- 无标题文档
查看论文信息

中文题名:

 补饲发酵酸奶对哺乳-断奶仔猪生长性能、血清免疫炎症指标和粪便菌群的影响    

姓名:

 郑海波    

学号:

 2022805116    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 095133    

学科名称:

 农学 - 农业 - 畜牧    

学生类型:

 硕士    

学位:

 农业硕士    

学校:

 南京农业大学    

院系:

 动物科技学院    

专业:

 畜牧(专业学位)    

研究方向:

 仔猪营养与健康调控    

第一导师姓名:

 苏勇    

第一导师单位:

 南京农业大学    

完成日期:

 2024-06-10    

答辩日期:

 2024-05-24    

外文题名:

 Effects of Supplementation of Fermented Yogurt on Growth Performance, Serum Immunoinflammatory Indexes and Fecal Microflora of Lactating-weaned Piglets    

中文关键词:

 发酵酸奶 ; 生长性能 ; 粪便菌群 ; 免疫炎症    

外文关键词:

 Fermented yogurt ; Growth performance ; Fecal microflora ; Immune inflammation    

中文摘要:

早期断奶应激对仔猪的生长性能和健康产生负面影响,研究表明,乳酸菌发酵酸奶可改善仔猪肠道健康、提高仔猪生产性能。课题组利用分离筛选的三株猪源乳酸菌研发功能性发酵酸奶,前期研究发现该酸奶有利于提高断奶仔猪的生长性能和养分消化率,但其在哺乳仔猪上的应用缺乏效果评价。因此,本论文进一步应用该款酸奶开展饲养试验,旨在研究哺乳期-断奶后补饲发酵酸奶对仔猪生长性能、血清免疫炎症指标及粪菌结构的影响。
本研究选取健康 7 日龄初始体重为 2.85±0.09 kg 的“杜×长×大”仔猪 16 窝,随机
分成对照组(CON组)和发酵酸奶组(FM组),每组 8个重复(窝)。对照组仔猪饲喂教槽料;发酵酸奶组仔猪在饲喂教槽料的基础上每日每窝补饲 2 顿酸奶,对 7-13日龄、14-20 日龄和 21-28 日龄的每窝仔猪每顿分别补饲 150 mL、300 mL 和 450 mL酸奶。试验过程中每周记录每窝仔猪的空腹体重和每窝的投料量、剩料量,观察并详细记录各仔猪腹泻情况。试验第 14 和 21 天,每窝随机采集 1 头仔猪颈静脉血液 5mL。从试验第 11(18 日龄)、18(25 日龄)天起,每天采集 100 g 粪样于新自封袋中并滴加 10 mL10%盐酸以固定氮,连续收集 3天,每天粪样收集后即放入-25℃的冰箱中冷冻保存,采集的粪样用于测定养分表观消化率以及菌群高通量测序分析。试验结果表明,与对照组相比,发酵酸奶组仔猪哺乳期间平均日采食量显著升高(P < 0.05);在第 21~28日龄时,发酵酸奶组仔猪平均日增重显著提高(P < 0.05),腹泻率显著降低(P < 0.05)。发酵酸奶组与对照组间养分消化率无显著差异(P >0.05)。血清生化检测结果显示,与对照组相比,在第 21 日龄时,补饲发酵酸奶组仔猪的低密度脂蛋白含量有提高的趋势(P = 0.098);在第 28日龄时,与对照组相比,补饲发酵酸奶组仔猪的球蛋白含量有提高的趋势(P = 0.079)。与对照组相比,补饲发酵酸奶组仔猪在第 21 日龄时 IL-1β 显著升高(P < 0.05);在第 28 日龄时,补饲发酵酸奶组仔猪 IgG和 IL-10显著升高(P < 0.05),而 IL-6显著下降(P < 0.05)。菌群高通量测序分析结果显示,仔猪在第 21、24、28 日龄时,ACE 指数显著降低(P <0.05),在第 24、28 日龄时 Shannon 指数显著降低(P < 0.05)。在属水平上,与对照组相比,补饲发酵酸奶组仔猪在第 21 日龄时粪便菌群中罗伊氏乳杆菌属和霍尔德曼氏菌属的相对丰度显著提(P<0.05),而 Erysipelotrichaceae UCG-003 属和Intestinimonas 属的相对丰度显著降低;补饲发酵酸奶组仔猪在第 28 日龄时粪便菌群中弯曲杆菌属、梭杆菌属、p-251-o5_norank属的相对丰度显著低于对照组(P <0.05),而巨球形菌属的相对丰度显著高于对照组(P < 0.05)。在第 21 日龄时,仔猪粪便菌群中 Erysipelotrichaceae UCG-003属和Intestinimonas 属的相对丰度与仔猪腹泻率呈显著正相关(P < 0.05);在第 28 日龄时,仔猪粪便菌群中 p-251-o5_norank 属与腹泻率、IL-6和 TNF-α水平呈显著正相关(P < 0.05),弯曲杆菌属与仔猪 IL-10水平呈显著负
相关(P < 0.05),梭杆菌属与仔猪血清免疫球蛋白 A呈显著负相关(P < 0.05)。以上结果表明,补饲乳酸菌发酵酸奶可以增加哺乳仔猪粪便中罗伊氏乳杆菌属和霍尔德曼氏菌属的等有益菌属的相对丰度,降低Intestinimonas属和Erysipelotrichaceae UCG-003 属等有害菌群的相对丰度,减少断奶仔猪粪便中弯曲杆菌属和梭杆菌属等致病菌的相对丰度。
综上所述,本论文研究表明在哺乳期-断奶后仔猪日粮中补饲发酵酸奶有提高仔猪免疫抵抗能力,提高机体抗炎细胞因子的浓度,缓解仔猪肠道症,激发仔猪生长潜能。

