang S T. Effect of proteinases on the meat texture and seafood quality[J]. Food Science and Agricultural Chemistry, 2000, 2(2): 55-74. [34] Ertbjerg P, Larsen L M, Moller A J. Effect of prerigor lactic acid treatment on lysosomal enzyme release in bovine muscle[J]. Journal of the Science of Food and Agriculture, 1999, 79(1): 95-100. [35] O'halloran G R, Troy D J, Buckley D J, et al. The role of endogenous proteases in the tenderisation of fast glycolysing muscle[J]. Meat Science, 1997, 47(3-4): 187-210. [36] Stadnik J, Dolatowski Z J. Influence of sonication on Warner-Bratzler shear force, colour and myoglobin of beef (m. semimembranosus)[J]. European Food Research and Technology, 2011, 233(4): 553-559. [37] Wang D, Yan L, Ma X, et al. Ultrasound promotes enzymatic reactions by acting on different targets: Enzymes, substrates and enzymatic reaction systems[J]. International Journal of Biological Macromolecules, 2018, 119: 453-461. [38] Barekat S, Soltanizadeh N. Improvement of meat tenderness by simultaneous application of high-intensity ultrasonic radiation and papain treatment[J]. Innovative Food Science & Emerging Technologies, 2017, 39: 223-229. [39] Zamora F, Aubry L, Sayd T, et al. Serine peptidase inhibitors, the best predictor of beef ageing amongst a large set of quantitative variables[J]. Meat Science, 2005, 71(4): 730-742. [40] Beltran J A, Bonnet M, Ouali A. Comparative action of cathepsin-B and cathepsin-L on intramuscular collagen as assessed by differential scanning calorimetry[J]. Meat Science, 1992, 32(3): 299-306. 第三章: [1] 刘晶晶, 张松山, 谢鹏, 等. 不同中心温度对牛肉胶原蛋白特性及嫩度的影响[J]. 现代食品科技, 2018, 34(03): 68-76. [2] 李春保. 牛肉肌内结缔组织变化对其嫩度影响的研究[D]. 南京农业大学, 2006. [3] 王颂萍, 王雪羽, 杨欣悦, 等. 超声波技术嫩化机理及其在肉制品中应用效果的研究进展[J]. 食品工业科技: 1-12. [4] 汪洋, 王稳航. 肌内结缔组织与肉嫩度的关联机制及相关肉嫩化技术的研究进展[J]. 食品科学, 2021, 42(11): 332-340. [5] 卢桂松, 王复龙, 朱易, 等. 秦川牛花纹肉剪切力值与胶原蛋白吡啶交联和热溶解性的关系[J]. 中国农业科学, 2013, 46(01): 130-135. [6] 刘晶晶. 结缔组织热变化对牛肉嫩度影响的研究[D]. 中国农业科学院, 2018. [7] 晋艳曦. 肉类嫩化新技术——声波嫩化[J]. 肉品卫生, 1999(06): 24-25+21. [8] Lyng J G, Allen P, Mckenna B M. The influence of high intensity ultrasound baths on aspects of beef tenderness[J]. Journal of Muscle Foods, 1997, 8(3). [9] Chemat F, Zill E H, Khan M K. Applications of ultrasound in food technology: Processing, preservation and extraction[J]. Ultrasonics Sonochemistry, 2011, 18(4): 813-835. [10] 张坤, 邹烨, 王道营, 等. 肉品嫩化方法及超声波技术应用于肉品嫩化的研究进展[J]. 江苏农业科学, 2019, 47(02): 33-37. [11] 常海军. 不同加工条件下牛肉肌内胶原蛋白特性变化及其对品质影响研究[D]. 南京农业大学, 2010. [12] 朱琪. 超声波与辐照处理对欧拉藏羊肉品质及肌内结缔组织特性的影响[D]. 甘肃农业大学, 2018. [13] 秦倩倩. 超声波预处理对草鱼皮胶原蛋白特性和酶解产物活性的影响[D]. 江苏科技大学, 2019. [14] 黄丹丹, 马良, 韩霜, 等. 超声预处理影响金枪鱼皮胶原酶解工艺及机理初探[J]. 