- 无标题文档
查看论文信息

中文题名:

 中国省际粮食贸易中虚拟耕地流动格局及影响因素研究    

姓名:

 林晶晶    

学号:

 2022109079    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 120405    

学科名称:

 管理学 - 公共管理 - 土地资源管理    

学生类型:

 硕士    

学位:

 管理学硕士    

学校:

 南京农业大学    

院系:

 公共管理学院    

专业:

 土地资源管理    

研究方向:

 土地经济与政策    

第一导师姓名:

 王佩    

第一导师单位:

 南京农业大学    

完成日期:

 2025-05-20    

答辩日期:

 2025-05-29    

外文题名:

 Research on the Virtual Land Flow Pattern and Influencing Factors in China's Inter-Provincial Grain Trade    

中文关键词:

 省际粮食贸易 ; 虚拟耕地流动 ; 时空格局 ; 影响因素    

外文关键词:

 inter-provincial grain trade ; virtual land flow ; spatiotemporal pattern ; influencing factors    

中文摘要:

耕地资源是粮食生产的基础要素,保障粮食安全和实现可持续发展的关键。然而,随着人口增长和城市化进程加剧,中国面临着耕地资源供求矛盾,耕地短缺和分布不均问题日益突出。虚拟耕地流动作为一种新型的资源再配置方式,通过粮食贸易实现耕地资源的跨区域流动和再分配,成为研究的热点。本研究聚焦于中国省际粮食贸易中的虚拟耕地流动,以2015—2021年间中国31个省份为研究对象,首先,构建贸易成本最小化线性模型来模拟国内粮食贸易流动,并从生产者角度测算虚拟耕地流动量(实际消耗量),结合标准差椭圆分析和核密度估计法观察虚拟耕地流动的时空格局特征。然后,补充消费者视角测算理想消耗量,基于双视角差异揭示粮食供需均衡下虚拟耕地流动的均衡问题。另构建资源最优节约利用线性模型,对比两种目标模型下虚拟耕地消耗情况,探讨粮食流动路径是否仍有优化空间。最后,从需求、供给以及成本因素三个层面构建影响因素指标,采用泊松伪极大似然估计法(PPML)构建贸易回归模型,实证分析得到2015—2021年省际虚拟耕地流动驱动因素,以期为优化虚拟耕地资源配置,实现耕地可持续利用提供政策参考。本研究的主要结果如下:

(1)虚拟耕地流动格局:虚拟耕地流动格局与粮食贸易格局基本一致,表现出明显的区域不对称特征。虚拟耕地输出区主要集中在黑龙江、吉林、内蒙古、甘肃和新疆等地,其中黑龙江年均输出量占全国总流动量的80%以上。虚拟耕地输入区则主要为广东、福建和浙江等地,广东自2015年起每年输入量占全国总流动量的25%左右。2015年虚拟耕地流动链共计26条,涉及9个输出省,虚拟耕地流动量为2036.38万公顷;到2021年,流动链减少至24条,输出省份减少至8个,虚拟耕地流动量略有变化,降至2029.64万公顷,其中黑龙江—广东始终是最主要的流动路径,年流动量均超过510万公顷。

(2)时空格局的变化:采用标准差椭圆分析和核密度估计法进一步揭示了虚拟耕地流动的时空格局。结果表明,虚拟耕地输出区表现出较为稳定的集聚趋势,而输入区则呈现扩散与两极分化趋势。标准差椭圆分析显示,输出区的空间分布趋于收缩,2021年椭圆面积相比2015年缩小了19.91%,长半轴从13.04千米缩小至11.53千米,短半轴从5.08千米缩小至4.60千米,表现出东北-西南方向上的集聚趋势。核密度估计分析进一步揭示输入区虚拟耕地流动量逐年下降,且出现明显的两极分化趋势。

(3)虚拟耕地资源消耗与优化路径:基于双视角评价了虚拟耕地消耗量与理想消耗量的差距,结果发现虚拟耕地资源消耗始终为负值,资源浪费问题较为严重。2015年消耗为-866.18万公顷,2021年为-849.31万公顷。部分粮食主产区(如黑龙江、吉林)资源利用效率较低,而经济发达的输入省(如广东)资源浪费较为严重。通过与实际流动路径对比,构建的虚拟耕地流动优化路径显示,虚拟耕地浪费减少13.34%,其中2021年减少21.82%。优化后的贸易格局呈现资源优先流入粮食单产高地区趋势,部分消费省份虚拟耕地流入减少,主产区输出对象更加分散,减少了对外部耕地资源的依赖。