外文摘要:

Early weaning stress negatively affects the growth performance and health of piglets, and studies have shown that lactobacillus-fermented yogurt can improve piglet intestinal health and piglet performance. The group used three strains of swine-derived lactic acid bacteria isolated and screened to develop functional fermented yogurt, which was found to be beneficial to improve the growth performance and nutrient digestibility of weaned piglets in the preliminary study, but its application to lactating piglets lacked the evaluation of its effect. Therefore, this thesis further applied the yogurt to carry out feeding trials, aiming to investigate the effects of lactation-post-weaning supplementation with fermented yogurt on growth performance, serum immunoinflammatory indexes and fecal bacterial structure of piglets.

In this study, 16 litters of " Duroc×Landrace×Large white" piglets with an initial weight of 2.85±0.09 kg at 7 days of age in close physiological condition were selected and randomly divided into a control group (CON group) and a fermented yogurt group (FM group), with 8 replicates (litters) in each group. Piglets (CON group) were given  chow meal; piglets (FM group)were given chow meal and two daily yogurt supplements per litter, 150 mL, 300 mL and 450 mL of yogurt were given to piglets in each litter from 7 to 13 days old, from 14 to 20 days old and from 21 to 28 days old, respectively. During the test, the piglets were weighed on an empty stomach, and the empty stomach weight of each litter and the amount of feed and leftover feed per litter per week were recorded, and the diarrhea of each litter was observed and recorded in detail. On the 14th and 21st days of the experiment, 5 mL of jugular blood was randomly collected from one piglet in each litter. 100 g of fecal samples were collected in a new self-sealing bag and 10 mL of 10% hydrochloric acid was added to fix the nitrogen for 3 consecutive days starting from the 11th (18 days old) and 18th (25 days old) days of the experiment. digestibility and high throughput sequencing analysis of the flora.

