- 无标题文档
查看论文信息

中文题名:

 小菜蛾对溴虫腈的抗性特征及抗性基因定位    

姓名:

 钱宬    

学号:

 2019102095    

保密级别:

 保密两年    

论文语种:

 chi    

学科代码:

 090402    

学科名称:

 农学 - 植物保护 - 农业昆虫与害虫防治    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 南京农业大学    

院系:

 植物保护学院    

专业:

 农业昆虫与害虫防治    

研究方向:

 昆虫分子毒理学    

第一导师姓名:

 王兴亮    

第一导师单位:

 南京农业大学    

完成日期:

 2022-06-17    

答辩日期:

 2022-06-06    

外文题名:

 Characterization of Chlorfenapyr Resistance and Mapping of Its Resistance Locus in Plutella xylostella    

中文关键词:

 小菜蛾 ; 溴虫腈 ; 抗性近等基因系 ; 抗性特征 ; 基因定位    

外文关键词:

 Plutella xylostella ; Chlorfenapyr ; Near-isogenic strains ; Resistance characterization ; Gene mapping    

中文摘要:

小菜蛾Plutella xylostella(L.)具有世代周期短、繁殖力强、抗药性产生快等特点,是世界上为害十字花科作物最严重的害虫之一,对上百种杀虫成分产生了不同程度的抗药性。溴虫腈(chlorfenapyr)属于吡咯类杀虫剂,经昆虫体内氧化酶代谢为有毒物质,该代谢物能够作用于细胞线粒体,对氧化磷酸化进行解偶联。溴虫腈具有低毒、持久和速效的特点,被广泛应用于鳞翅目和螨类害虫的防治。然而,由于不合理的使用,中国和巴西已有小菜蛾种群对溴虫腈演化出高水平抗性,使抗性治理形势更加严峻。

目前,害虫溴虫腈抗性特征和抗性机理的研究报道较少,亟需在具备较高抗性的材料中开展相关研究,为溴虫腈的抗性治理提供依据。本文将选育的小菜蛾溴虫腈抗性种群TH-R与室内敏感品系IPP-S多代回交,获得抗溴虫腈近等基因系TH-BC5F2,明确了其抗性遗传方式、交互抗性和生化机理。对TH-R品系的溴虫腈抗性基因座进行BSA定位,通过对SNP分离比的统计分析确定了抗性连锁区间。研究结果有助于针对性地制订小菜蛾溴虫腈抗性治理方案,为探明小菜蛾溴虫腈抗性机理提供重要线索。

1. 小菜蛾溴虫腈抗性品系筛选和近等基因系构建

实验室前期采集自通海的小菜蛾种群(TH20)对溴虫腈有较高抗性,其致死中浓度LC50为290.1 mg/L,与室内敏感品系IPP-S相比,抗性达371倍。在室内用300 mg/L的溴虫腈对TH20连续筛选7代,获得溴虫腈抗性品系TH-R,其抗性倍数达436倍。通过药剂筛选辅助的多代回交策略,将TH-R品系的溴虫腈抗性基因逐代渗入敏感品系IPP-S,获得与IPP-S品系具有98.4%相同遗传背景的近等基因系TH-BC5F2。

2. 小菜蛾抗溴虫腈近等基因系的抗性特征及生化机理

与初始品系IPP-S相比,近等基因系TH-BC5F2对溴虫腈具备275倍的高水平抗性,对多杀菌素存在9.25倍交互抗性,对阿维菌素为4.16倍低水平交互抗性,对毒死蜱、茚虫威、氯虫苯甲酰胺、高效氯氰菊酯、溴虫氟苯双酰胺没有抗性。TH-BC5F2与敏感品系IPP-S正反交的F1代对溴虫腈的LC50分别为106.3 mg/L和83.40 mg/L,且二者95%置信区间基本重叠,显性度分别为0.75和0.66,表明其遗传方式为常染色体基因控制的偏显性遗传。BC回交代的LD-P线在死亡率为50%处存在明显的平台,适合性检验结果符合单基因假设,证明TH-BC5F2小菜蛾品系对溴虫腈的抗性受单基因控制。增效实验显示,酶抑制剂PBO、DEF、DEM在TH-BC5F2品系中对溴虫腈的毒力增效1.03-1.45倍,在敏感品系IPP-S中的增效系数为1.37-1.72倍。解毒代谢酶活性测定的实验中,TH-BC5F2品系的解毒代谢酶(MFO、GST、EST)活力相对于IPP-S敏感品系在1.1-2.2倍之间,无显著提高,说明TH-BC5F2的溴虫腈抗性可能与解毒代谢增强无关。

3. 溴虫腈抗性基因座的初步定位

根据两相定位法构建抗性基因交换型群体,将溴虫腈高抗品系TH-R与野生型品系Roth进行单对杂交,F1家系分别与IPP-S敏感个体回交获得BC代。经20 mg/L溴虫腈处理BC群体,存活个体组成BC-R池,未经处理个体混合为对照池BC-CK。通过高通量测序和BSA分析,将溴虫腈抗性连锁区域定位于PxChr16的7.5-8.5 Mb。为了进一步缩小QTL范围,在BC-R与BC-CK组中分别利用PCR扩增选定的SNP区域并进行直接测序,通过分离比差异显著的SNP标记将范围缩小至PxChr16的7.8-8.0 Mbp区域。基因注释分析发现该区间包含19个基因,主要涉及代谢、运输、生长类基因或通路。

外文摘要:

Diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is one of the most destructive insect pests of cruciferous vegetables in the world. To date, P. xylostella have been developed resistance to more than 100 active ingredients, due to its short generation time, high productivity, and particularly the extensive selection pressure in the field. Chlorfenapyr, a new halogenated pyrrole compound, is a pro-insecticide, and oxidative removal of the N-ethoxymethyl group of chlorfenapyr by mixed function oxidases leads to a toxic form that interrupts the conversion of ADP to ATP in cell mitochondria. Chlorfenapyr has good insecticidal activity and low mammalian toxicity, and widely using for several mites and insect pests control. However, chlorfenapyr-resistant populations from China and Brazil seriously threatened the useful life of the chemical and the management of field P. xylostella.

