- 无标题文档
查看论文信息

中文题名:

 壳寡糖对海盐胁迫下白菜植株生理生化指标的影响    

姓名:

 曾雨琴    

学号:

 2018803202    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 095103    

学科名称:

 农学 - 农业推广 - 农业资源利用    

学生类型:

 硕士    

学位:

 农业硕士    

学校:

 南京农业大学    

院系:

 资源与环境科学学院    

专业:

 资源利用与植物保护(专业学位)    

研究方向:

 农业资源利用与新型肥料    

第一导师姓名:

 隆小华    

第一导师单位:

 南京农业大学    

第二导师姓名:

 朱铖培    

完成日期:

 2020-06-15    

答辩日期:

 2020-06-02    

外文题名:

 Effects of chitosan oligosaccharides on physiological and biochemical indexes of chinese cabbage under sea salt stress    

中文关键词:

 盐碱土 ; 海盐胁迫 ; 壳寡糖 ; 诱导植物抗性    

外文关键词:

 saline soils ; sea salt stress ; chitosan oligosaccharides ; induced plant resistance    

中文摘要:

土壤盐碱化并非是土壤的类型,而是一种土壤动态的退化过程,是在自然与人为因素的影响下土壤发生盐化或碱化,从而形成盐碱土与次生盐碱土,造成土壤板结,保水保肥的能力减弱,渗透性降低,对肥力和水分供给与储存能力下降,从而对农作物与土壤中的微生物会产生严重的危害。我国盐碱土种类多且分布范围广,同时次生盐碱化问题日益严重。因此深入了解植物生长调节剂的作用机制是我国盐碱地区农业产业提质增效和绿色发展的重大产业科技需求。

植物生长调节剂在促进作物增产、增强植物抵抗逆境的能力等方面扮演着重要的角色,广泛运用于农业生产领域中,是作物提高抗病能力与抗逆性的重要手段。本文以白菜作为研究对象,在玻璃温室中用海盐混合培养液进行水培,通过测定分析白菜植株的生物量、根系总根长、渗透调节物质含量、钾钠比等指标,分析壳寡糖对白菜植株在不同海盐浓度胁迫下的影响。主要结果如下:

海盐显著抑制了白菜植株的生长,但在外源施加壳寡糖后白菜植株的生物量增加,丙二醛含量减少,叶绿素含量升高,可溶性糖与可溶性蛋白等渗透调节物质含量上升,白菜植株对钙离子、钾离子的吸收能力增强,钾钠比增加。

综合分析认为,外源根施壳寡糖能够保护植物细胞膜免受氧化损伤,增强植物体内渗透调节能力,促进植物光合作用的进行,从而达到保障植物正常生理机能、增加植物生物量与有机物积累的目的,最终实现诱导植物抵抗盐胁迫的能力增强的目标。

外文摘要:

Soil salinity is in the specific natural conditions of comprehensive influence and irrigation improper operation conditions lead to a kind of soil salinization and alkalization of soil degradation process, the existence and development of saline soils will be fine loose soil particles, the ventilation of the soil permeability and permeability decreased, soil harden and fertility to the fall in the water supply capacity, thus on crops and soil microbes can produce serious harm. There are many kinds of saline-alkali soil in China, and the problem of secondary salinization is becoming more and more serious. Therefore, a thorough understanding of the mechanism of plant growth regulators is a major industrial science and technology requirement for improving the quality and efficiency of agricultural industry and green development in saline-alkali areas of China.

Plant growth regulators play an important role in increasing crop yield and enhancing plant stress resistance. They are widely used in agriculture and are an important means for crops to improve their disease resistance and stress resistance. In this paper, Chinese cabbage was taken as the research object and hydroponics were carried out in a glass greenhouse with sea salt mixed culture medium. The effects of chitosan oligosaccharides on Chinese cabbage under the stress of different sea salt concentrations were analyzed by measuring and analyzing the biomass of Chinese cabbage plants, the total root length, the content of osmotic regulators, the ratio of potassium to sodium and other indicators. The main results are as follows:

Sea salt significantly inhibited the growth of Chinese cabbage plants, but after exogenous application of chitosaccharide, the fresh weight and dry weight of Chinese cabbage plants increased, the content of malondialdehyde decreased, the content of chlorophyll increased, the content of osmotic regulators such as soluble sugars and soluble proteins increased, the absorption capacity of calcium and potassium ions increased, and the ratio of potassium to sodium increased.