The test results showed that the average daily feed intake of piglets during lactation was significantly higher (P < 0.05) in the yogurt group compared with the control group; at the 21st to 28th day of age, the average daily weight gain of piglets in the yogurt group was significantly higher (P < 0.05), and the rate of diarrhea was significantly lower (P < 0.05). There was no significant difference (P > 0.05) in digestibility between the fermented yogurt supplementation group and the control group. The results of serum biochemical tests showed that compared with the control group, the LDL content of piglets in the fermented yogurt supplementation group tended to increase at the 21st day of age (P = 0.098), and the globulin content of piglets in the supplemented yogurt supplementation group tended to increase at the 28th day of age compared with the control group (P = 0.079).  Compared with the control group, the IL-1β of piglets in the supplemented yogurt supplementation group significantly increased at the 21st day of age compared with that of the control group. (P < 0.05) at the 21st day of age; at the 28th day of age, IgG and IL-10 were significantly higher in the fermented yogurt supplemented group (P < 0.05) and IL-6 was significantly higher in the control group (P < 0.05). The results of high throughput sequencing analysis of the flora showed that the ACE index of the piglets was significantly reduced at the 21st, 24th and 28th day of age (P < 0.05), and the Shannon index was significantly reduced at the 24th and 28th day of age (P < 0.05). At the genus level, the relative abundance of Lactobacillus and Hordeumannia in the fecal flora of piglets in the fermented yogurt supplementation group was significantly higher (P < 0.05) and the relative abundance of Erysipelotrichaceae UCG-003 and Intestinimonas in the fecal flora was significantly lower (P < 0.05) at the 21st day of age compared to that of the control group, and the relative abundance of Lactobacillus and Hordeumannia in the fecal flora of piglets in the fermented yogurt supplementation group. The relative abundance of Campylobacter, Clostridium and p-251-o5_norank in the fecal flora of piglets in the fermented yogurt supplementation group was markedly lower at the 28th day of age (P < 0.05), whereas the relative abundance of Macrocystis was significantly higher than that of the control group (P < 0.05).The relative abundance of Erysipelotrichaceae UCG-003 and Intestinimonas in the fecal flora of piglets was significantly positively correlated with the diarrhea rate of piglets at the 21st day of age (P < 0.05), and the relative abundance of p-251-o5_norank in the fecal flora of piglets was significantly positively (P < 0.05) correlated with the diarrhea rate of piglets at the 28th day of age and with the levels of IL-6 and TNF-α levels, Campylobacter showed a significant positive correlation (P < 0.05), Campylobacter showed a significant negative correlation (P < 0.05) with IL-10 levels in piglets, and Clostridium showed a significant negative correlation (P < 0.05) with serum immunoglobulin A in piglets. The above results indicated that supplemental feeding of lactobacillus fermented yogurt could build up beneficial bacteria Hordmannia and Lactobacillus in the feces of lactating piglets, decrease the relative abundance of harmful bacteria such as Intestinimonas and Erysipelotrichaceae UCG-003 and build up pathogenic bacteria Campylobacter and Clostridium in the feces of weaned piglets. relative abundance of pathogenic bacteria.

In conclusion, the present study demonstrated that supplementation of fermented yogurt in the diets of lactating and weaned piglets has the ability to improve the immune resistance of piglets, raise the concentration of anti-inflammatory factors, reduce the incidence of gastrointestinal lesions, and stimulate the growth potential of piglets.

参考文献:

[1] 白培钿. 复合微生态制剂对断奶仔猪免疫功能、肠道屏障及抗氧化功能的影响 [D], 2022.

[2] 陈国福, 程皇座, 麻名汉. 复合益生菌制剂对断奶仔猪生长性能、血清免疫球蛋白含量和特定粪便菌群的影响 [J]. 中国畜牧杂志, 2020, 56(04): 141-144.

[3] 陈墨, 周泽平. IL-10与自身免疫病的研究进展 [J]. 昆明医科大学学报, 2018, 39(02): 1-4.

[4] 陈亚强, 彭津津. 复合益生菌剂对仔猪生长性能、血清免疫指标及粪便微生物的影响 [J]. 中国饲料, 2023, (10): 30-33.

[5] 董晓丽. 益生菌的筛选鉴定及其对断奶仔猪、犊牛生长和消化道微生物的影响 [D]; 中国农业科学院, 2014.

[6] 董修建, 赵超, 张磊, 等. 寡聚糖在断奶仔猪培育中的研究进展 [J]. 河北畜牧兽医, 2005, (08): 37-38.

[7] 豆晓晓. 乳酸杆菌对LPS诱导肠道炎症的免疫调节作用及机制研究 [D], 2017.

[8] 高嵩, 谭树华. 发酵液体饲料的作用机理及其在养猪生产中的应用 [J]. 中国畜牧兽医文摘, 2016, 32(11): 3-4.

[9] 高文秀. 益生菌制剂对断奶仔猪生长性能、生理生化指标以及大肠杆菌腹泻防治效果的研究 [D], 2022.

[10] 高印, 王国军, 来航线, 等. 益生菌发酵苹果渣对断奶仔猪生长性能、血清生化指标和粪便微生物菌群的影响 [J]. 动物营养学报, 2016, 28(05): 1515-1524.

[11] 郝永任. 新型动物微生态制剂—复合酪酸菌制剂的研制 [D], 2002.

[12] 黄春喜, 刘晓慧, 张立彬, 等. 发酵液体饲料的生产及其在断奶仔猪上的应用 [J]. 饲料工业, 2014, (S1): 1-3.

