中文题名: | 多组学解析根际微生物-宿主互作调控茅苍术栽培性状变异的机制 |
姓名: | |
学号: | 2022104135 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 1008 |
学科名称: | 医学 - 中药学 |
学生类型: | 硕士 |
学位: | 医学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 药用植(动)物栽培养殖理论与技术 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2025-04-10 |
答辩日期: | 2025-05-18 |
外文题名: | Mechanism of Multi-Omics Analysis on Rhizosphere Microbe-Host Interaction Regulating the Variation of Cultivation Traits in Atractylodes lancea. |
中文关键词: | |
外文关键词: | Atractylodes lancea ; Cultivation variation ; Habitat ; Soil microbiome ; Transcriptome-metabolome joint analysis ; Environmental factors |
中文摘要: |
茅苍术(Atractylodes lancea),菊科苍术属多年生草本植物,药用部位为其干燥的根状茎。因其独特的芳香与化湿功效,在疫病防治中广受欢迎,尤其在《新型冠状病毒肺炎诊疗方案(试行第九版)》推荐的方剂中占据关键位置。与野生品种相比,栽培茅苍术形态与品质显著变化:根状茎由疙瘩结节状转为团块状,须根增多变长,断面“朱砂点”减少且色淡。更重要的是,挥发油在栽培品种中主成分及含量均明显下降,种种表明目前的栽培模式未达到“优质、优形”标准。土壤微生态系统对中药植物形态发育和品质形成影响深远。本研究通过整合同质园跨土壤移植实验,以多组学手段,从生长环境和微生物角度深入探究茅苍术栽培变异成因及调控机制。设置土壤灭菌-回接试验,进一步对微生物功能验证,系统揭示了根际微生物组驱动茅苍术栽培性状变异的分子机制。同时,利用16S rRNA和ITS扩增子技术鉴别不同生境下茅苍术根际核心微生物组,并分析关键土壤环境因子对微生物组结构变异的影响。主要研究结果如下: 不同生境和土壤微生物组对茅苍术的根茎代谢物及转录组产生了显著影响。生境切换(野生→栽培)导致根茎萜类代谢物(Germacrone、Atractylenolide I/II)显著下调,而土壤微生物回接可部分恢复野生型代谢特征。植物激素相关化合物α-亚麻酸(α-Linolenic acid)在栽培生境中普遍上调,与茉莉酸信号通路激活相关。基于转录组-代谢组联合分析发现,土壤微生物跨环境移植显著重塑茅苍术根茎次生代谢网络:野生生境土壤移植(N-C组)诱导萜类标志物(Germacrone等)特异性上调,其合成受MVA途径基因(HMGR1、SQE1)正向调控;而栽培土壤微生物组(C-C组)通过抑制MEP通路基因表达,导致Atractylenolide I等药用成分积累减少。 土壤灭菌-回接试验进一步证实,土壤微生物组的改变对茅苍术的生长、品质及土壤酶活性有着显著影响。野生土壤微生物组通过提高土壤酶活性(如蔗糖酶和酸性磷酸酶)以及植物激素(如IAA和GA3)的含量,促进了光合色素的积累以及挥发油成分(如苍术素和β-桉叶醇)的合成。此外,野生微生物滤液可恢复灭菌土壤中IAA和SA的激素平衡,并通过激活蔗糖酶-叶绿素a协同网络,显著提升苍术酮含量(p < 0.01)。 根际微生物组结构联合土壤环境因子分析表明,野生生境高有机碳(62.08 g/kg)与酸性环境(pH 6.26)维持了Chthoniobacter和Bradyrhizobium等寡营养型酸杆菌的功能优势,其丰度与总碳、铵态氮显著正相关(r=0.82);而栽培土壤pH升高(7.99)导致Luteitalea等富营养菌群失衡,进而通过负调控萜类合成基因SS3和FTB,降低药材品质。冗余分析表明,TC和pH是驱动微生物群落重构的关键环境因子。 综上所述,本研究首次构建了“土壤因子-核心微生物群-激素信号-代谢通路”四维调控模型,系统阐明了土壤微生物组与生境因子协同调控茅苍术品质形成的机制,为道地药材的微生物定向培育提供理论依据。 |
外文摘要: |
Atractylodes lancea, a perennial herbaceous plant in the Atractylodes genus of the Asteraceae family, has its dried rhizome as the medicinal part. Renowned for its unique aroma and dampness-resolving properties, it is widely favored in epidemic prevention and treatment, especially playing a pivotal role in the prescriptions recommended in the “Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 9)”. Compared to wild varieties, cultivated Atractylodes lancea exhibits significant changes in morphology and quality: the rhizome transforms from a knotty and nodular form to a massive one, with increased and elongated fibrous roots, and a reduction in both the number and color intensity of the “cinnabar spots” on the cross-section. More importantly, the main components and content of volatile oils in cultivated varieties have notably decreased, indicating that the current cultivation model does not meet the “high-quality, superior form” standard. The soil microecosystem profoundly influences the morphological development and quality formation of medicinal plants. This study integrates the common garden cross-soil transplantation experiment, employing multi-omics approaches to delve into the causes and regulatory mechanisms of cultivation variations in Atractylodes