According to the comprehensive analysis, chitosan oligosaccharides can protect plant cell membrane from oxidative damage, promote plant photosynthesis, and enhance the osmotic regulation ability of plants, so as to ensure the normal physiological function of plants, promote the accumulation of plant organic matter, increase their biomass, and enhance the ability of plants to resist salt stress.

参考文献:

[1] 柴寿喜,杨宝珠, 王晓燕. 渤海湾西岸滨海盐渍土的盐渍化特征分析[J]. 岩土力学,2008,29,(5):1218-1226.

[2] 陈怀满. 环境土壤学[M]. 北京: 科学出版社,2005: 382-390.

[3] 陈吉宝,赵丽英,景蕊莲. 植物脯氨酸合成酶基因工程研究进展[J]. 生物技术通报,2010,(2): 8-10.

[4] 陈硕,陈珈. 植物中钙依赖蛋白激酶(CDPKs)的结构与功能[J]. 植物学通报,2001,18(02):143-148.

[5] 陈璇,李金耀,马纪. 低温胁迫对春小麦和冬小麦叶片游离脯氨酸质量分数变化的影响 [J]. 新疆农业科学,2007,44(5): 553-556.

[6] 陈云霞. 浅谈植物生长调节剂的应用[J]. 中国林副特产,2004,(3):70-70.

[7] 邓拓,张金龙,冯纪年,王敦. 壳聚糖对低温胁迫下核桃抗冻反应的激发作用[J]. 西北林学院学报,2016,31(01):60-64.

[8] 董合忠,李维江. 植物诱导抗病性及其利用[J]. 莱阳农学院学报. 2001,18(4): 268-273.

[9] 董少鹏,张建诚,范建春,席吉龙,杜克明,沈红星. 苹果花期抗冻剂的研制[J]. 山西果树,2015,(04):1-4.

[10] 杜昱光,白雪芳,赵小明,姜华. 壳寡糖对烟草防御酶活性及同工酶酶谱的影响[J]. 中国生物防治,2002,(02):83-86.

[11] 范志金, 刘秀峰, 刘凤丽, 鲍丽丽, 张永刚. 植物抗病激活剂诱导植物抗病性的研究进展[J]. 植物保护学报, 2005,32(1): 87-92

[12] 傅赟彬,赵小明,杜昱光. β-葡寡糖诱导植物抗病性的研究进展 [J]. 中国生物防治学报. 2011,27(02): 269-275.

[13] 高俊凤. 植物生理学实验指导[M]. 北京:高等教育出版社,2006.

[14] 高夕全. 水杨酸对水稻幼苗硝酸还原酶活性和根系生长的影响[J]. 安徽农业技术师范学院学报,2000(01):13-15.

[15] 戈敢. 盐碱地改良[M]. 北京:水利电力出版社.1987:6-15.

[16] 顾鑫,任翠梅,刘冰,李杰,杨丽,赵践韬.盐碱地整治利用研究[J]. 黑龙江农业科学.2016(04):35-38.

[17] 郭红莲,白雪芳, 杜昱光,李曙光. 氯化镧和三氟乙酸对壳寡糖诱发棉花细胞抗性的影响[J]. 作物学报,2004,(02):183-185.

[18] 黄杏. 外源 ABA 提高甘蔗抗寒性的生理及分子机制研究[D]. 广西大学,2012.

[19] 何文义,蔡玉梅. 盐碱地的治理与利用辽宁工程技术大学学报. 2010,29(增刊):158-160.

[20] 焦蓉,刘好宝,刘贯山,王树林,侯娜,王全贞,刘朝科,冯祥国,胡晓明,靳义荣. 论脯氨酸累积与植物抗渗透胁迫[J]. 中国农学通报,2011,27(7): 216-221.