(4)虚拟耕地流动的影响因素:省际虚拟耕地流动受供给、需求和成本因素的共同影响,且粮食主产区和主销区对虚拟耕地流动的驱动机制存在差异。供给方面,粮食作物总播种面积、有效灌溉面积和粮食单位面积产量促进虚拟耕地流动,而输出省的地区生产总值和水资源则对其产生抑制作用。需求方面,城镇居民人均可支配收入、输入省地区生产总值与虚拟耕地流动量正相关。成本方面,经济距离与虚拟耕地流动呈正相关,显示较远距离的贸易可能涉及更大规模的虚拟耕地流动。异质性分析发现,有效灌溉面积对虚拟耕地的输入与输出均有正向影响,输出省的地区生产总值对虚拟耕地输入和输出均产生负向影响。城镇居民收入增长能刺激粮食消费需求,进而刺激虚拟耕地输入。

外文摘要:

Arable land resources are the fundamental factor for food production and a key to ensuring food security and achieving sustainable development. However, with population growth and the intensification of urbanization, China is facing a conflict in the supply and demand for arable land resources, with issues of land scarcity and uneven distribution becoming increasingly prominent. Virtual land flow, as a new form of resource reallocation, enables the cross-regional flow and redistribution of arable land resources through food trade, becoming a hot research topic. This study focuses on the virtual land flow in China's interprovincial food trade, using data from 31 provinces of China from 2015 to 2021. Firstly, a linear model minimizing trade costs is constructed to simulate domestic food trade flow, and the virtual land flow (actual consumption) is calculated from the perspective of producers. Standard deviation ellipse analysis and kernel density estimation are used to observe the spatial-temporal patterns of virtual land flow. Secondly, the ideal consumption is calculated from the consumer's perspective, and the equilibrium issue of virtual land flow under balanced food supply and demand is revealed based on the differences between the two perspectives. Another linear model is constructed to optimize resource-efficient use, and the virtual land consumption under the two goal models is compared to explore whether there is room for optimizing food flow paths. Finally, from the perspectives of demand, supply, and cost factors, indicators affecting virtual land flow are constructed, and a trade regression model is established using the Poisson pseudo-maximum likelihood (PPML) method to empirically analyze the driving factors of interprovincial virtual land flow from 2015 to 2021, aiming to provide policy references for optimizing virtual land resource allocation and achieving sustainable land use. The main results of this study are as follows:

(1) Virtual land flow pattern: The virtual land flow pattern is consistent with the food trade pattern, exhibiting significant regional asymmetry. Virtual land export areas are mainly concentrated in Heilongjiang, Jilin, Inner Mongolia, Gansu, and Xinjiang, with Heilongjiang accounting for over 80% of the total annual export volume. The main input regions for virtual land are Guangdong, Fujian, and Zhejiang, with Guangdong's annual input volume accounting for about 25% of the national total since 2015. In 2015, there were 26 virtual land flow chains involving 9 exporting provinces, with a total flow of 20.36 million hectares. By 2021, the number of flow chains decreased to 24, the number of exporting provinces decreased to 8, and the total virtual land flow slightly decreased to 20.30 million hectares, with the Heilongjiang-Guangdong flow path remaining the most significant, with annual flows exceeding 5.10 million hectares.

(2) Changes in spatial-temporal patterns: Standard deviation ellipse analysis and kernel density estimation were used to further reveal the spatial-temporal patterns of virtual land flow. The results show that virtual land export areas exhibited a relatively stable aggregation trend, while input areas showed a diffusion and bipolarization trend. Standard deviation ellipse analysis showed that the spatial distribution of export areas contracted, with the ellipse area shrinking by 19.91% in 2021 compared to 2015. The major semi-axis shrank from 13.04 km to 11.53 km, and the minor semi-axis shrank from 5.08 km to 4.60 km, showing an aggregation trend in the northeast-southwest direction. Kernel density estimation revealed that the virtual land flow in input areas declined year by year, showing a clear bipolarization trend.

(3) Virtual land resource consumption and optimization path: Based on the dual-perspective evaluation of the gap between actual and ideal consumption, the results show that virtual land resource consumption has consistently been negative, indicating significant resource waste. In 2015, consumption was -8.66 million hectares, and in 2021, it was -8.49 million hectares. Some major grain-producing areas (e.g., Heilongjiang, Jilin) showed low resource efficiency, while economically developed input provinces (e.g., Guangdong) exhibited significant resource waste. By comparing the actual flow paths with the optimized virtual land flow paths, the research shows a 13.34% reduction in resource waste, with a 21.82% reduction in 2021. The optimized trade pattern shows that virtual land resources flow preferentially into areas with high grain yield, while virtual land flow into some consumption provinces decreases. The output sources from major production regions become more dispersed, reducing dependence on external land resources.