lancea from the perspectives of growth environment and microorganisms. By setting up soil sterilization-reinoculation tests, it further verifies microbial functions, systematically revealing the molecular mechanisms by which the rhizosphere microbiome drives cultivation trait variations in Atractylodes lancea. Simultaneously, the study utilizes 16S rRNA and ITS amplicon technologies to identify the core rhizosphere microbiome of Atractylodes lancea across different habitats and analyzes the impact of key soil environmental factors on microbiome structural variations. The main research contents are as follows: Different habitats and soil microbiomes have significantly influenced the rhizome metabolites and transcriptome of Atractylodes lancea. Habitat switching (wild→cultivated) led to a significant downregulation of rhizome terpenoid metabolites (Germacrone, Atractylenolide I/II), while soil microbial reintroduction partially restored the wild-type metabolic characteristics. The plant hormone-related compound α-Linolenic acid was generally upregulated in the cultivated habitat, which is associated with the activation of the jasmonic acid signaling pathway. Transcriptome-metabolome integrated analysis revealed that soil microbial transplantation across environments significantly reshapes the secondary metabolic network in Atractylodes lancea rhizomes: Wild habitat soil transplantation (N-C group) induced specific upregulation of terpenoid markers (e.g., Germacrone), whose synthesis was positively regulated by MVA pathway genes (HMGR1, SQE1); whereas the cultivated soil microbiome (C-C group) led to reduced accumulation of medicinal components such as Atractylenolide I by suppressing MEP pathway gene expression. The soil sterilization-reinoculation experiment further confirmed that alterations in the soil microbiome significantly impact the growth, quality, and soil enzyme activities of Atractylodes lancea. The wild soil microbiome promoted the accumulation of photosynthetic pigments and the synthesis of volatile oil components, such as atractylodin and β-eudesmol, by enhancing soil enzyme activities (e.g., sucrase and acid phosphatase) and the levels of plant hormones (e.g., IAA and GA3). Additionally, the wild microbial filtrate restored the hormonal balance of IAA and SA in sterilized soil and significantly increased the content of atractylone (p < 0.01) by activating the sucrase-chlorophyll a synergistic network. The analysis of rhizosphere microbiome structure in conjunction with soil environmental factors revealed that the high organic carbon content (62.08 g/kg) and acidic environment (pH 6.26) in wild habitats maintained the functional dominance of oligotrophic acidobacteria such as Chthoniobacter and Bradyrhizobium, whose abundance was significantly positively correlated with total carbon and ammonium nitrogen (r=0.82). In contrast, the increased pH (7.99) in cultivated soils led to an imbalance of eutrophic bacterial communities such as Luteitalea, which subsequently reduced the quality of medicinal materials by negatively regulating the terpene synthesis genes SS3 and FTB. Redundancy analysis indicated that TC and pH were the key environmental