At present, there are few studies focus on the characteristics of and mechanisms of resistance to chlorfenapyr. It is therefore necessary to perform the relevant research in chlorfenapyr-resistant insect species, aim to provide important information for chlorfenapyr resistance management. Here, through multiple rounds of backcrossing (the field-derived TH-R strain crossed with the susceptible IPP-S strain) and chlorfenapyr selection, we produced a chlorfenapyr-resistant near-isogenic line, TH-BC5F2, and the inheritance mode, cross-resistance pattern and biochemical mechanism of resistance were then determinated. Using a bulked segregant analysis (BSA) study and a subsequently SNP assistant validation analysis, the preliminary mapping of chlorfenapyr resistance locus of TH-R strain was performed. The results will be helpful to formulate of the resistance management strategy of chlorfenapyr, and provide an important clue to decode the chlorfenapyr resistance mechanism in P. xylostella.

1. Selection of a field chlorfenapyr-resistant population and construction of the near-isogenic Plutella xylostella strain

The sensitivity of P. xylostella collected from Tonghai in 2020 to chlorfenapyr was determined by leaf dipping method, with a 290.1 mg/L LC50. Compared with the susceptible IPP-S strain, the resistance ratio (RR) to chlorfenapyr of TH20 was 371-fold. The TH20 population was continuously selected by 300 mg/L for 7 generations, and a chlorfenapyr-resistant strain TH-R was generated, with 436-fold resistance. Using the field-derived TH-R strain and the susceptible IPP-S strain as parents, the resistance loci were introgressed into IPP-S strain, and the obtained TH-BC5F2 strain showed 98.4% genetic similarity to the susceptible parental strain.

2. Characterisation of the TH-BC5F2 strain of P. xylostella to chlorfenapyr.

Compared with the original IPP-S strain, the near isogenic TH-BC5F2 strain showed 275-fold resistance to chlorfenapyr, and 9.25-fold of resistance to spinosad, and a low level of resistance (4.16-fold) to abamectin. There was no cross-resistance to indoxacarb, chlorantraniliprole, broflanilide, chlorpyrifos and beta-cypermethrin. The LC50 for chlorfenapyr of F1 and F1׳ progeny were 106.3 mg/L and 83.40 mg/L, respectively. The 95% confidence interval of the LC50s were overlapped. The dominance values of F1 and F1׳ progeny were 0.75 and 0.66, respectively, indicating that the chlorfenapyr resistance in TH-BC5F2 was autosomal incomplete dominant inheritance. In the log dosage-probit mortality curve of the backcross progeny to chlorfebapyr there was a distinct plateau correronding to 50% mortality. The χ2 test of the goodness of fit between the observations and predictions under the assumption of monofactorial inheritance accept the single gene hypothesis. Synergistic experiments showed that the PBO, DEF and DEM had slight effects on the toxicity of chlorfenapyr (1.03- to 1.45-fold) in TH-BC5F2 strain, similar to that in IPP-S strain with 1.37- to 1.72-fold SRs. Compared with the IPP-S strain, metabolic enzyme activities of TH-BC5F2 were increased by 1.1- to 2.2-fold. Enzyme activity analysis results are consistent with those from the synergism experiment, which indicates that metabolic detoxification is not involved in chlorfenapyr resistance in TH-BC5F2.

3. Preliminary mapping of chlorfenapyr resistance loci

Firstly, the high-resistant chlorfenapyr strain TH-R was single-pair crossed with the wild-type Roth strain, and then the F1 families were backcrossed with IPP-S individual to generate BC progeny. For each BC progeny, the survivals, after treated with 20 mg/L chlorfenapyr, were pooled to a BC-R group, while the others without treatment formed a control group, BC-CK. Through high-throughput sequencing and BSA analysis, we found that the chlorfenapyr resistance was linked to a region from 7.5 to 8.5 Mbp on chromosome 16 (PxChr16). In order to further narrow the loci region, we used direct-sequencing to genotype the individual resistant and susceptible larvae from BC-R and BC-CK groups for SNPs at eight marker sites within the mapping region. Through analysis of the segregation ratio of each SNP marker in BC-R and BC-CK groups, the chlorfenapyr resistance loci were narrowed to a range from 7.8 to 8.0 Mbp on PxChr16. By using gene annotation and KEEG analysis, we found that the linked region contains 19 genes, which mainly involvs in the pathways of metabolism, transportation and growth.

参考文献:

参考文献

[1]常晓丽, 袁永达, 张天澍等. 小菜蛾生物学特性及防治研究进展[J]. 上海农业学报, 2017, 33(5): 145-150.

[2]成燕清, 王培, 唐涛等. 小菜蛾对氯虫苯甲酰胺抗药性与田间防治效果的相关性研究[J].应用昆虫学报, 2016, 53(2): 320-324.