[13] 贾荣玲, 王远卓, 席杰. 乳酸菌对断奶仔猪生长性能、养分消化率及肠道组织形态的影响 [J]. 中国饲料, 2023, (12): 48-51.

[14] 姜文, 赵鑫. 酸化剂的作用机理及在养猪生产中的应用进展 [J]. 今日养猪业, 2021, (03): 101-102.

[15] 蒋睿智. 断奶仔猪的生理特点及饲养管理技术 [J]. 畜牧兽医科技信息, 2021, (12): 97.

[16] 蓝海恩, 麦伟虹, 黄焕昌, 等. 复合益生菌发酵饲料对断奶仔猪生长性能、肠道微生物菌群、血清生化指标和免疫指标的影响 [J]. 中国饲料, 2020, (15): 120-124.

[17] 李鹏, 武书庚, 张海军, 等. 复合酸化剂对断奶仔猪肠黏膜形态和肠道微生物区系及免疫功能的影响 [J]. 中国畜牧杂志, 2009, 45(09): 28-32.

[18] 李文星, 武迪, 曲威. 益生菌对断奶仔猪应激综合征影响的Meta分析 [J]. 黑龙江畜牧兽医, 2023, (19): 100-6+41.

[19] 李小燕, 韩信, 吴超, 等. 发酵液体饲料对断奶仔猪生产性能、肠道微生物菌群及血液生化指标的影响 [J]. 饲料研究, 2013, (10): 63-66.

[20] 李永凯, 毛胜勇, 朱伟云. 益生菌发酵饲料研究及应用现状 [J]. 畜牧与兽医, 2009, 41(03): 90-93.

[21] 刘虎传, 张敏红, 冯京海, 等. 益生菌制剂对早期断奶仔猪生长性能和免疫指标的影响 [J]. 动物营养学报, 2012, 24(06): 1124-1131.

[22] 刘辉, 季海峰, 王四新, 等. 益生菌对生长猪生长性能、粪便微生物数量、养分表观消化率和血清免疫指标的影响 [J]. 动物营养学报, 2015, 27(03): 829-837.

[23] 刘士奇, 陈建, 查剑平, 等. 复合益生菌对早期断奶仔猪肠道抗炎作用及菌群结构的影响 [J]. 中国兽医学报, 2020, 40(10): 2032-2039.

[24] 刘伟敏. 乳酸菌对仔猪生长性能、免疫功能和肠道菌群的影响 [J]. 中国饲料, 2022, (02): 33-37.

[25] 刘欣. 断奶仔猪饲养管理技术要点 [J]. 养殖与饲料, 2022, 21(04): 25-26.

[26] 鲁友均. 生猪液体发酵饲料饲喂技术 [J]. 中国畜牧兽医文摘, 2016, 32(07): 223.

[27] 马雪锋. 发酵液体饲料对断奶仔猪生长性能、腹泻率和粪便微生物的影响 [J]. 中国饲料, 2023, (12): 85-88.

[28] 孟冬霞, 马政禹, 曹日亮. 复方中药对早期断奶仔猪血清免疫球蛋白及肠黏膜免疫细胞的影响 [J]. 养猪, 2020, (06): 9-12.

[29] 沈国顺 , 刘春秀. 早期断奶仔猪腹泻发生的原因及预防措施 [J]. 畜牧与兽医, 2001, (06): 32-33.

[30] 师丽刚. 复合益生菌制剂对感染产毒素大肠杆菌断奶仔猪生长性能、免疫机能及肠道菌群结构的影响 [J]. 中国饲料, 2020, (21): 53-56.

[31] 孙建广, 张石蕊, 谯仕彦, 等. 发酵乳酸杆菌对生长肥育猪生长性能和肉品质的影响 [J]. 动物营养学报, 2010, 22(01): 132-138.

[32] 孙耀贵, 程佳. 柴术抗激颗粒对早期断奶仔猪血清生化和免疫指标的影响 [J]. 饲料研究, 2013, (01): 58-62.

[33] 孙玉亭. 芽孢乳杆菌S1生产工艺优化及其合生素对仔猪生长性能与粪样菌群的影响 [D], 2019.

[34] 汪晶晶, 任红立, 董佳琦, 等. 微生态制剂和复合酸化剂对哺乳母猪生产性能、血清生化和免疫指标以及乳成分的影响 [J]. 动物营养学报, 2018, 30(02): 685-695.