factors driving the reconstruction of microbial communities. In summary, this study has, for the first time, constructed a four-dimensional regulatory model encompassing “soil factors-core microbiota-hormone signaling-metabolic pathways”. It systematically elucidates the mechanism by which the soil microbiome and habitat factors collaboratively regulate the quality formation of Atractylodes lancea, providing a theoretical basis for the microbial-directed cultivation of authentic medicinal herbs. |
参考文献: |
[1] 鲍士旦. 土壤农化分析[M]. 中国农业出版社, 2000. [2] 曹令森, 陈飞, 戴传超. 茅苍术与内生菌互作信号对其活性成分的影响[J]. 农业环境科学学报, 2022, 41(12): 2831-2839. [3] 曹敏, 胡开治, 刘燕琴, 等. 高通量测序分析重庆地区茅苍术根际丛枝菌根真菌多样性[J]. 微生物学通报, 2020, 47(09): 2877-2886. [4] 曾虹燕, K. Saxena Praveen. 赤霉素GA3调节黄芩组织培养中芽和根的形成(英文)[J]. 广西植物, 2008, 28(03): 373-378. [5] 常卫东. 间作玉米和谷子对丹参产量和品质的影响[D]. 山东农业大学, 2023. [6] 常小箭, 张星, 段志龙, 等. 鼠茅草间作对猕猴桃园土壤理化性质及微生物含量的影响[J]. 果树资源学报, 2025, 6(02): 29-34. [7] 陈晓芳, 胡天骥, 张翔宇, 等. 贵州不同生境半夏内生和根际菌群多样性及其与环境因子的相关性[J]. 福建农业学报, 2024, 39(07): 826-838. [8] 陈艳, 黄娜, 陈娟. 细胞分裂素对吊兰根生长和负向光性的影响[J]. 生态科学, 2011, 30(01): 51-54. [9] 崔华蕾, 郭欢欢, 杨丽晓, 等. 二倍体及多倍体白榆叶片形态与光合特性分析[J]. 黑龙江农业科学, 2023, 45(03): 68-72. [10] 邓顺超, 王小东. 引种栽培中药材应注意品种和变异问题[J]. 中医药导报, 2005, 12(12): 64-83. [11] 方静, 赵小庆, 史功赋, 等. 农作物根际微生物的研究进展[J]. 北方农业学报, 2019, 47(04): 102-107. [12] 房翠萍, 王维婷, 王志芬, 等. 植物激素对丹参毛状根生长和丹参酮生物合成的影响[J]. 中药材, 2011, 34(05): 661-664. [13] 高伟, 郭淑贞, 韩立炜, 等. 近3年国家自然科学基金中药资源学科资助与结题项目情况分析[J]. 中国中药杂志, 2016, 41(19): 3696-3701. [14] 龚明霞, 王日升, 何龙飞, 等. 超高效液相色谱-三重四级杆串联质谱法同时测定植物组织中多种激素[J]. 分析科学学报, 2016, 32(06): 789-794. [15] 关松荫. 土壤酶及其研究法[M]. 农业出版社, 1986. [16] 郭超. 西南喀斯特石漠化生态系统土壤酶活性及其化学计量特征对植被修复的响应[D]. 贵州师范大学, 2022. [17] 郭兰萍, 黄璐琦, 邵爱娟, 等. 苍术根际区土壤养分变化规律[J]. 中国中药杂志, 2005b, 51(19): 28-31. [18] 郭兰萍, 黄璐琦, 阎洪, 等. 基于地理信息系统的苍术道地药材气候生态特征研究[J]. 中国中药杂志, 2005a, 51(08): 565-569. [19] 郭兰萍, 汪洪钢, 黄璐琦, 等. 泡囊丛枝菌根(AM)对苍术生长发育及挥发油成分的影响[J]. 中国中药杂志, 2006, 52(18): 1491-1496. [20] 郭世荣. 无土栽培学[M]. 中国农业出版社, 2003. [21] 韩建勋, 李婷, 付萌, 等. 不同产地野生型与栽培型甘草代谢组分比较及定量分析[J]. 中药与临床, 2022, 13(05): 1-6. [22] 何冬梅, 王海, 陈金龙, 等. 中药微生态与中药道地性[J]. 中国中药杂志, 2020, 66(02): 290-302. [23] 何含杰, 黄小西, 张党权, 等. 细胞分裂素6-BA对三裂叶野葛毛状根生长和抗氧化酶活性的影响[J]. 北方园艺, 2016, 40(14): 156-159. [24] 何贤彪, 项玉英, 何道根, 等. 激素水平对菊花插穗生根速度的影响[J]. 浙江农业科学, 2011, 53(03): 536-538. [25] 黄璐琦等. 中国珍稀濒危药用植物资源调查[M]. 上海科学技术出版社, 2012. [26] 江曙, 钱大玮, 段金廒, 等. 植物内生菌与道地药材的相关性研究[J]. 中草药, 2008,39(08):1268-1272. [27] 康凯丽, 王朴, 梁玉婷, 等. 不同有机废弃物作为栽培基质的可行性分析[J]. 安徽农业科学, 2022, 50(19): 99-101. [28] 兰晓燕, 田春芳, 詹志来, 等. 基于传统品质评价的野生与栽培潞党参比较[J]. 中国实验方剂学杂志, 2024, 30(14): 156-164. [29] 李冰圳. 不同耕作及管理方式对黄芪根际微生物群落的影响及其缓解连作障碍机制研究[D]. 内蒙古大学, 2023. [30] 李峰卿, 刘素贞, 罗桂生, 等. 不同生境沙氏鹿茸草根际土壤细菌群落结构和多样性分析[J]. 林业科学, 2025, 61(01): 47-56. [31] 李凤. 遗传和环境对黄芩药材产量和质量的影响及其机制研究[D]. 北京中医药大学, 2011. [32] 李京生, 付万敏. 中药材栽培品的性状变异与野生药材的性状区别[J]. 首都医药, 2012, 19(15): 41-42. [33] 李苗苗. 鸡血藤野生资源调查及其品质与自然生态因子相关性研究[D]. 广州中医药大学, 2017. [34] 李若楚, 徐剑莹, 李铁华, 等. 不同密度对长周期经营杉木林生长、土壤理化性质和微生物的影响[J]. 中南林业科技大学学报, 2025, 45(02): 165-174. [35] 李双鸽, 赵亚臣, 李慧, 等. 野生和栽培宽叶山蒿生长和叶片品质的比较研究[J]. 中国中药杂志, 2023, 48(14): 3722-3729. [36] 李双江, 陈默, 谢海弘, 等. 木薯-辣椒间作模式对木薯生长、产量、品质及土壤酶活性的影响[J]. 热带作物学报, 2024, 45(11): 2344-2353. [37] 李雪. 乙烯促进钩藤生物碱合成的机制研究[D]. 贵州大学, 2022. [38] 李阳, 孙畅, 武文超, 等. 微生物提升人参属药用植物品质的应用前景[J]. 北方园艺, 2025, 49(03): 121-128. [39] 刘芳, 汪航飞, 蒲春燕, 等. 