[21] 江华. 新疆盐渍土成因分析及盐渍土路基病害处理.[J]. 路基工程,2008,(04):215-216.

[22] 姜岩. 盐碱地土壤改良[M]. 吉林:人民出版社,1978:3-19.

[23] 蒋冬花, 郭泽建, 郑重. 隐地蛋白(cryptogein)基因定点突变及其广谱抗病烟草转化植株的获得[J]. 植物生理与分子生物学学报,2002,28(5):399-406.

[24] 匡银近,彭惠娥,叶桂萍,覃彩芹. 壳寡糖提高茄子幼苗抗冷性的效应研究[J]. 北方园艺,2009,(9):14-17.

[25] 郎志红. 盐碱胁迫对植物种子萌发和幼苗生长的影响[D]. 兰州交通大

学,2008.

[26] 黎立群. 盐渍土基础知识[M]. 北京科学出版社,1986.

[27] 李翊华. 盐胁迫下赤霉素对黄瓜种子萌发及幼苗生长的影响[J]. 西北农业学报,2014(09):207-210.

[28] 李冠,欧阳光察. 植物诱导抗病性[J]. 植物生理学通讯,1990,(6): 1-5.

[29] 李璟琦. 寡糖素对黄瓜幼苗抗低温胁迫的影响. 安徽农业科学,2008,(11):4393-4394.

[30] 李艳,赵小明,夏秀英,栾雨时,杜昱光,李凤兰. 壳寡糖对干旱胁迫下油菜光合参数的影响[J]. 作物学报,2008,(02):326-329.

[31] 梁国玲. 羊茅属(Festuca L.)4 种牧草抗旱耐寒性研究与评价[D]. 青海大学,2007.

[32] 刘爱荣,赵可夫. 盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用[J]. 植物生理与分子生物学学报,2005,31(4): 389-395.

[33] 刘幸海,李正名,王宝雷. 具有农业生物活性壳寡糖的研究进展[J]. 农药学学报,2006,(1):1-7.

[34] 刘元召,赵小明,姜华,杜昱光. 寡聚半乳糖醛酸对大豆生长及植保素产生的影响[J]. 山西农业科学,2008,(03): 21-23.

[35] 卢航,赵小明,白雪芳. 寡聚半乳糖醛酸诱导烟草抗烟草花叶病毒研究初探[J]. 植物保护,2008,(03): 12-15.

[36] 陆引罡,钱晓刚,彭义,马国瑞. 壳寡糖油菜种衣剂剂型应用效果研究[J]. 种子学报, 2003,(04):36-37.

[37] 罗庆云,於丙军,刘友良. 大豆苗期耐盐性鉴定指标的检验[J]. 大豆科学,2001,20(03): 177-182.

[38] 罗红艺,赵小明,杜昱光. 壳寡糖对烟草幼苗生长和光合作用及与其相关生理指标的影响[J]. 植物生理学通,2008,(06):1155.

[39] 马新蕾,王玉军,谢胜利,李峰,王讳. 根施甜菜碱对水分胁迫下烟草幼苗光合机构的保护植物[J]. 生理与分子生物学学报,2006,32(04): 465-472

[40] 孟倩,孔祥生,张娜. 不同植物生长调节剂对丹参组培快繁的影响[J]. 北方园艺,2013,(9):102-105.

[41] 孟雪娇,邸昆,李国华. 水杨酸在植物体内的生理作用研究进展[J]. 中国农学通报,2010(15):207-214.

[42] 莫萍丽. 干旱胁迫下叶面喷施乙烯利和水杨酸对提高甘蔗抗旱性的效应[D]. 广西大学,2003.

[43] 沈齐英,吕久琢,潘九堂. 植物激素和植物生长调节剂发展现状[J]. 北京石油化工学院学报,2001,9(1):6-8.

[44] 宋绍宪. 黄河三角洲重盐碱地生态开发模式分析[D]. 中国石油大学,2009.