[35] 王海东, 潘宝海, 高玉鹏. 鼠李糖乳酸杆菌对断奶仔猪生产性能的影响 [J]. 中国畜牧杂志, 2009, 45(07): 43-46.

[36] 王杰. 复合酸化剂的筛选及其对断奶仔猪的应用研究 [D], 2004.

[37] 王磊, 吴国芳, 周继平, 等. 乳酸菌发酵饲料对八眉三元猪生长性能及肉品质的影响 [J]. 青海大学学报, 2020, 38(06): 22-26.

[38] 王略宇, 徐红伟, 周瑞, 等. 发酵饲料及菌粉对羔羊生长性能、脏器系数、胃肠道系数及血清 生化指标的影响 [J]. 现代畜牧兽医, 2021, (12): 36-40.

[39] 王西耀, 韩增霞. 仔猪腹泻疾病诱因与防治措施 [J]. 畜牧兽医科技信息, 2023, (06): 169-171.

[40] 王小建, 樊燕燕, 曾晓. 复合益生菌对断奶仔猪生长性能、微生物数量及营养物质表观消化率的影响 [J]. 饲料研究, 2023, 46(09): 25-28.

[41] 王鑫源, 张莹, 董晓雪, 等. 酸化剂在猪生产中的应用研究进展 [J]. 今日畜牧兽医, 2023, 39(05): 76-78.

[42] 王星, 吴茜, 李红蔚, 等. 天津地区新型冠状病毒肺炎患者特异性IgM和IgG动态变化研究 [J]. 天津医药, 2021, 49(01): 41-44.

[43] 肖驰罗, 周淑兰,涂志,黄旭文. 日粮中添加乳酸菌制剂对生长猪的效果试验 [J]. 养猪, 1997, (04): 2-3.

[44] 肖宇, 林英庭. 寡糖影响动物肠道菌群的研究进展 [J]. 饲料博览, 2011, (11): 31-33.

[45] 徐秀景, 谢长文, 刘敏, 等. 乳酸菌发酵饲料对猪生长性能、肉品质和血液抗氧化指标的影响 [J]. 中国饲料, 2018, (10): 67-71.

[46] 燕巡健. 哺乳仔猪生理特点及常见疾病防治 [J]. 畜牧兽医科学(电子版), 2022, (15): 65-67.

[47] 杨璐, 鲁茗源. 乳酸菌液体发酵饲料在仔猪生产上的应用 [J]. 饲料与畜牧, 2014, (04): 32-35.

[48] 姚继明, 孟秀丽, 吕锋, 等. 复合有机酸酸化剂对断奶仔猪生长性能及其肠道微生物菌群的影响 [J]. 饲料工业, 2017, 38(02): 11-6.

[49] 张丽萍. 早期断奶仔猪的消化生理特点及原料选择 [J]. 饲料博览, 2012, (12): 22-25.

[50] 张献月. 乳酸菌和芽孢杆菌复合微生态制剂在肉仔鸡生产中的应用效果研究 [D], 2013.

[51] 张旋. 益生菌发酵对饲料品质、猪粪菌菌群和猪舍有害气体的影响 [D]; 西北农林科技大学, 2022.

[52] 张雪洁. 复合酸化剂替代抗生素和氧化锌对断奶仔猪生长性能及肠道功能的影响 [D], 2019.

[53] 张铮, 石青松, 朱伟云, 等. 乳酸菌发酵饲料对断奶仔猪生长性能和肠道健康的影响 [J]. 江苏农业科学, 2018, 46(19): 170-3.

[54] 周红丽, 蒋隽, 曾一鸣. 寡聚糖对仔猪生长性能影响的研究 [J]. 湖南畜牧兽医, 2000, (02): 7-8.

[55] 周书仪. 基于粪便微生物移植技术探究猪肠道微生物对营养物质消化和免疫功能的影响 [D], 2019.

[56] 朱爱民, 孙强东. 不同酸化剂对断奶仔猪生长、免疫性能和微生物菌群的影响 [J]. 中国饲料, 2021, (04): 36-39.

[57] Adams C A. The probiotic paradox: live and dead cells are biological response modifiers [J]. Nutr Res Rev, 2010, 23(1): 37-46.

[58] Ahasan A, Invernizzi G, Farina G, et al. The effects of superoxide dismutase-rich melon pulp concentrate on inflammation, antioxidant status and growth performance of challenged post-weaning piglets [J]. Animal, 2019, 13(1): 136-143.