[3]陈艺欣, 田厚军, 魏辉等. 小菜蛾幼虫、蛹和成虫的雌雄形态识别[J]. 福建农业学报, 2011, 26(4): 611-614.

[4]冯夏, 李振宇, 吴青君,等. 小菜蛾抗性治理及可持续防控技术研究与示范——公益性行业(农业)科研专项"小菜蛾可持续防控技术研究与示范"进展[J]. 应用昆虫学报, 2011, 48(2): 247-253.

[5]郝玥, 李佰秋. 小菜蛾发生规律及综合防治技术研究[J]. 农学学报, 2010(3): 44-45.

[6]贾变桃, 洪珊珊, 王龙. 小菜蛾对溴虫腈抗性筛选,风险评估及交互抗性研究[J]. 环境昆虫学报, 2015, 37(1): 90-95.

[7]贾变桃, 杨素梅, 韩巨才. 溴虫腈对小菜蛾3龄幼虫存活、化蛹和羽化的影响[J]. 山西农业大学学报(自然科学版), 2012, 32(6): 481-484.

[8]蒋田田. 小菜蛾的抗药性监测以及对唑虫酰胺的抗性风险评估[D]. 南京: 南京农业大学, 2014.

[9]金琳. 自然庇护所对棉铃虫Cry1Ac抗性演化的影响及显性Bt抗性基因的鉴定[D]. 南京: 南京农业大学, 2017.

[10]李瑞娟, 王开运, 夏晓明. 二斑叶螨对梅岭霉素和溴虫腈的抗性选育及其解毒酶活力变化[J]. 植物保护学报, 2005(03): 309-313.

[11]李忠洲, 周玉书, 朴静子等. 二斑叶螨对螺螨酯的抗性选育及其解毒酶活性测定[J]. 应用昆虫学报, 2013, 50(2): 454-459.

[12]刘永杰, 沈晋良, 杨田堂等. 氯氟氰菊酯对斜纹夜蛾抗性和敏感种群表皮穿透比较[J]. 中国农业科学, 2009, 42(07): 2386-2391.

[13]吕桂贞, 余明华, 邱浩等. 溴虫腈、茚虫威与氟啶脲混配对小菜蛾毒力最佳配比筛选及田间防效研究[J]. 应用昆虫学报, 2011, 48(2): 306-312.

[14]陆宴辉, 赵紫华, 蔡晓明, 等. 我国农业害虫综合防治研究进展[J]. 应用昆虫学报, 2017, 54(3): 349-363.

[15]罗雁婕, 吴文伟, 杨祚斌等. 小菜蛾抗药性及治理的研究进展[J]. 云南大学学报:自然科学版, 2008(S1): 178-182.

[16]邱立红. 微粒体多功能氧化酶系与棉铃虫对氰戊菊酯抗药性的关系[J]. 昆虫学报, 2001, 44(4): 447-453.

[17]沈福英. 小菜蛾抗药性治理及研究进展[J]. 河北农业科学, 2010, 14(8): 58-60.

[18]司树鼎. 溴虫腈对家蚕和甜菜夜蛾的选择毒性及选择机制研究[D]. 山东: 山东农业大学, 2008.

[19]王翠伦. 溴虫腈和毒死蜱对等钳蠊螨亚致死效应及相关基因的影响[D]. 重庆: 西南大学, 2019.

[20]王永江, 欧晓明, 裴晖等. 新型杀虫剂溴虫腈的室内毒力测定[J]. 农药研究与应用, 2006, 10(3): 20-23.

[21]吴青君, 张文吉, 张友军等. 表皮穿透和GABA_A受体不敏感性在小菜蛾对阿维菌素抗性中的作用[J]. 昆虫学报, 2002, 45(3): 336-340.

[22]吴益东, 沈晋良, 尤子平. 铃虫对氰戊菊酯抗性和敏感品系的选育[J]. 昆虫学报, 1994, 37(2): 129-136.

[23]徐巨龙, 李静静, 王念猛等. 我国部分地区田间小菜蛾种群对8种常用杀虫剂的抗性检测[J]. 植物保护, 2021(02): 239-242.

[24]张桂芝. 小菜蛾对虫螨腈的抗性遗传研究[D]. 河北: 河北农业大学, 2004.

[25]周利娟, 黄继光, 徐汉虹. 珠三角地区小菜蛾田间种群的抗药性测定[J]. 华南农业大学学报, 2011(001): 45-48.

[26]Ahmad M, Akhtar KP. Susceptibility of cotton whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) to diverse pesticides in Pakistan[J]. Journal of Economic Entomology, 2018, 111(4): 1834-1841.

[27]Ahmad M, Arif MI. Resistance of Pakistani field populations of spotted bollworm Earias vittella (Lepidoptera: Noctuidae) to pyrethroid, organophosphorus and new chemical insecticides[J]. Pest Management Science, 2010, 65(4): 433-439.

[28]Ahmad M, Hollingworth RM. Synergism of insecticides provides evidence of metabolic mechanisms of resistance in the obliquebanded leafroller Choristoneura rosaceana (Lepidoptera: Tortricidae)[J]. Pest Management Science, 2010, 60(5): 465-473.

[29]Ahmad M, Mehmood R. Monitoring of Resistance to New Chemistry Insecticides in Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan.[J]. Journal of Economic Entomology, 2015, 108(3): 1279-1288.

[30]Alavanja MCR. Introduction: pesticides use and exposure extensive worldwide[J]. Reviews on Environmental Health, 2009, 24(4): 303-310.