[45] 孙杰. 两种海藻提取物的化学成分和生物活性的研究及其应用[D]. 中国科学院研究生院(海洋研究所),2006.

[46] 谈心,马欣荣. 赤霉素生物合成途径及其相关研究进展[J]. 应用与环境生物学报,2008(04):571-577

[47] 陶晶. 东北主要杨树抗盐机理及抗性品种选育的研究[D]. 东北林业大学,2002.

[48] 陶龙兴,王嘉,黄效林,俞美玉. 植物生长调节剂在农业中的应用及发展趋势[J]. 浙江农业学报20001,13(5):322-366.

[49] 王宝山,赵可夫. 小麦叶片中 Na、K 提取方法的比较[J]. 植物生理学通讯,1995,31(01) : 50-52.

[50] 王彬. 脱硫废弃物施用对盐碱土壤和植物的影响研究[D]. 宁夏大学,2010.

[51] 王春梅. Na+在拒盐型小花碱茅积盐型霸王逆境适应中的作用研究[M]. 兰州大学,2008.

[52] 王梦雨,王文霞,赵小明,尹恒. 壳寡糖对低温胁迫下小麦幼苗的保护作用及相关代谢产物的影响. 麦类作物学报,2016,36(05):653-658.

[53] 王沛,张金龙,冯纪年,王敦. 喷施壳聚糖对核桃抗冻性的影响[J]. 林业实用技术,2014 (05):40-42.

[54] 王瑞云,王玉国. 钙在植物生理代谢中的作用[J]. 世界农业,2001,6(266):41-43.

[55] 王三根. 植物生长调节剂在蔬菜生产中的应用[M]. 北京:金盾出版社,2003:100-256.

[56] 王松. 褐藻寡糖的制备及诱导烟草抗性研究[D]. 中国海洋大学,2003.

[57] 王玉萍. 水杨酸对盐胁迫下花椰菜种子萌发及幼苗生理特性的影响[J]. 草业学报,2012(01):213-219.

[58] 吴以平,董树刚,韩宗晏. 水杨酸对Nacl胁迫下绿豆和赤豆萌发生长的影响[J]. 植物生理学通讯,2002(02):137-138.

[59] 武维华. 植物生理学[M]. 北京科学出版社,2003: 448-456.

[60] 夏方山. 水杨酸对植物种子及幼苗抗逆性的影响[J]. 草业科学,2017(07):1367-1373.

[61] 肖克飚. 宁夏银北地区耐盐植物改良盐碱土机理及试验研究[D]. 西北农林科技大学,2013.

[62] 肖强,陈娟,吴飞华,郑海雷. 外源NO供体硝普钠(SNP)对盐胁迫下水稻幼苗中叶绿素和游离脯氨酸含量以及抗氧化酶的影响[J]. 作物学报,2008,34(10): 1849-1853.

[63] 徐锴. 外源GAs和SA对Nacl胁迫下草莓生理生化特性的影响[D]. 甘肃农业大学,2006.

[64] 杨晓玲,郭金耀. 褐藻酸钠对向日葵幼苗耐盐性的影响[J]. 北方园艺,2010,(23): 37-39.

[65] 杨晓玲,郭彦东. 褐藻酸钠对白萝卜幼苗耐盐适应性的影响[J]. 中国蔬菜,2012,(2): 81-84.

[66] 杨恕玲,单守明,巩传银,李朝阳,张亚红,王振平. 水杨酸对休眠期茶树光合作用和抗冻性的影响[J]. 中国农学通报,2009,25(15):121-124.

[67] 殷小琳. 滨海盐碱地改良及造林技术研究[D]. 北京林业大学,2012.

[68] 尹昌喜. 赤霉素对盐胁迫下水稻种子发芽及幼苗生长的影响[J]. 安徽农业科学,2009(14):6389-6391.

[69] 原旭冰,刘洪涛,杜昱光. 壳寡糖的制备及其在医学和农业生产中的应用[J]. 生物技术进展,2018,8(6):461-468.