[59] Aktas O, Zipp F. Regulation of self-reactive T cells by human immunoglobulins-implications for multiple sclerosis therapy [J]. Curr Pharm Des, 2003, 9(3): 245-256.

[60] Allos B M. Campylobacter jejuni Infections: update on emerging issues and trends [J]. Clin Infect Dis, 2001, 32(8): 1201-1206.

[61] Baspinar B, Güldaş M. Traditional plain yogurt: a therapeutic food for metabolic syndrome? [J]. Crit Rev Food Sci Nutr, 2021, 61(18): 3129-3143.

[62] Bouskra D, Brézillon C, Bérard M, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis [J]. Nature, 2008, 456(7221): 507-510.

[63] Castillo M, Martín-orúe S M, NOFRARíAS M, et al. Changes in caecal microbiota and mucosal morphology of weaned pigs [J]. Veterinary Microbiology, 2007, 124(3-4): 239-247.

[64] Chen L, Zhong Y, Ouyang X, et al. Effects of β-alanine on intestinal development and immune performance of weaned piglets [J]. Anim Nutr, 2023, 12: 398-408.

[65] Chen W J, Oashi E, Kasai M. Amino acid metabolism in parenteral nutrition: with special reference to the calorie: nitrogen ratio and the blood urea nitrogen level [J]. Metabolism, 1974, 23(12): 1117-1123.

[66] Conway S, Hart A, Clark A, et al. Does eating yogurt prevent antibioticmassociated diarrhoea? A placebo-controlled randomised controlled trial in general practice [J]. British Journal of General Practice, 2007, 57(545): 953-959.

[67] Corino C, Prost M, Pizzi B, et al. Dietary Plant Extracts Improve the Antioxidant Reserves in Weaned Piglets [J]. Antioxidants (Basel), 2021, 10(5).

[68] De Vadder F, Kovatcheva-datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits [J]. Cell, 2014, 156(1-2): 84-96.

[69] Dhruw K, Verma A K, Agarwal N, et al. Effect of Live Lactobacillus acidophilus NCDC 15 and CURD as probiotics on Blood Biochemical Profile of Early Weaned Piglets [J]. International Journal of Bio-resource and Stress Management, 2015, 6(3): 330.

[70] Dos santos T F, Melo T A, Santos D S, et al. Efficacy of oral administration of lactic acid bacteria isolated from cocoa in a fermented milk preparation: reduction of colitis in an experimental rat model [J]. Genet Mol Res, 2016, 15(3).

[71] Dai Z L, Zhang J, Wu G, et al. Utilization of amino acids by bacteria from the pig small intestine [J]. Amino Acids, 2010, 39(5): 1201-1215.

[72] Drissi F, Raoult D, Merhej V. Metabolic role of lactobacilli in weight modification in humans and animals [J]. Microb Pathog, 2017, 106: 182-194.

[73] Duncan S H, Louis P, Thomson J M, et al. The role of pH in determining the species composition of the human colonic microbiota [J]. Environ Microbiol, 2009, 11(8): 2112-2122.

[74] Fink L N, Zeuthen L H, Christensen H R, et al. Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses [J]. Int Immunol, 2007, 19(12): 1319-1327.

[75] Fm O M, Gardiner G E, Jv O D, et al. Effect of wet/dry, fresh liquid, fermented whole diet liquid, and fermented cereal liquid feeding on feed microbial quality and growth in grow-finisher pigs [J]. J Anim Sci, 2020, 98(6).

[76] Garvie E I, Cole C B, Fuller R, et al. The effect of yoghurt on the gut microflora and metabolism of lactose in the rat [J]. Journal of Applied Microbiology, 1984, 56(2): 237-245.

[77] Griet M, Zelaya H, Mateos M V, et al. Soluble factors from Lactobacillus reuteri CRL1098 have anti-inflammatory effects in acute lung injury induced by lipopolysaccharide in mice [J]. Plos One, 2014, 9(10): e110027.

[78] GORBACH S L. Probiotics and gastrointestinal health [J]. Am J Gastroenterol, 2000, 95(1 Suppl): S2-4.

[79] Han C, Dai Y, Liu B, et al. Diversity analysis of intestinal microflora between healthy and diarrheal neonatal piglets from the same litter in different regions [J]. Anaerobe, 2019, 55: 136-141.