[31]Alptekin S, Bass C, Nicholls C. Induced thiacloprid insensitivity in honeybees (Apis mellifera L.) is associated with up-regulation of detoxification genes[J]. Insect Molecular Biology, 2016, 25(2): 171-180.

[32]Balabanidou V, Kampouraki A, MacLean M, et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae[J]. Proceedings of the National Academy of Sciences, 2016, 113(33): 9268-9273.

[33]Balasubramani V, Sayyed AH, Crickmore N. Genetic Characterization of Resistance to Deltamethrin in Plutella xylostella (Lepidoptera: Plutellidae) from India[J]. Journal of Economic Entomology, 2008, 101(6): 1911-1918.

[34]Banazeer A, Afzal MBS, Hassan S, et al. Status of insecticide resistance in Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) from 1997 to 2019: cross-resistance, genetics, biological costs, underlying mechanisms, and implications for management[J]. Phytoparasitica, 2021, 50: 465-485.

[35]Bass C, Puinean AM, Andrews M, et al. Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae[J]. Bmc Neuroscience, 2011, 12(1): 1-11.

[36]Bass C, Puinean AM, Zimmer CT, et al. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae[J]. Insect Biochemistry and Molecular Biology, 2014, 51: 41-51.

[37]Bass C, Schroeder I, Turberg A, et al. Identification of the Rdl mutation in laboratory and field strains of the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae)[J]. Pest Management Science, 2010, 60(12):1157-1162.

[38]Bastide H, Lange JD, Lack JB, et al. A Variable Genetic Architecture of Melanic Evolution in Drosophila melanogaster[J]. Genetics, 2016, 204(3): 1307-1319.

[39]Baxter SW, Chen M, Dawson A, et al. Mis-Spliced Transcripts of Nicotinic Acetylcholine Receptor α6 Are Associated with Field Evolved Spinosad Resistance in Plutella xylostella (L.)[J]. PLoS Genetics, 2010, 6(1): 1-10.

[40]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1-2): 248-254.

[41]Bryon A, kurlovs AH, Vanleeuwen T, et al. A molecular-genetic understanding of diapause in spider mites: current knowledge and future directions[J]. Physiological Entomology, 2017, 42(3): 211-224.

[42]Che W, Shi T, Wu Y, et al. Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) from China[J]. Journal of Economic Entomology, 2013, 106(4): 1855-1862.

[43]Chris H, Daniel S, Jeffery B, et al. Resistance to Permethrin, β-cyfluthrin, and Diazinon in Florida Horn Fly Populations[J]. Insects, 2018, 9(2): 63-74.

[44]Connor DJ, Loomis RS, Cassman KG. Crop Ecology: Productivity and Management in Agricultural System [M]. Insect Biochemistry and Molecular Biology, 2011, 3(1): 3-22.

[45]Cubillos FA, Brice C, Molinet J, et al. Identification of Nitrogen Consumption Genetic Variants in Yeast Through QTL Mapping and Bulk Segregant RNA-Seq Analyses[J]. G3: Genes, Genomes, Genetics, 2017, 7(6): 1693-1705.

[46]Dani JA. Neuronal Nicotinic Acetylcholine Receptor Structure and Function and Response to Nicotine[J]. International Review Neurobiology, 2015, 124: 3-19.

[47]Demaeght P, Osborne EJ, Odman-Naresh J, et al. High resolution genetic mapping uncovers chitin synthase-1 as the target-site of the structurally diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole in Tetranychus urticae[J]. Insect Biochemistry and Molecular Biology, 2014, 51: 52-61.

[48]Dermauw W, Ilias A, Riga M, et al. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance[J]. Insect Biochemistry and Molecular Biology, 2012, 42(7): 455-465.

[49]Dong K, Du Y, Rinkevich F, et al. Molecular biology of insect sodium channels and pyrethroid resistance[J]. Insect Biochemistry and Molecular Biology, 2014, 50: 1-17.

[50]Douris V, Papapostolou KM, Ilias A, et al. Investigation of the contribution of RyR target-site mutations in diamide resistance by CRISPR/Cas9 genome modification in Drosophila[J]. Insect Biochemistry and Molecular Biology, 2017, 87: 127-135.

[51]Fang FJ, Wang WJ, Zhang DH, et al. The cuticle proteins: a putative role for deltamethrin resistance in Culex pipiens pallens[J]. Parasitology Research, 2015, 114(12): 4421-4429

[52]Ferreira CBS, Andrade FHN, Rodrigues ARS, et al. Resistance in field populations of Tetranychus urticae to acaricides and characterization of the inheritance of abamectin resistance[J]. Crop Protection, 2015, 67: 77-83.

[53]Fu W, Xie W, Zhang Z, et al. Selection of valid reference genes for gene expression studies by quantitative real-time PCR in Plutella xylostella (Lepidoptera Plutellidae) after exposure to Bt toxin[J]. Acta Entomologica Sinica, 2012, 55(12): 1406-1412.

[54]Furlong MJ, Wright DJ, Dosdall LM. Diamondback Moth Ecology and Management: Problems, Progress, and Prospects[J]. Annual Review of Entomology, 2013, 58: 517-541.

[55]Gahan LJ, Gould F, Heckel DG. Identification of a Gene Associated with Bt Resistance in Heliothis virescens[J]. Science, 2001, 293(5531): 857-860.

[56]Gahan LJ, Pauchet Y, Vogel H, et al. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin[J]. PLoS Genetics, 2010, 6(12): e1001248.