食品与发酵工业, 2017, 43(04): 141-146. [15] Goll D E, Bray R W, Hoekstra W G. Age‐associated changes in muscle composition. The isolation and properties of a collagenous residue from bovine musclea[J]. Journal of Food Science, 1963, 28(5). [16] Chang H, Wang Q, Xu X, et al. Effect of heat-induced changes of connective tissue and collagen on meat texture properties of beef semitendinosus muscle[J]. International Journal of Food Properties, 2011, 14(2): 381-396. [17] Fang S H, Nishimura T, Takahashi K. Relationship between development of intramuscular connective tissue and toughness of pork during growth of pigs[J]. Journal of Animal Science, 1999, 77(1): 120-130. [18] 中国商业联合会商业标准中心, 国家加工食品质量监督检验中心, 广州市产品质量监督检验所. 肉与肉制品羟脯氨酸含量测定: 中华人民共和国国家质量监督检验检疫总局;中国国家标准化管理委员会, 2008: 12. [19] Du X, Li H, Nuerjiang M, et al. Application of ultrasound treatment in chicken gizzards tenderization: Effects on muscle fiber and connective tissue[J]. Ultrasonics Sonochemistry, 2021, 79. [20] Chang H J, Xu X L, Zhou G H, et al. Effects of characteristics changes of collagen on meat physicochemical properties of beef semitendinosus muscle during ultrasonic processing[J]. Food and Bioprocess Technology, 2012, 5(1): 285-297. [21] Jonglareonrak A, Benjakul S, Visessanguan W, et al. Isolation and characterisation of acid and pepsin-solubilised collagens from the skin of Brownstripe red snapper (Lutjanus vitta)[J]. Food Chemistry, 2005, 93(3): 475-484. [22] Veeruraj A, Arumugam M, Balasubramanian T. Isolation and characterization of thermostable collagen from the marine eel-fish (Evenchelys macrura)[J]. Process Biochemistry, 2013, 48(10): 1592-1602. [23] 杨恒, 时海波, 邹烨, 等. 超声波辅助酸提鸡肺胶原蛋白的持油性和乳化性[J]. 江苏农业学报, 2019, 35(04): 940-947. [24] Monson F, Sanudo C, Sierra I. Influence of cattle breed and ageing time on textural meat quality[J]. Meat Science, 2004, 68(4): 595-602. [25] Kim H W, Choi Y S, Choi J H, et al. Tenderization effect of soy sauce on beef M. biceps femoris[J]. Food Chemistry, 2013, 139(1-4): 597-603. [26] Hwang I H, Devine C E, Hopkins D L. The biochemical and physical effects of electrical stimulation on beef and sheep meat tenderness[J]. Meat Science, 2003, 65(2): 677-691. [27] Burke R M, Monahan F J. The tenderisation of shin beef using a citrus juice marinade[J]. Meat Science, 2003, 63(2): 161-168. [28] Yin Y, Pereira J, Zhou L, et al. Insight into the effects of sous vide on cathepsin B and L activities, protein degradation and the ultrastructure of beef[J]. Foods, 2020, 9(10). [29] 张坤, 王道营, 张淼, 等. 高强度超声对鹅胸肉嫩度及品质的影响[J]. 食品科学, 2018, 39(15): 122-127. [30] 杨海明, 甄莉. 畜禽肌肉中的胶原蛋白在肉品质中的作用[J]. 畜禽业, 2019, 30(01): 29. [31] 李晓波, 赵文博, 莎丽娜. 肌肉胶原蛋白特性对嫩度的影响[J]. 肉类研究, 2008(02): 23-25+46. [32] Chang H J, Wang Q, Tang C H, et al. Effects of ultrasound treatment on connective tissue collagen and meat quality of beef semitendinosus muscle[J]. Journal of Food Quality, 2015, 38(4): 256-267. [33] Got F, Culioli J, Berge P, et al. Effects of high-intensity high-frequency ultrasound on ageing rate, ultrastructure and some physico-chemical properties of beef[J]. Meat Science, 1999, 51(1): 35-42. [34] 李卫林, 曹健, 汤克勇, 等. 胶原蛋白结构和稳定性关系研究[J]. 