不同施肥对葡萄苗根际微生物量、土壤酶活性和生理的影响[J]. 四川农业大学学报, 2023, 41(02): 318-324. [40] 刘晖, 郭清毅, 寇明红, 等. 半夏间作生姜对产量、土壤酶活性和根际微生物群落结构的影响[J]. 微生物学通报, 2025, 52(04): 1600-1616. [41] 刘嘉灏. 不同产地滇黄精品质与生态因子和根际微生物相关性研究[D]. 大理大学, 2023. [42] 刘娟娟, 郑娇, 高成林, 等. 苹果内生促生真菌筛选及其促生特性[J]. 果树学报, 2023, 40(04): 735-746. [43] 刘兰英, 黄薇, 李莹, 等. 长期施用沼液对槟榔芋土壤细菌群落结构和多样性的影响[J]. 农业生物技术学报, 2022, 30(01): 125-137. [44] 刘天睿, 金艳, 孟虎彪, 等. 论中药“辨状论质”之辨色泽与品质评价的生物学内涵研究[J]. 中国中药杂志, 2020, 45(19): 4545-4554. [45] 刘云翔, 王亚鹏, 康利平, 等. 基于传统品质评价的野生与栽培北柴胡比较[J]. 中国实验方剂学杂志, 2024, 30(14): 145-155. [46] 鲁守平, 隋新霞, 孙群, 等. 药用植物次生代谢的生物学作用及生态环境因子的影响[J]. 天然产物研究与开发, 2006, 18(06): 1027-1032. [47] 路岳衡, 耿贵工, 王路昊, 等. 青藏高原不同分布区独一味根际土壤理化性质和微生物群落特征[J]. 草业科学, 2025, 42(03): 561-576. [48] 吕柏辰, 孙海, 钱佳奇, 等. 药用植物根系分泌物与根际微生物相互作用及其在中药材生态种植中的应用[J]. 中国中药杂志, 2024, 49(08): 2128-2137. [49] 马昭, 唐承晨, 张纯, 等. 内生菌与宿主植物关系对中药材道地性研究的启示[J]. 上海中医药大学学报, 2015, 29(06): 4-11. [50] 欧阳月, 张志锋. 宏基因组技术在中药材质量研究中的应用现状[J]. 中国中药杂志, 2022, 47(23): 6271-6277. [51] 齐香君, 郭乐康. 外源激素对黄芩毛状根生长及黄芩苷合成的影响[J]. 陕西科技大学学报(自然科学版), 2009, 27(02): 48-50. [52] 申建波, 白洋, 韦中, 等. 根际生命共同体:协调资源、环境和粮食安全的学术思路与交叉创新[J]. 土壤学报, 2021, 58(04): 805-813. [53] 盛东峰, 张永亮. 脱落酸处理对丹参毛状根中丹参酮积累的影响[J]. 中药材, 2013, 36(03): 354-358. [54] 史帧婷, 杨梅玲, 周亚荣, 等. 人参根际微生态研究进展[J]. 中国微生态学杂志, 2024, 36(08): 974-979. [55] 苏海兰, 郑梅霞, 江保东, 等. 栽培与野生七叶一枝花土壤微生物多样性研究[J]. 福建农业学报, 2024, 39(08): 993-1005. [56] 孙彩丽, 王艺伟, 王从军, 等. 喀斯特山区土地利用方式转变对土壤酶活性及其化学计量特征的影响[J]. 生态学报, 2021, 41(10): 4140-4149. [57] 孙代芹. 不同林下生境对食用百合生长发育及产量和品质的影响[D]. 江西农业大学, 2023. [58] 孙金. 氮磷钾肥料配施对北苍术生长及药材质量形成的影响和机制研究[D]. 长春中医药大学, 2021. [59] 孙晓红, 徐增鑫, 鲍双双, 等. 基于土壤微生物群落结构的参地土壤改良研究进展[J]. 北华大学学报(自然科学版), 2024, 25(04): 442-447. [60] 田春芳, 胡倩南, 詹志来, 等. 基于传统品质评价的野生与栽培赤芍比较[J]. 中国实验方剂学杂志, 2024, 30(14): 165-174. [61] 田晓黎, 江丽洁, 崔琦, 等. 不同激素诱导对华重楼皂苷合成关键酶基因表达的影响[J]. 浙江农业科学, 2023, 64(04): 856-863. [62] 万倩芸, 张秀桥, 余坤, 等. 扁茎变异茅苍术植原体的分子检测及鉴定[J]. 分子植物育种, 2020, 18(08): 2657-2662. [63] 王春根, 朱耕新, 吕晔. 茅苍术野生品与栽培品含油率分析研究[J]. 南京中医药大学学报, 1996, 38(06): 33-34. [64] 王红阳, 蒋待泉, 康传志, 等. 药用植物苍术内生菌的研究进展及展望[J]. 中国中药杂志, 2021, 46(19): 4930-4935. [65] 王俊杰. 青海不同生境铁棒锤抗炎成分与生态因子相关性研究[D]. 青海师范大学, 2022. [66] 王琳, 胡凯基, 及华, 等. 微生物菌剂对金银花生长和品质的调控[J]. 农业环境科学学报, 2022, 41(12): 2817-2823. [67] 韦兰英, 曾春阳, 杨小兰, 等. 不同生境下剑叶耳草叶片功能性状及其可塑性对植物生长的影响[J]. 亚热带植物科学, 2024, 53(02): 100-112. [68] 武警, 陈楠楠, 韩梦琳, 等. 茶树根系耐铝促生内生细菌的分离鉴定及其特性研究[J]. 茶叶科学, 2022, 42(05): 610-622. [69] 徐碧林, 彭陈万里, 王邓玥, 等. 5株蕲艾内生细菌的促生因子及其对黄州萝卜的促生效果研究[J]. 江苏农业科学, 2023, 51(08): 203-210. [70] 徐佳. 野生和栽培防风颜色气味与质量的相关性研究[D]. 北京中医药大学, 2014. [71] 徐嘉昕, 肖元明, 王小赟, 等. 微生物菌肥与氮磷肥回补对退化高寒草甸土壤理化性质和酶活性的影响[J]. 植物生态学报, 2025, 49(01): 159-172. [72] 晏宇杭, 饶桦静, 魏担, 等. 细胞分裂素对川牛膝幼苗根生长发育影响的研究[J]. 中药与临床, 2021, 12(03): 4-9. [73] 杨婷婷, 钟可, 郭茜, 等. 种质与环境对金钗石斛药材品质的影响[J]. 安徽农业科学, 2022, 50(09): 163-170. [74] 杨雯, 李文云, 王小柯, 等. 不同栽培模式对从江椪柑根际土壤理化性质和微生物多样性的影响[J]. 西南农业学报, 2025, 38(02): 259-264. [75] 杨逸, 刘哲荣, 秦明森, 等. 不同牧草补播模式对川西草地土壤性状及细菌群落特征的影响[J]. 西华师范大学学报(自然科学版), 2025:1-10. [76] 杨渊. 不同来源白及药材成分及其根际土壤养分与微生物差异比较研究[D]. 贵州大学, 2024. [77] 叶陈辉, 唐海明, 黄玲, 等. 野生与栽培竹节参地下不同部位的质量比较[J]. 中国药学杂志, 2023, 58(10): 925-932. [78] 余彦鸽. 野生丹参质量差异的生态因子分析研究[D]. 浙江理工大学, 2017. [79] 袁媛, 黄璐琦. 道地药材分子生药学研究进展和发展趋势[J]. 科学通报, 2020, 65(12): 1093-1102. [80] 袁媛, 黄璐琦, 崔光红, 等. 赤霉素及其合成抑制剂对丹参酮类活性物质含量的影响[J]. 中国实验方剂学杂志, 2008, 14(06): 1-3. [81] 岳跃冲, 范燕萍. 植物萜类合成酶及其代谢调控的研究进展[J]. 