[57]Gassel M, Wolf C, Noack S, et al. The novel isoxazoline ectoparasiticide fluralaner: Selective inhibition of arthropod γ-aminobutyric acid- and L-glutamate-gated chloride channels and insecticidal/acaricidal activity[J]. Insect Biochemistry and Molecular Biology, 2014, 45: 111-124.

[58]Georghiou GP, Garber MJ. Studies on the inheritance of carbamate-resistance in the housefly (Musca domestica L.)[J]. Bulletin of the World Health Organization, 1965, 32(2): 181-196.

[59]Gong YH, Diao QY. Current knowledge of detoxification mechanisms of xenobiotic in honey bees[J]. Ecotoxicology, 2017, 26(1): 1-12.

[60]Gonzalez D, Fraichard S, Grassein P, et al. Characterization of a Drosophila glutathione transferase involved in isothiocyanate detoxification[J]. Insect Biochemistry and Molecular Biology, 2018, 95: 33-43.

[61]Guo Z, Kang S, Chen D, et al. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth[J]. PLoS Genetics, 2015, 11(4): e1005124.

[62]Heckel DG, Gahan LJ, Liu YB. Genetic mapping of resistance to Bacillus thuringiensis toxins in diamondback moth using biphasic linkage analysis[J]. Proceedings of the National Academy of Sciences, 1999, 96(15): 8373-8377.

[63]Ihara M, Sattelle DB, Matsuda K. Probing new components (loop G and the α–α interface) of neonicotinoid binding sites on nicotinic acetylcholine receptors[J]. Pesticide Biochemistry and Physiology, 2015, 121: 47-52.

[64]Itokawa K, Komagata O, Kasai S, et al. A single nucleotide change in a core promoter is involved in the progressive overexpression of the duplicated CYP9M10 haplotype lineage in Culex quinquefasciatus[J]. Insect Biochemistry and Molecular Biology, 2015, 66: 96-102.

[65]Jagadeesan R, Fotheringham A, Ebert PR, et al. Rapid genome wide mapping of phosphine resistance loci by a simple regional averaging analysis in the red flour beetle, Tribolium castaneum[J]. Bmc Genomics, 2013, 14(1): 1-12.

[66]Kane NS, Hirschberg B, Qian S, et al. Drug-resistant Drosophila indicate glutamate-gated chloride channels are targets for the antiparasitics nodulisporic acid and ivermectin[J]. Proceedings of the National Academy of Sciences, 2000, 97(25): 13949-13954.

[67]Kang WJ, Koo HN, Jeong DH, et al. Functional and genetic characteristics of Chlorantraniliprole resistance in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae)[J]. Entomological Research, 2017, 47(6): 394-403.

[68]Ketterman AJ, Saisawang C, Wongsantichon J. Insect glutathione transferases[J]. Drug Metabolism Reviews, 2011, 43(2): 253-265.

[69]Kfir R. Origin of the diamondback moth (Lepidoptera: Plutellidae)[J]. Annals of the Entomological Society of America, 1998, 91(2): 164-167.

[70]Khalighi M, De Beer B, Villacis-Perez E, et al. QTL mapping suggests that both cytochrome P450-mediated detoxification and target-site resistance are involved in fenbutatin oxide resistance in Tetranychus urticae[J]. Insect Biochemistry and Molecular Biology, 2022, 145: 1-16

[71]Khaliq A, Attique MNR, Sayyed AH. Evidence for resistance to pyrethroids and organophosphates in Plutella xylostella (Lepidoptera: Plutellidae) from Pakistan[J]. Bulletin of Entomological Research, 2007, 97(2): 191-200.

[72]Khan S, Uddin MN, Rizwan M, et al. Mechanism of Insecticide Resistance in Insects/Pests[J]. Polish Journal of Environmental Studies, 2020, 29(3): 2023-2030.

[73]Kim JI, Joo YR, Kwon M, et al. Mutation in ace1 associated with an insecticide resistant population of Plutella xylostella[J]. Journal of Asia-Pacific Entomology, 2012, 15(3): 401-407.

[74]Kim S, Kim CW, Park M, et al. Identification of candidate genes associated with fertility restoration of cytoplasmic male-sterility in onion (Allium cepa L.) using a combination of bulked segregant analysis and RNA-seq[J]. Theoretical and Applied Genetics, 2015, 128(11): 2289-2299.

[75]Kurlovs AH, Snoeck S, Kosterlitz O, et al. Trait mapping in diverse arthropods by bulked segregant analysis[J]. Current Opinion in Insect Science, 2019, 36: 57-65.

[76]Kweku M, Kweku S. Molecular and evolutionary genetics of Anopheles gambiae s.l, a malaria vector in Africa[D]. The University of Liverpool, 2008

[77]Lee SST, Scott JG. Tissue distribution of microsomal cytochrome P-450 monooxygenases and their inducibility by phenobarbital in house fly, Musca domestica L[J]. Insect Biochemistry and MolecularBiology, 1992, 22(7): 699-711.

[78]Leeuwen TV, Stillatus V, Tirry L. Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae)[J]. Experimental and Applied Acarology, 2004, 32(4): 249-261.

[79]Leeuwen TV, Demaeght P, Osborne EJ, et al. Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(12): 4407-4412.

[80]Li RJ, Wang KY, Xia XM. Resistance selection by meilingmycin and chlorfenapyr and activity changes of detoxitated enzymes in Tetranychus urticae[J]. Journal of Plant Protection, 2005, 32(3): 309-313.

[81]Lilly DG, Latham SL, Webb CE, et al. Cuticle Thickening in a Pyrethroid-Resistant Strain of the Common Bed Bug, Cimex lectularius L. (Hemiptera: Cimicidae)[J]. Plos One, 2016, 11(4): e0153302.