[80] Hasan S, Saha S, Junnikkala S, et al. Late gestation diet supplementation of resin acid-enriched composition increases sow colostrum immunoglobulin G content, piglet colostrum intake and improve sow gut microbiota [J]. Animal, 2018: 1-8.

[81] Heres L, Engel B, Urlings H A, et al. Effect of acidified feed on susceptibility of broiler chickens to intestinal infection by Campylobacter and Salmonella [J]. Vet Microbiol, 2004, 99(3-4): 259-267.

[82] Kong Q, Zhang W, An M, et al. Characterization of Bacterial Microbiota Composition in Healthy and Diarrheal Early-Weaned Tibetan Piglets [J]. Front Vet Sci, 2022, 9: 799862.

[83] Li Z, Yi G, Yin J D, et al. Effects of Organic Acids on Growth Performance, Gastrointestinal pH, Intestinal Microbial Populations and Immune Responses of Weaned Pigs [J]. Asian Australasian Journal of Animal Sciences, 2008, 21(2): 252-261.

[84] Le Gall M, Gallois M, Sève B, et al. Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets [J]. Brit J Nutr, 2009, 102(09): 1285-1296.

[85] Lin A, Yan X, Wang H, et al. Effects of lactic acid bacteria-fermented formula milk supplementation on ileal microbiota, transcriptomic profile, and mucosal immunity in weaned piglets [J]. J Anim Sci Biotechnol, 2022, 13(1): 113.

[86] Louis P, Scott K P, Duncan S H, et al. Understanding the effects of diet on bacterial metabolism in the large intestine [J]. J Appl Microbiol, 2007, 102(5): 1197-1208.

[87] Ma X, Zhang Y, Xu T, et al. Early-Life Intervention Using Exogenous Fecal Microbiota Alleviates Gut Injury and Reduce Inflammation Caused by Weaning Stress in Piglets [J]. Front Microbiol, 2021, 12: 671683.

[88] Merrifield C A, Lewis M C, Berger B, et al. Neonatal environment exerts a sustained influence on the development of the intestinal microbiota and metabolic phenotype [J]. Isme J, 2016, 10(1): 145-157.

[89] Missotten J A M, Michiels J, Goris J, et al. Screening of two probiotic products for use in fermented liquid feed [J]. Livest Sci, 2007, (1/3): 108.

[90] Missotten J A M, Michiels J, OVYN A, et al. Fermented liquid feed for pigs:an ancient technique for the future [J]. 畜牧与生物技术杂志(英文版), 2016.

[91] Missotten J A, Michiels J, Ovyn A, et al. Fermented liquid feed for pigs [J]. Arch Anim Nutr, 2010, 64(6): 437-466.

[92] Mroz Z, Jongbloed A W, Partanen K, et al. Apparent digestibility of amino acids and balance of nitrogen and minerals as influenced by buffering capacity and organic acids in diets for growing swine [J]. Journal of Animal Science, 1997.

[93] Mulder I E, Schmidt B, Lewis M, et al. Restricting microbial exposure in early life negates the immune benefits associated with gut colonization in environments of high microbial diversity [J]. Plos One, 2011, 6(12): e28279.

[94] Missotten J A, Michiels J, Degroote J, et al. Fermented liquid feed for pigs: an ancient technique for the future [J]. J Anim Sci Biotechnol, 2015, 6(1): 4.

[95] Murtaugh M P, Baarsch M J, Zhou Y, et al. Inflammatory cytokines in animal health and disease [J]. Veterinary immunology and immunopathology, 1996, 54(1-4): 45-55.

[96] O'loughlin A, Mcgee m, Waters S M, et al. Examination of the bovine leukocyte environment using immunogenetic biomarkers to assess immunocompetence following exposure to weaning stress [J]. BMC Vet Res, 2011, 7: 45.

[97] Pieper R, Janczyk P, Urubschurov V, et al. Effect of a single oral administration of Lactobacillus plantarum DSMZ 8862/8866 before and at the time point of weaning on intestinal microbial communities in piglets [J]. Int J Food Microbiol, 2009, 130(3): 227-232.

[98] Pluske J R, Williams I H, Aherne F X. Maintenance of villous height and crypt depth in piglets by providing continuous nutrition after weaning [J]. Cambridge University Press, 1996, (01).

[99] Pohl C S, Medland J E, Moeser A J. Early-life stress origins of gastrointestinal disease: animal models, intestinal pathophysiology, and translational implications [J]. Am J Physiol Gastrointest Liver Physiol, 2015, 309(12): G927-941.