园艺学报, 2011, 38(02): 379-388. [82] 张莉, 王玉鑫, 张艳玲, 等. 不同坡位对土壤特性及茅苍术幼苗长势的影响[J]. 北方园艺, 2019, 43(21): 102-108. [83] 张南平, 肖新月, 林瑞超. 中药材变异对质量标准的影响与对策[J]. 中国药事, 2006, 20(05): 268-271. [84] 张蜀翘. 应重视药用植物的栽培工作[J]. Chinese Science Bulletin, 1955, 6(2): 86. [85] 张万儒等. 森林土壤定位研究方法[M]. 中国林业出版社, 1986. [86] 张肖宁. 乙烯和茉莉酸甲酯对长春花次生代谢调控和抗癌特性的对比研究[D]. 沈阳药科大学, 2018. [87] 赵广琦, 杜增平. 不同海拔高度与不同株龄和月份对黄连质量和产量的影响[J]. 中草药, 2002, 33(12): 66-68. [88] 甄梦缘, 王丽芝, 孙超. 脱落酸及其调控植物次生代谢产物生物合成的研究进展[J]. 天津中医药大学学报, 2024, 43(03): 259-267. [89] 周冬宇, 李杨, 邢咏梅, 等. 药用植物微生物组及其与药用植物次生代谢产物的关系[J]. 微生物学通报, 2022, 49(09): 3989-4003. [90] 周倩耘, 丁家宜, 刘峻, 等. 油菜素内酯对西洋参毛状根的生长和皂甙含量的影响[J]. 植物生理学通讯, 2003a, 53(03): 193-196. [91] 周倩耘, 丁家宜, 刘峻, 等. 植物激素对人参毛状根生长和皂甙含量的影响[J]. 植物资源与环境学报, 2003b, 12(01): 26-28. [92] 周应群. 遗传与环境因子对甘草生长及药材质量的影响研究[D]. 中国协和医科大学, 2010. [93] Chen C, Zhang X, Yue M. Spatial multi-omics in medicinal plants: From biosynthesis pathways to industrial applications[J]. Trends Plant Sci, 2024, 29(5): 510-513. [94] Hong G, Xue X, Mao Y, et al. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression[J]. Plant Cell, 2012, 24(6): 2635-2648. [95] Ivanisevic J, Want E J. From samples to insights into metabolism: Uncovering biologically relevant information in LC-HRMS metabolomics data[J]. Metabolites, 2019, 9(12). [96] Lichtenthaler H K. The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants[J]. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50 :47-65. [97] Lv B, Deng H, Wei J, et al. SmJAZs-SmbHLH37/SmERF73-SmSAP4 module mediates jasmonic acid signaling to balance biosynthesis of medicinal metabolites and salt tolerance in Salvia miltiorrhiza[J]. New Phytol, 2024, 244(4): 1450-1466. [98] Rousk J, Brookes P C, Baath E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization[J]. Appl Environ Microbiol, 2009, 75(6): 1589-1596. [99] Vranova E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis[J]. Annu Rev Plant Biol, 2013, 64: 665-700. [100] Al-Dalwi L M S, Al-Bakkar A H A Q. Effect of shading ratio, benzyl adenine and organic fertilizer ( Horti Boost 10) on the content of elements and some chemical compounds of myrtle plants (Myrtus Communis L.)[J]. IOP conference series. Earth and environmental science, 2023, 1158(4): 42043. [101] Bylesjö M, Rantalainen M, Cloarec O, et al. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification[J]. Journal of Chemometrics, 2006, 20(8-10): 341-351. [102] Delaux P, Schornack S. Plant evolution driven by interactions with symbiotic and pathogenic microbes[J]. Science, 2021, 371(6531). [103] Dong C, Shao Q, Ran Q, et al. Interactions of rhizosphere microbiota-environmental factors-pharmacological active ingredients of Eucommia ulmoides[J]. Planta, 2024, 259(3): 59. [104] Dong H, Li M, Jin L, et al. Cool temperature enhances growth, ferulic acid and flavonoid biosynthesis while inhibiting polysaccharide biosynthesis in angelica sinensis[J]. Molecules, 2022, 27(1). [105] Dupont P, Eaton C J, Wargent J J, et al. Fungal endophyte infection of ryegrass reprograms host metabolism and alters development[J]. New Phytol, 2015, 208(4): 1227-1240. [106] Finn R D, Coggill P, Eberhardt R Y, et al. The Pfam protein families database: towards a more sustainable future[J]. Nucleic Acids Res, 2016, 44(D1): D279-D285. [107] Flieder M, Buongiorno J, Herbold C W, et al. Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling[J]. The ISME Journal, 2021, 15(11): 3159-3180. [108] Gorpenchenko T Y, Sidorenko M L, Kim A V, et al. Changes in the composition and properties of cultured bacterial strains of ginseng rhizosphere according to soil characteristics in the forest and plots: Agronomy[Z]. 2024: 14. [109] Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol, 2011, 29(7): 644-652. [110] Grove S, Saarman N P, Gilbert G S, et al. Ectomycorrhizas and tree seedling establishment are strongly influenced by forest edge proximity but not soil inoculum[J]. Ecological Applications, 2019, 29(3): e1867. [111] Gu Y, Dong K, Geisen S, et al. The effect of microbial inoculant origin on the rhizosphere bacterial community composition and plant growth-promotion[J]. Plant and Soil, 2020, 452(1): 105-117. [112] Handakumbura P P, Rivas Ubach A, Battu A K. Visualizing the hidden half: Plant-microbe interactions in the rhizosphere[J]. mSystems, 2021, 6(5): e76521. [113] Hao J, Li Y, Ge Y. Harnessing the plant microbiome for environmental sustainability: From ecological foundations to novel applications[J]. Sci Total Environ, 2024, 951: 175766. [114] He C, Meng D, Li W, et al. Dynamics of endophytic fungal communities associated with cultivated medicinal plants in farmland ecosystem[J]. J Fungi (Basel), 2023, 9(12). [115] Hu L, Wu Z, Robert C A M, et al. Soil chemistry determines whether defensive plant secondary metabolites promote or suppress herbivore growth[J]. bioRxiv, 2021: 2021-2025. [116] Huang W, Long C, Lam E. Roles of plant-associated microbiota in traditional herbal medicine[J]. Trends Plant Sci, 2018, 23(7): 559-562. [117] Jeong D, Yun Y, Son H, et al. Correlation analysis of soil microbial communities and physicochemical properties with growth characteristics of sageretia thea across different habitats: Plants[Z]. 2024: 13. [118] Jiang J, Yu M, Hou R, et al. Changes in the soil microbial community are associated with the occurrence of Panax quinquefolius L. root rot diseases[J]. Plant and Soil, 2019, 438(1): 143-156. [119] Jiang Y, Wu Y, Hu N, et al. Interactions of bacterial-feeding nematodes and indole-3-acetic acid (IAA)-producing bacteria promotes growth of Arabidopsis thaliana by regulating soil auxin status[J]. Applied Soil Ecology, 2020, 147: 103447. [120] Li Y, Xi K, Liu X, et al. Silica nanoparticles promote wheat growth by mediating hormones and sugar metabolism[J]. Journal of Nanobiotechnology, 2023, 21(1): 2. [121] Liu P, Feng W, Yang H, et al. Untargeted metabolomics and functional analyses reveal that the secondary metabolite quinic acid associates with Angelica sinensis flowering[J]. BMC Plant Biology, 2025, 25(1): 72. [122] Liu S, Wang Z, Niu J, et al. Changes in physicochemical properties, enzymatic activities, and the microbial community of soil significantly influence the continuous cropping of Panax quinquefolius L. (American ginseng)[J]. Plant and Soil, 2021, 463(1): 427-446. [123] Liu X, Cong J, Lu H, et al. Community structure and elevational distribution pattern of soil Actinobacteria in alpine grasslands[J]. Acta