[82]Lin C, Yeh S, Feng H, et al. Inheritance and stability of mevinphos-resistance in Plutella xylostella (L.), with special reference to mutations of acetylcholinesterase 1[J]. Pesticide Biochemistry and Physiology, 2017, 141: 65-70.

[83]Lin Y, Jin T, Zeng L, et al. Cuticular penetration of β-cypermethrin in insecticide-susceptible and resistant strains of Bactrocera dorsalis[J]. Pesticide Biochemistry and Physiology, 2012, 103(3): 189-193.

[84]Liu N, Xu Q, Li T, et al. Permethrin Resistance and Target Site Insensitivity in the Mosquito Culex quinquefasciatus in Alabama[J]. Journal of Medical Entomology, 2009, 46(6): 1424-1429.

[85]Liu NN. Insecticide Resistance in Mosquitoes: Impact, Mechanisms, and Research Directions[J]. Annual Review of Entomology, 2015, 60: 537-559.

[86]Liu S, Wang X, Guo S, et al. Seasonal abundance of the parasitoid complex associated with the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) in Hangzhou, China[J]. Bulletin of Entomological Research, 2000, 90(3): 221-231.

[87]Liu X, Wang HY, Ning YB, et al. Resistance Selection and Characterization of Chlorantraniliprole Resistance in Plutella xylostella (Lepidoptera: Plutellidae)[J]. Journal of Economic Entomology, 2015, 108(4): 1978-1985.

[88]Liu YB, Tabashnik BE. Visual determination of sex of diamondback moth larvae[J]. Canadian Entomologist, 1997, 129(3): 585-586.

[89]Lumjuan N, Mccarroll L, Prapanthadara LA , et al. Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti.[J]. Insect Biochemistry and Molecular Biology, 2005, 35(8): 861-871.

[90]Marak RM, Firake DM, Sontakke PP, et al. Mode of inheritance of Indoxacarb resistance in diamondback moth, Plutella xylostella (L.) and cross resistance to different groups of pesticides[J]. Phytoparasitica, 2017, 45(4): 549-558.

[91]Markussen MDK, Kristensen M. Low expression of nicotinic acetylcholine receptor subunit Mdα2 in neonicotinoid-resistant strains of Musca domestica L.[J]. Pest Management Science, 2010, 66(11): 1257-1262.

[92]Martinez SA, Shorinola O, Conselman S, et al. Exome sequencing of bulked segregants identified a novel TaMKK3-A allele linked to the wheat ERA8 ABA-hypersensitive germination phenotype[J]. Theoretical and Applied Genetics, 2020, 133(3): 719-736.

[93]Martins AJ , Valle D, The Pyrethroid Knockdown Resistance[M]. Insecticides-Basic and Other Applications, 2012, 17-38

[94]Ma Z, Li J, Zhang Y, et al. Inheritance mode and mechanisms of resistance to imidacloprid in the house fly Musca domestica (Diptera: Muscidae) from China[J]. PLoS One, 2017, 12(12): e0189343.

[95]Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(21): 9828-9832.

[96]Mitra A, Chatterjee C, Mandal FB. Synthetic Chemical Pesticides and Their Effects on Birds[J]. Research Journal of Environmental Toxicology, 2011, 5(2): 81-96.

[97]Naeem A, Freed S, Jin FL, et al. Monitoring of insecticide resistance in Diaphorina citri Kuwayama (Hemiptera: Psyllidae) from citrus groves of Punjab, Pakistan[J]. Crop Protection, 2016, 86: 62-68.

[98]Nauen R, Steinbach D, Lummen P, et al. Geographic spread, genetics and functional characteristics of ryanodine receptor based target-site resistance to diamide insecticides in diamondback moth, Plutella xylostella[J]. Insect Biochemistry and Molecular Biology, 2015, 63: 14-22.

[99]Neto JEL, Ribeiro LMD, de Siqueira HAA. Inheritance and Fitness of Plutella xylostella (Lepidoptera: Plutellidae) Resistance to Chlorfenapyr[J]. Journal of Economic Entomology, 2021, 114(2): 875-884.

[100]Neto JEL, Siqueira HAA. Selection of Plutella xylostella (L.) (Lepidoptera: Plutella) to Chlorfenapyr Resistance: Heritability and the number of genes involved[J]. Revista Caatinga, 2017, 30(4): 1067-1072.

[101]Neto JEL, Amaral MHP, Siqueira HAA, et al. Resistance monitoring of Plutella xylostella (L.) (Lepidoptera: Plutellidae) to risk-reduced insecticides and cross resistance to spinetoram[J]. Phytoparasitica, 2016, 44(5): 631-640.

[102]Nicastro RL, Sato ME, Arthur V, et al. Chlorfenapyr resistance in the spider mite Tetranychus urticae: stability, cross-resistance and monitoring of resistance[J]. Phytoparasitica, 2013, 41(5): 503-513.

[103]Park Y, González-Martínez RM, Navarro-Cerrillo G, et al. ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis[J]. Bmc Biology, 2014, 12(1): 1-15.

[104]Perry T, Batterham P, Daborn PJ. The biology of insecticidal activity and resistance[J]. Insect Biochemistry and Molecular Biology, 2011, 41(7): 411-422.

[105]Peterson C. Book review—The Toxicology and Biochemistry of Insecticides[J]. American Entomologist, 2011, 57: 117-118.