Inter-provincial virtual arable land flow is jointly influenced by supply, demand, and cost factors, and the driving mechanisms differ between major grain-producing areas and major grain-consuming areas. On the supply side, total sown area of grain crops, effective irrigation area, and grain yield per unit area promote virtual arable land flow, while the GDP and water resources of output provinces exert inhibitory effects. On the demand side, urban residents' per capita disposable income and the GDP of input provinces are positively correlated with the volume of virtual arable land flow. Regarding cost, economic distance is positively correlated with virtual arable land flow, indicating that trade over longer distances may involve larger-scale virtual arable land flow. Heterogeneity analysis shows that effective irrigation area positively affects both virtual arable land inputs and outputs, while the GDP of output provinces negatively impacts both inputs and outputs of virtual arable land. Growth in urban residents’ income stimulates grain consumption demand, thereby driving an increase in virtual arable land inputs.

参考文献:

中文著作

[1]曹冲.我国主要农产品虚拟耕地资源进口效应评价,驱动因素及策略调整研究[D].新疆农业大学,2021.

中文论文

[2]贲培琪,吴绍华,李啸天等.中国省际粮食贸易及其虚拟耕地流动模拟[J].地理研究,2016,35(08):1447-1456.

[3]曹冲,夏咏,陈俭.虚拟土视阙下中国重点大宗农产品贸易流的驱动因素研究——基于LMDI模型的再检验[J].农业技术经济,2019,(08):

[4]曹冲,谢文宝,袁国军.中国粮食虚拟耕地资源国际贸易影响因素评价[J].科技导报,2023,41(06):127-137.

[5]陈道平,刘伟.基于Translog生产函数的中国汽车工业规模经济与替代弹性及价格弹性研究[J].数理统计与管理,2009,28(01):10-22.

[6]陈良侃,陈少辉.“一带一路”沿线国家农作物虚拟水贸易时空格局及驱动因素分析[J].地球科学进展,2021,36(04):399-412.

[7]成丽,方天堃,潘春玲.中国粮食贸易中虚拟耕地贸易的估算[J].中国农村经济,2008(06):25-31.

[8]成升魁,闵庆文,闫丽珍.从静态的断面分析到动态的过程评价——兼论资源流动的研究内容与方法[J].自然资源学报,2005,(03):407-414.

[9]成升魁,甄霖.资源流动研究的理论框架与决策应用[J].资源科学,2007(03):37-44.

[10]邓晶,鲁清.中国粮食安全:粮食市场供需平衡的实证分析[J].中国经济问题,2003,(04):20-28.

[11]丁华,汪俊枝;庞娜.基于综合生产能力的粮食生产资源替代机制研究:综述与拓展[J].河南工业大学学报(社会科学版),2010,6(03):1-5.

[12]丁世豪,何树全.中国对中亚五国农产品出口效率及影响因素分析[J].国际商务(对外经济贸易大学学报),2019(5):13-24.

[13]丁雪丽,张玲玲,王宗志.基于省际间粮食贸易的虚拟水综合效益分析[J].长江流域资源与环境,2018,27(05):978-987.

[14]樊鹏飞,梁流涛,许明军等.基于虚拟耕地流动视角的省际耕地生态补偿研究[J].中国人口·资源与环境,2018,28(01):91-101.

[15]方国柱,雷权勇,祁春节.制度质量是否促进了高附加值农产品出口?——全球柑橘贸易的证据[J].华中农业大学学报(社会科学版),2023(5):77-89.

[16]高守杰,郭光毅,代希波.基于道路网络分析的省际粮食运输成本研究[J].物流科技,2014,37(05):135-139.

[17]龚媛,李飞雪,王丽妍,等.耕地空间优化配置研究——以常州市新北区为例[J].水土保持研究,2016,23(04):199-205.

[18]桂天晗,王磊,陈济冬.国家经济发展与国际组织代表性——解析全球治理中的国家影响力机制[J].世界经济与政治,2024,(07):31-61+154.

[19]韩博,金晓斌,孙瑞,等.土地整治项目区耕地资源优化配置研究[J].自然资源学报,2019,34(04):718-731.

[20]韩冬,李光泗,钟钰.中国与“一带一路”沿线国家粮食竞争力比较及粮食贸易影响因素研究[J].江西财经大学学报,2020,(04):76-92.

[21]韩雪,梁璇,王倩.中国主要农产品虚拟要素贸易网络结构特征分析[J].生态学报,2020,40(11):3851-3865.

[22]黄雨,田明华.虚拟耕地视角下中国粮食贸易对耕地压力的影响[J].当代经济研究,2018(03):81-87.