Ecologica Sinica, 2017, 37(4): 213-218. [124] Liu Y, Shu X, Chen L, et al. Plant commensal type VII secretion system causes iron leakage from roots to promote colonization[J]. Nat Microbiol, 2023b, 8(8): 1434-1449. [125] Liu Y, Singh S K, Pattanaik S, et al. Light regulation of the biosynthesis of phenolics, terpenoids, and alkaloids in plants[J]. Commun Biol, 2023a, 6(1): 1055. [126] Mathur V, Ulanova D. Microbial metabolites beneficial to plant hosts across ecosystems[J]. Microb Ecol, 2023, 86(1): 25-48. [127] Mawarda P C, Le Roux X, Dirk Van Elsas J, et al. Deliberate introduction of invisible invaders: A critical appraisal of the impact of microbial inoculants on soil microbial communities[J]. Soil Biology and Biochemistry, 2020, 148: 107874. [128] Nagegowda D A, Rhodes D, Dudareva N. The role of the methyl-erythritol-phosphate (MEP) pathway in rhythmic emission of volatiles[J]. The Chloroplast: Basics and Application. Springer, Dordrecht, 2010: 139-153. [129] Navarrete A A, Venturini A M, Meyer K M, et al. Differential response of acidobacteria subgroups to forest-to-pasture conversion and their biogeographic patterns in the western brazilian amazon[J]. Front Microbiol, 2015, 6: 1443. [130] Pang Z, Chen J, Wang T, et al. Linking plant secondary metabolites and plant microbiomes: A review[J]. Front Plant Sci, 2021, 12: 621276. [131] Peng Z, Guo X, Xiang Z, et al. Maize intercropping enriches plant growth-promoting rhizobacteria and promotes both the growth and volatile oil concentration of Atractylodes lancea[J]. Front Plant Sci, 2022, 13: 1029722. [132] Robinson M D, McCarthy D J, Smyth G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1): 139-140. [133] Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation[J]. Genome Biology, 2011, 12(6): R60. [134] Shah S, Chand K, Rekadwad B, et al. A prospectus of plant growth promoting endophytic bacterium from orchid (Vanda cristata)[J]. BMC Biotechnol, 2021, 21(1): 16. [135] Singh D, Thapa S, Mahawar H, et al. Prospecting potential of endophytes for modulation of biosynthesis of therapeutic bioactive secondary metabolites and plant growth promotion of medicinal and aromatic plants[J]. Antonie van Leeuwenhoek, 2022, 115(6): 699-730. [136] Song P, Liu J, Huang P, et al. Diversity and structural analysis of rhizosphere soil microbial communities in wild and cultivated Rhizoma Atractylodis Macrocephalae and their effects on the accumulation of active components[J]. PeerJ, 2023, 11: e14841. [137] Song Y, Wu P, Li Y, et al. Effect of endophytic fungi on the host plant growth, expression of expansin gene and flavonoid content in Tetrastigma hemsleyanum Diels & Gilg ex Diels[J]. Plant and Soil, 2017, 417(1-2): 393-402. [138] Stojnic S, Orlovic S, Miljkovic D, et al. Intra- and interprovenance variations in leaf morphometric traits in European beech (Fagus sylvatica L.)