[106]Philippou D, Field L, Moores G, et al. Metabolic enzyme(s) confer imidacloprid resistance in a clone of Myzus persicae (Sulzer) (Hemiptera: Aphididae) from Greece[J]. Pest Management Science, 2010, 66(4): 390-395.

[107]Pool JE. Genetic Mapping by Bulk Segregant Analysis in Drosophila: Experimental Design and Simulation-Based Inference[J]. Genetics, 2016, 204(3): 1295-1306.

[108]Pu X, Yang YH, Wu SW, et al. Characterisation of abamectin resistance in a field-evolved multiresistant population of Plutella xylostella[J]. Pest Management Science, 2010, 66(4): 371-378.

[109]Puinean AM, Foster SP, Oliphant L, et al. Amplification of a Cytochrome P450 Gene is Associated with Resistance to Neonicotinoid Insecticides in the Aphid Myzus persicae[J]. PLOS Genetics, 2010, 6(6): e1000999.

[110]Qayyum MA, Wakil W, Arif MJ, et al. Multiple Resistances Against Formulated Organophosphates, Pyrethroids, and Newer-Chemistry Insecticides in Populations of Helicoverpa armigera (Lepidoptera: Noctuidae) from Pakistan[J]. Journal of Economic Entomology, 2015, 108(1): 286-293.

[111]Raghavendra K, Barik TK, Sharma P, et al. Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant malaria vectors[J]. Malaria Journal, 2011, 10(1): 1-7.

[112]Remnant EJ, Morton CJ, Daborn PJ, et al. The role of Rdl in resistance to phenylpyrazoles in Drosophila melanogaster[J]. Insect Biochemistry and Molecular Biology, 2014, 54: 11-21.

[113]Rinkevich FD, Su C, Lazo TA, et al. Multiple evolutionary origins of knockdown resistance (kdr) in pyrethroid-resistant Colorado potato beetle, Leptinotarsa decemlineata[J]. Pesticide Biochemistry and Physiology, 2012, 104(3): 192-200.

[114]Rivi M, Monti V, Mazzoni E, et al. A1-3 chromosomal translocations in Italian populations of the peach potato aphid Myzus persicae (Sulzer) not linked to esterase-based insecticide resistance[J]. Bulletin of Entomological Research, 2013, 103(3): 278-285.

[115]Sandur S. Implications of diamondback moth control for Indian farmers[J]. Consultant report for the centre for environmental stress and adaptation research. La Trobe University, Victoria, Australia, 2004, 31:20-28

[116]Sayani Z, Mikani A, Mosallanejad H. Biochemical resistance mechanisms to fenvalerate in Plutella xylostella (Lepidoptera: Plutellidae)[J]. Journal of Economic Entomology, 2019, 112(3): 1372-1377.

[117]Sayyed AH, Gatsi R, Ibiza-Palacios MS, et al. Common, but Complex, Mode of Resistance of Plutella xylostella to Bacillus thuringiensis Toxins Cry1Ab and Cry1Ac[J]. Applied and Environmental Microbiology, 2005, 71(11): 6863-6869.

[118]Sayyed AH, Moores G, Crickmore N, et al. Cross‐resistance between a Bacillus thuringiensis Cry toxin and non‐Bt insecticides in the diamondback moth[J]. Pest Management Science, 2008, 64(8): 813-819.

[119]Sayyed AH, Wright DJ. Genetics and evidence for an esterase-associated mechanism of resistance to indoxacarb in a field population of diamondback moth (Lepidoptera: Plutellidae)[J]. Pest Management Science, 2006, 62(11): 1045-1051.

[120]Shang CC, Soderlund DM. Monooxygenase activity of tobacco budworm (Heliothis virescens F.) larvae: tissue distribution and optimal assay conditions for the gut activity[J]. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1984, 79(3): 407-411.

[121]Shen J, Li D, Zhang S, et al. Fitness and inheritance of metaflumizone resistance in Plutella xylostella[J]. Pesticide Biochemistry and Physiology, 2017, 139: 53-59.

[122]Silva AX, Bacigalupe LD, Luna-Rudloff M, et al. Insecticide Resistance Mechanisms in the Green Peach Aphid Myzus persicae (Hemiptera: Aphididae) II: Costs and Benefits[J]. PLoS ONE, 2012, 7(6): e36810.

[123]Snoeck S, Kurlovs AH, Bajda S, et al. High-resolution QTL mapping in Tetranychus urticae reveals acaricide-specific responses and common target-site resistance after selection by different METI-I acaricides[J]. Insect Biochemistry and Molecular Biology, 2019, 110: 19-33.

[124]Sonoda S, Tsumuki H. Studies on glutathione S-transferase gene involved in chlorfluazuron resistance of the diamondback moth, Plutella xylostella L.(Lepidoptera: Yponomeutidae)[J]. Pesticide Biochemistry and Physiology, 2005, 82(1): 94-101.

[125]Srinivasan R, Shelton AM, Collins HL. Management of the Diamondback Moth and Other Crucifer Insect Pests[C]. Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests, 2011, 21(3): 67-75.

[126]Stone BF. A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals[J]. Bulletin of the World Health Organization, 1968, 38(2): 325-326.

[127]Tabashnik BE, Schwartz JM, Finson N, et al. Inheritance of Resistance to Bacillus thuringiensis in Diamondback Moth (Lepidoptera: Plutellidae)[J]. Journal of Economic Entomology, 1992, 85(4): 1046-1055.

[128]Tao Y, Gutteridge S, Benner EA, et al. Identification of a critical region in the Drosophila ryanodine receptor that confers sensitivity to diamide insecticides[J]. Insect Biochemistry and Molecular Biology, 2013, 43(9): 820-828.