[23]贾盼娜,刘爱民,成升魁等.中国农产品贸易格局变化及海外农业资源利用对策[J].自然资源学报,2019,34(07):1357-1364.

[24]奎国秀,祁春节,方国柱.中国主要粮食产品进口贸易的资源效应和环境效应研究[J].世界农业,2021(05):16-25+126.

[25]梁流涛,唐林昊,李士超等.基于生态网络架构的虚拟耕地流动格局及其稳定性评价[J].经济地理,2020,40(01):140-149.

[26]刘爱民,薛莉,成升魁等.我国大宗农产品贸易格局及对外依存度研究——基于虚拟耕地资源的分析和评价[J].自然资源学报,2017,32(06):915-926.

[27]刘红梅,李国军,王克强.基于引力模型的中国农业虚拟水国内贸易影响因素分析[J].中国农村经济,2011(05):21-32.

[28]栾军强,王荣成,朱子媛,等.山东省粮食供需变动下农业生产格局研究[J].中国农业资源与区划,2021,42(08):201-209.

[29]罗贞礼,龙爱华,黄璜等.虚拟土战略与土地资源可持续利用的社会化管理[J].冰川冻土,2004(05):624-631.

[30]马博虎,张宝文.中国粮食对外贸易中虚拟耕地贸易量的估算与贡献分析——基于1978-2008年中国粮食对外贸易数据的实证分析[J].西北农林科技大学学报(自然科学版),2010,38(06):115-119+126.

[31]马超,许长新,田贵良.农产品贸易中虚拟水流的驱动因素研究[J].中国人口·资源与环境,2012,22(01):155-160.

[32]马静,汪党献,A. Y. Hoekstra等.虚拟水贸易在我国粮食安全问题中的应用[J].水科学进展,2006(01):102-107.

[33]强文丽,张翠玲,刘爱民等.全球农产品贸易的虚拟耕地资源流动演变及影响因素[J].资源科学,2020,42(09):1704-1714.

[34]瞿商,杨祖义.粮食安全与中国耕地关系的动态调整——基于1980~2004年中国虚拟耕地及其贸易的研究[J].当代中国史研究,2009,16(02):69-75+127.

[35]史常亮,金彦平.中国粮食供给与需求状况变迁:1978~2010[J].经济研究参考,2013,(56):51-60.

[36]孙才志,汤玮佳,邹玮.中国粮食贸易中的虚拟资源生态要素估算及效应分析[J].资源科学,2012,34(03):589-597.

[37]孙致陆,贾小玲,李先德.中国与“一带一路”沿线国家粮食贸易演变趋势及其虚拟耕地资源流量估算[J].华中农业大学学报(社会科学版),2019(01):24-32+163.

[38]唐洪松,汪晶晶,马惠兰等.人口规模、经济增长、资源禀赋与虚拟土地进口[J].中国农业资源与区划,2017,38(12):26-32.

[39]王琼.中国粮食虚拟耕地进口的测度及其影响因素——基于大豆、玉米、小麦和大米的分析[J].财经理论与实践,2018,39(03):134-139+154.

[40]王维,陈秧分.贸易成本、制度质量与中国农产品贸易——基于RCEP伙伴国的实证分析[J].中国流通经济,2024,38(12):82-95.

[41]吴锋,毛德华,王红.粮食安全背景下的虚拟耕地研究[J].国土资源科技管理,2009,26(02):51-55.

[42]武清华,张落成,姚士谋,等.无锡市区耕地最低保有量测算及空间配置研究[J].长江流域资源与环境,2010,19(S2):108-113.

[43]席艳乐,陈小鸿.CEPA对中国内地和香港贸易效应的实证研究——基于倍差和泊松极大似然估计的方法[J].经济问题探索,2014,(11):130-138.

[44]闫丽珍,成升魁,闵庆文.玉米南运的虚拟耕地资源流动及其影响分析[J].中国科学院大学学报, 2006, 23(3):342-348.

[45]杨茂,赵予新.我国粮食综合产能提高过程中的资源替代分析[J].西北农林科技大学学报(自然科学版),2010,38(12):128-132.

[46]杨庆媛,毕国华,陈展图,等.喀斯特生态脆弱区休耕地的空间配置研究——以贵州省晴隆县为例[J].地理学报,2018,73(11):2250-2266.

[47]杨婷婷,张雪妮,高翔等.中国粮食省份间流通及对虚拟水土资源的影响[J].草业科学,2022,39(08):1686-1697

[48]袁平.国际粮食市场演变趋势及其对中国粮食进出口政策选择的启示[J].南京农业大学学报(社会科学版),2013,13(01):46-55.