中国皮革, 2005(23): 14-16. [35] Ngapo T M, Berge P, Culioli J, et al. Perimysial collagen crosslinking and meat tenderness in Belgian Blue double-muscled cattle[J]. Meat Science, 2002, 61(1): 91-102. [36] Ramshaw J A M, Shah N K, Brodsky B. Gly-X-Y tripeptide frequencies in collagen: A context for host-guest triple-helical peptides[J]. Journal of Structural Biology, 1998, 122(1-2): 86-91. [37] Lepetit J. A theoretical approach of the relationships between collagen content, collagen cross-links and meat tenderness[J]. Meat Science, 2007, 76(1): 147-159. [38] Atley L M, Mort J S, Lalumiere M, et al. Proteolysis of human bone collagen by cathepsin K: Characterization of the cleavage sites generating the cross-linked N-telopeptide neoepitope[J]. Bone, 2000, 26(3): 241-247. [39] Purslow P P. Contribution of collagen and connective tissue to cooked meat toughness; some paradigms reviewed[J]. Meat Science, 2018, 144: 127-134. [40] 高玲玲. 羊骨胶原蛋白结构解析、热稳定性与成膜应用研究[D]. 中国农业科学院, 2017. [41] Liu S, Wang X, Sun F, et al. RNA-Seq reveals expression signatures of genes involved in oxygen transport, protein synthesis, folding, and degradation in response to heat stress in catfish[J]. Physiological Genomics, 2013, 45(12): 462-476. [42] 董秀芳. 低温辅助内源酶主导的海参嫩化分子机理研究[D]. 大连工业大学, 2019. [43] Barth A, Zscherp C. What vibrations tell us about proteins[J]. Quarterly Reviews of Biophysics, 2002, 35(4): 369-430. [44] He S, Shi J, Walid E, et al. Reverse micellar extraction of lectin from black turtle bean (Phaseolus vulgaris): Optimisation of extraction conditions by response surface methodology[J]. Food Chemistry, 2015, 166: 93-100. [45] Kaminska A, Sionkowska A. Effect of UV radiation on the infrared spectra of collagen[J]. Polymer Degradation and Stability, 1996, 51(1): 19-26. [46] 张秋会, 黄现青, 李苗云, 等. 傅里叶红外光谱法研究肌肉蛋白质的二级结构[J]. 食品与发酵工业, 2015, 41(10): 247-251. [47] Magyari K, Baia L, Popescu O, et al. The anchoring of fibrinogen to a bioactive glass investigated by FT-IR spectroscopy[J]. Vibrational Spectroscopy, 2012, 62: 172-179. [48] 王安然. 超声处理对牛肉品质的影响及机理研究[D]. 南京农业大学, 2018. [49] Agarwal S K. Proteases cathepsins - a view[J]. Biochemical Education, 1990, 18(2): 67-72. [50] Muyonga J H, Cole C G B, Duodu K G. Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus)[J]. Food Chemistry, 2004, 85(1): 81-89. [51] 章开, 刘丽娟. 超声波处理对牛血清白蛋白结构和乳化性的影响[J]. 食品工业科技, 2017, 38(04): 116-120+126. [52] Yan M, Li B, Zhao X, et al. Characterization of acid-soluble collagen from the skin of walleye pollock (Theragra chalcogramma)[J]. Food Chemistry, 2008, 107(4): 1581-1586. [53] 贾俊强, 孙晟源, 周晓瑞, 等. 超声处理对鲫鱼皮胶原蛋白的自组装行为和理化性质影响[J]. 食品科学, 2020, 41(19): 98-104. [54] Gu X, Campbell L J, Euston S R. Influence of sugars on the characteristics of glucono-delta-lactone-induced soy protein isolate gels[J]. Food Hydrocolloids, 2009, 23(2): 314-326. [55] 杨勇, 毕爽, 王中江, 等. 超声波处理对绿豆蛋白结构及功能特性的影响[J]. 食品工业科技, 2016, 37(09): 69-73.
﹀
|
中图分类号: |
TS2
|
开放日期: |
2022-06-14
|