[129]Troczka B, Zimmer CT, Elias J, et al. Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor[J]. Insect Biochemistry and Molecular Biology, 2012, 42(11): 873-880.

[130]Tsukamoto M. The Log Dosage-Probit Mortality Curve in Genetic Researches of Insect Resistance to Insecticides[J]. Insect-Resistant Science, 1963, 28(4):91-98.

[131]Uesugi R, Goka K, Osakabe M. Genetic Basis of Resistances to Chlorfenapyr and Etoxazole in the Two-Spotted Spider Mite (Acari: Tetranychidae)[J]. Journal of Economic Entomology, 2002, 95(6): 1267-1274.

[132]Ullah S, Shad SA. Toxicity of insecticides, cross-resistance and stability of chlorfenapyr resistance in different strains of Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae)[J]. Crop Protection, 2017, 99: 132-136.

[133]Ullah S, Shah RM, Shad SA. Genetics, realized heritability and possible mechanism of chlorfenapyr resistance in Oxycarenus hyalinipennis (Lygaeidae: Hemiptera)[J]. Pesticide Biochemistry and Physiology, 2016, 133: 91-96.

[134]Vannini L, Reed TW, Willis JH. Temporal and spatial expression of cuticular proteins of Anopheles gambiae implicated in insecticide resistance or differentiation of M/S incipient species[J]. Parasites & Vectors, 2014, 7(1): 1-11.

[135]Wakeling EN, Neal AP, Atchison WD. Pyrethroids and their effects on ion channels[J]. Pesticides-Advances in Chemical and Botanical Pesticides; InTech: Rijeka, Croatia, 2012: 39-66.

[136]Wang XL, Khakame SK, Ye C, et al. Characterisation of field-evolved resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella, from China[J]. Pest Management Science, 2013, 69(5): 661-665.

[137]Wang XL, Wang J, Cao XW, et al. Long‐term monitoring and characterization of resistance to chlorfenapyr in Plutella xylostella (Lepidoptera: Plutellidae) from China[J]. Pest Management Science, 2019, 75(3): 591-597.

[138]Wang X, Wang R, Yang Y, et al. A point mutation in the glutamate‐gated chloride channel of Plutella xylostella is associated with resistance to abamectin[J]. Insect Molecular Biology, 2016, 25(2): 116-125.

[139]Wang XL, Wu YD. High Levels of Resistance to Chlorantraniliprole Evolved in Field Populations of Plutella xylostella[J]. Journal of Economic Entomology, 2012, 105(3): 1019-1023.

[140]Wang XL, Wu SW, Gao WY, et al. Dominant Inheritance of Field-Evolved Resistance to Fipronil in Plutella xylostella (Lepidoptera: Plutellidae)[J]. Journal of Economic Entomology, 2016, 109(1): 334-338.

[141]Whiteford S, Hof A, Krishna R, et al. Recovering individual haplotypes and a contiguous genome assembly from pooled long read sequencing of the diamondback moth (Lepidoptera: Plutellidae) [J]. BioRxiv, 2019: 867-879.

[142]Wybouw N, Kosterlitz O, Kurlovs AH, et al. Long-Term Population Studies Uncover the Genome Structure and Genetic Basis of Xenobiotic and Host Plant Adaptation in the Herbivore Tetranychus urticae[J]. Genetics, 2019, 211(4): 1409-1427.

[143]Xia YM, Lu YH, Shen J, et al. Resistance monitoring for eight insecticides in Plutella xylostella in central China[J]. Crop Protection, 2014, 63: 131-137.

[144]You MS, Ke FS, You SJ, et al. Variation among 532 genomes unveils the origin and evolutionary history of a global insect herbivore[J]. Nature Communications, 2020, 11(1): 1-8.

[145]Yuan JZ, Li QF, Huang JB, et al. Effect of chlorfenapyr on cypermethrin-resistant Culex pipiens pallens Coq mosquitoes[J]. Acta Tropica, 2015, 143: 13-17.

[146]VanAsperen K. A study of housefly esterases by means of a sensitive colorimetric method[J]. Journal of Insect Physiology, 1962, 8(4): 401-416.

[147]Zhang SZ, Zhang XL, Shen J, et al. Susceptibility of field populations of the diamondback moth, Plutella xylostella, to a selection of insecticides in Central China[J]. Pesticide Biochemistry and Physiology, 2016, 132: 38-46.

[148]Zhou WW, Liang QM, Xu Y, et al. Genomic Insights into the Glutathione S-Transferase Gene Family of Two Rice Planthoppers, Nilaparvata lugens (Stal) and Sogatella furcifera (Horváth) (Hemiptera: Delphacidae)[J]. PLoS ONE, 2013, 8(2): e56604.

[149]Zhu YC, Luttrell R. Altered gene regulation and potential association with metabolic resistance development to imidacloprid in the tarnished plant bug, Lygus lineolaris[J]. Pest Management Science, 2015, 71(1): 40-57.

[150]Zou C, Wang PX, Xu YB. Bulked sample analysis in genetics, genomics and crop improvement[J]. Plant Biotechnology Journal, 2016, 14(10): 1941-1955.

[151]Zuo Y, Shi Y, Zhang F, et al. Genome mapping coupled with CRISPR gene editing reveals a P450 gene confers avermectin resistance in the beet armyworm[J]. PLoS Genetics, 2021, 17(7): e1009680.

中图分类号:

 S435.622.2    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式