[49]张菲,姜爱芹,杨芳琴.中国向“一带一路”沿线国家茶叶出口的影响因素及贸易潜力分析[J].茶叶科学,2019,39(02):220-229.

[50]张志强,徐中民,程国栋.生态足迹的概念及计算模型[J].生态经济,2000(10):8-10.

[51]赵璐,赵作权.基于特征椭圆的中国经济空间分异研究[J].地理科学,2014,34(08):979-986.

[52]周浩,雷国平,杨雪昕,等.RCPs气候情景下三江平原典型流域耕地动态模拟[J].农业机械学报,2017,48(10):121-133.

外文著作

[53]Lotka A J. Elements of physical biology[M]. Williams & Wilkins, 1925.

外文论文

[54]Bicknell K B, Ball R J, Cullen R, et al. New methodology for the ecological footprint with an application to the New Zealand economy[J]. Ecological economics, 1998, 27(2): 149-160.

[55]Blonk H, Lindeijer E, Broers J. Towards a methodology for taking physical degradation of ecosystems into account in LCA[J]. The International Journal of Life Cycle Assessment, 1997, 2: 91-98.

[56]Cowell S J, Parkinson S. Localisation of UK food production: an analysis using land area and energy as indicators[J]. Agriculture, Ecosystems & Environment, 2003, 94(2): 221-236.

[57]Gerbens-Leenes P W, Nonhebel S. Consumption patterns and their effects on land required for food[J]. Ecological Economics, 2002, 42(1-2): 185-199.

[58]Haberl H, Schandl H. Indicators of sustainable land use: concepts for the analysis of society‐nature interrelations and implications for sustainable development[J]. Environmental Management and Health, 1999, 10(3): 177-191.

[59]Hubacek K, Giljum S. Applying physical input–output analysis to estimate land appropriation (ecological footprints) of international trade activities[J]. Ecological economics, 2003, 44(1): 137-151.

[60]Koellner T. Land use in product life cycles and its consequences for ecosystem quality[J]. The International Journal of Life Cycle Assessment, 2002, 7(2): 130-130.

[61]Krugman , Paul.Increasing Returns and Economic Geography[J].NBER Working Papers, 1990, 99(3):483-499.DOI:10.1086/261763.

[62]Linnemann H .An econometric study of international trade flows[J]. Canadian Journal of Economics & Political Science/revue Canadienne De Economiques Et Science Politique, 1966, 33(1): 633-634.

[63]Liu X , Liang X , Li X ,et al.A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J].Landscape & Urban Planning, 2017, 168:94-116.

[64]Pyhnen A. Tentative model for the flows of trade between countries[J]. Weltwirtschaftliches Archiv, 1963, 90(1).

[65]Pyhnen A. Tentative model for the flows of trade between countries[J]. Weltwirtschaftliches Archiv, 1963, 90(1).

[66]Qiang W, Liu A, Cheng S, et al. Agricultural trade and virtual land use: The case of China's crop trade[J]. Land Use Policy, 2013, 33: 141-150.

[67]Qiang W, Niu S, Liu A, et al. Trends in global virtual land trade in relation to agricultural products[J]. Land use policy, 2020, 92: 104439.

[68]Silva J S, Tenreyro S. The log of gravity [J]. Review of Economics & Statistics, 2006, 88(4): 641-658.

[69]Soloaga I , Winters L A .Regionalism in the nineties: what effect on trade? [J]. Cepr Discussion Papers, 1999, 12(1): 1-29.

[70]Tinbergen J. Shaping the world economy; suggestions for an international economic policy[J]. 1962.

[71]Wackernagel M, Silverstein J. Big things first: focusing on the scale imperative with the ecological footprint[J]. Ecological Economics, 2000, 32(3): 391-394.

[72]Wang Z, Zhang L, Ding X, et al. Virtual water flow pattern of grain trade and its benefits in China[J]. Journal of Cleaner Production, 2019, 223: 445-455.

[73]Wu S , Ben P , Chen D ,et al.Virtual land, water, and carbon flow in the inter-province trade of staple crops in China[J].Resources, Conservation and Recycling, 2018, 136:179-186.

[74]Würtenberger L, Koellner T, Binder C R. Virtual land use and agricultural trade: Estimating environmental and socio-economic impacts[J]. Ecological Economics, 2006, 57(4): 679-697.

[75]Zhang J, Zhao N, Liu X, et al. Global virtual-land flow and saving through international cereal trade[J]. Journal of Geographical Sciences, 2016, 26: 619-639.

中图分类号:

 F30    

开放日期:

 2025-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式