[100] Pollmann D S. Probiotics IN PIG DIETS [J]. Recent Advances in Animal Nutrition, 1986: 193-205.

[101] Pourcyrous M, Nolan V G, Goodwin A, et al. Fecal short-chain fatty acids of very-low-birth-weight preterm infants fed expressed breast milk or formula [J]. J Pediatr Gastroenterol Nutr, 2014, 59(6): 725-731.

[102] Ros M, Goberna M, Pascual J A, et al. 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays [J]. J Microbiol Methods, 2008, 72(3): 221-226.

[103] Shen L, Weber C R, Raleigh D R, et al. Tight junction pore and leak pathways: a dynamic duo [J]. Annu Rev Physiol, 2011, 73: 283-309.

[104] Skraban J, Dzeroski S, Zenko B, et al. Changes of poultry faecal microbiota associated with Clostridium difficile colonisation [J]. Vet Microbiol, 2013, 165(3-4): 416-424.

[105] Slifierz M J, Friendship R M, WEESE J S. Longitudinal study of the early-life fecal and nasal microbiotas of the domestic pig [J]. Bmc Microbiol, 2015, 15(1): 184.

[106] Spiller R C. Hidden Dangers of Antibiotic Use: Increased Gut Permeability Mediated by Increased Pancreatic Proteases Reaching the Colon [J]. Cell Mol Gastroenterol Hepatol, 2018, 6(3): 347-348.e1.

[107] Sun C, Song R, Zhou J, et al. Fermented Bamboo Fiber Improves Productive Performance by Regulating Gut Microbiota and Inhibiting Chronic Inflammation of Sows and Piglets during Late Gestation and Lactation [J]. Microbiol Spectr, 2023, 11(3): e0408422.

[108] Topping D L, Clifton P M. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides [J]. Physiol Rev, 2001, 81(3): 1031-1064.

[109] Van Winsen R L, Urlings B A, LIPMAN L J, et al. Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs [J]. Appl Environ Microbiol, 2001, 67(7): 3071-3076.

[110] Vos. W M D, Tilg. H, Hul. M V, et al. Gut microbiome and health: mechanistic insights [J]. Gut, 2022, 71(5): 1020-1032.

[111] Wang G, Wang X, Ma Y, et al. Lactobacillus reuteri improves the development and maturation of fecal microbiota in piglets through mother-to-infant microbe and metabolite vertical transmission [J]. Microbiome, 2022, 10(1): 211.

[112] Wang S, Yao B, Gao H, et al. Combined supplementation of Lactobacillus fermentum and Pediococcus acidilactici promoted growth performance, alleviated inflammation, and modulated intestinal microbiota in weaned pigs [J]. BMC Vet Res, 2019, 15(1): 239.

[113] Wang X L, Liu Z Y, Li Y H, et al. Effects of Dietary Supplementation of Lactobacillus delbrueckii on Gut Microbiome and Intestinal Morphology in Weaned Piglets [J]. Front Vet Sci, 2021, 8: 692389.

[114] Wang J P, Yoo J S, Kim H J, et al. Nutrient digestibility, blood profiles and fecal microbiota are influenced by chitooligosaccharide supplementation of growing pigs [J]. Livestock Science, 2009, 125(2-3): 298-303.

[115] Wang S, Zhu H, LU C, et al. Fermented milk supplemented with probiotics and prebiotics can effectively alter the intestinal microbiota and immunity of host animals [J]. J Dairy Sci, 2012, 95(9): 4813-4822.

[116] Xu Z R, Hu C H, Xia M S, et al. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers [J]. Poultry Sci, 2003, 82(6): 1030-1036.

[117] Yan Y, Li L, Wu K, et al. A Combination of Baicalin and Berberine Hydrochloride Ameliorates Dextran Sulfate Sodium-Induced Colitis by Modulating Colon Gut Microbiota [J]. J Med Food, 2022, 25(8): 853-862.

[118] Yang H, Xiong X, Wang X, et al. Effects of weaning on intestinal crypt epithelial cells in piglets [J]. Sci Rep, 2016, 6: 36939.

[119] Zhang D, Ji H, Liu H, et al. Changes in the diversity and composition of gut microbiota of weaned piglets after oral administration of Lactobacillus or an antibiotic [J]. Appl Microbiol Biotechnol, 2016, 100(23): 10081-10093.

中图分类号:

 S82    

开放日期:

 2024-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式