[J]. Archives of biological sciences, 2016, 68(4): 781-788. [139] Su J, Wang Y, Bai M, et al. Soil conditions and the plant microbiome boost the accumulation of monoterpenes in the fruit of Citrus reticulata 'Chachi'[J]. Microbiome, 2023, 11(1): 61. [140] Tang J, Han Y, Pei L, et al. Comparative analysis of the rhizosphere microbiome and medicinally active ingredients of Atractylodes lancea from different geographical origins[J]. Open Life Sci, 2023, 18(1): 20220769. [141] Wang H, Wang Y, Kang C, et al. Drought stress modifies the community structure of root-associated microbes that improve Atractylodes lancea growth and medicinal compound accumulation[J]. Front Plant Sci, 2022, 13: 1032480. [142] Wang M, Deng J, Duan G, et al. Insights into the impacts of autotoxic allelochemicals from rhizosphere of Atractylodes lancea on soil microenvironments[J]. Front Plant Sci, 2023a, 14: 1136833. [143] Wang Y, Zhang J, Sun J, et al. Insights into the mechanisms of microbiome and metabolome changes mediated by understory interplanting mode in Polygonatum sibiricum[J]. Front Microbiol, 2023b, 17: 1218595. [144] Wang Z, Fu X, Kuramae E E. Insight into farming native microbiome by bioinoculant in soil-plant system[J]. Microbiol Res, 2024,285:127776. [145] Want E J, Masson P, Michopoulos F, et al. Global metabolic profiling of animal and human tissues via UPLC-MS[J]. Nat Protoc, 2013, 8(1): 17-32. [146] Wen J, Zhou L, Liu L, et al. Analysis of the impact of climate change on the distribution and active compound content of the plateau medicinal plant Nardostachys jatamansi (D. Don) DC[J]. Industrial Crops and Products, 2022, 187: 115438. [147] Xu W, Wu F, Wang H, et al. Key soil parameters affecting the survival of Panax notoginseng under continuous cropping[J]. Sci Rep, 2021, 11(1): 5656. [148] Yang B, Feng W, Zhou W, et al. Association between soil physicochemical properties and bacterial community structure in diverse forest ecosystems: Microorganisms[Z]. 2024: 12. [149] Yu J, Bai M, Wang C, et al. Regulation of secondary metabolites accumulation in medicinal plants by rhizospheric and endophytic microorganisms[J]. Medicinal Plant Biology, 2024, 3(1). [150] Yuan Q, Zhang Z, Hu J, et al. Impacts of recent cultivation on genetic diversity pattern of a medicinal plant, Scutellaria baicalensis (Lamiaceae)[J]. BMC Genet, 2010,11: 29. [151] Zhang C, Nie S, Liang J, et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure[J]. Science of The Total Environment, 2016, 557-558: 785-790. [152] Zhang X, Zhang G, Yan Q, et al. Quality variation and salt-alkali-tolerance mechanism of Cynomorium songaricum: Interacting from microbiome-transcriptome-metabolome[J]. Sci Total Environ, 2024, 919: 170801. [153] Zhang Y, Zheng L, Zheng Y, et al. Insight into the assembly of root-associated microbiome in the medicinal plant Polygonum cuspidatum[J]. Industrial Crops and Products, 2020, 145: 112163. [154] Zhang Z, Ding R, Zhang Y, et al. The phenotypic variation mechanisms of Atractylodes lancea post-cultivation revealed by conjoint analysis of rhizomic transcriptome and metabolome[J]. Plant Physiology and Biochemistry, 2023, 203: 108025. [155] Zhao J, Sun C, Shi F, et al. Comparative transcriptome analysis reveals sesquiterpenoid biosynthesis among 1-, 2- and 3-year old Atractylodes chinensis[J]. BMC Plant Biol, 2021, 21(1): 354. [156] Zhou N, Mei C, Zhu X, et al. Research progress of rhizosphere microorganisms in Fritillaria L. medicinal plants[J]. Front Bioeng Biotechnol, 2022, 10: 1054757. |
中图分类号: | R28 |
开放日期: | 2025-06-12 |