[70] 赵继红, 孙淑君, 李建中. 植物诱导抗病性与诱抗剂研究进展[J]. 植物保护,2003, 29(4): 7-1

[71] 赵名彦,丁国栋,郑洪彬. 集雨措施对滨海盐碱林地水盐运动影响研究[J]. 水土保持学报,2008,22(6):52-56.

[72] 赵可夫. 盐胁迫下外源 ABA 对玉米幼苗耐盐性的影响[J]. 植物学报英文版,1995,37(4): 295-300.

[73] 赵可夫,范海. 盐胁迫下真盐生植物与泌盐植物的渗透调节物质及其贡献的比较研究[J]. 应用与环境生物学报,2000,6(2): 99-105.

[74] 赵小明,李东鸿,杜昱光,白雪芳. 寡聚半乳糖醛酸防治苹果花叶病田间药效试验[J]. 中国农学通报,2004: 262-264.

[75] 赵小明,杜昱光,白雪芳. 壳寡糖及其衍生物在植物防冻抗寒中的应用. 中国,201110122426.0[P].2011-05-11.

[76] 张吉昌,王海丽,陈银潮,郑克明,江山,丁文,李波,张蕊,王永林. 奇善宝对油菜抗冻性和抗病性效果研究[J]. 西安文理学院学报(自然科学版),2015,18(02):7-10.

[77] 张翼夫,李问盈,胡红,陈婉芝,王宪良. 盐碱地改良研究现状及展望[J]. 江苏农业科学,2017,45(18):7-10.

[78] 张玉鑫,刘芳,康恩样,陈年来. NaCl胁迫下甜瓜幼苗离子吸收特性研究[J]. 植物营养与肥料学报,2008,14(3): 533-539.

[79] 张昆. 植物生长调节剂诱导植物抗逆性研究进展[J]. 农业科技与装备2014,(11):1-7.

[80] 张娜. 松嫩盐碱化草地马蔺和羊草叶片抗盐碱生理指标的比较研究[D]. 东北师范大学,2007.

[81] 张妍,杨志岩,侯玉杰,李晓鹏,孙士东. 辽宁地区主栽的6个杨树种质抗冻性综合评价[J]. 辽宁林业科技,2011,(03):18-21.

[82] 章文华,陈亚华,刘友良. 钙在植物细胞盐胁迫信号转导中的作用[J]. 植物生理学通讯,2000,36(02):146-153.

[83] 郑殿峰,赵黎明,冯乃杰. 植物生长调节剂对大豆叶片内源激素含量及保护酶活性的影响[J]. 作物学报,2008,34(7):1233-1239.

[84] 郑连英,朱江峰,孙昆山. 壳聚糖的抑菌性能研究[J]. 材料科学与工艺,2000,18(2):22-24.

[85] 邹成林. 壳寡糖对甘蔗干旱胁迫下生理生化及蛋白质差异表达的影响[D]. 广西民族大学,2010.

[86] 周自云. 低聚糖激发子诱导杨树细胞抗病机制的研究[D]. 西北农林科技大学,2004.

[87] Warren C R,Adams M A,Chen Z L. Is photosynthesis related to concentrations of nitrogen and Rubisco in leaves of Australian native plants[J]. Functional Plant Biology, 2000, 27(5):407-416.

[88] Ahmad S,Ghafoor A,Akhtar M E,Khan M Z. Implication of gypsum rates to optimize hydraulic conductivity for variable-texture saline-sodic soils reclamation[J]. Land Degradation & Development,2016,27(3): 550-560.

[89] Alscher R G,Donahue J L,Cramer C L. Reactive oxygen species and antioxidants: relationships in green cells [J]. Physiologia Plantarum,2006,100(2): 224-233.

[90] Amtmann A,Leigh R. Abiotic Stress Adaptation in Plants[J], 2010, 3: 245-262.

[91] Apse M P,Sottosanto J B,Blumwald E. Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of At NHX1, the Arabidopsis vacuolar Na+/H+ antiporter [J]. The Plant Journal,2003,36(2): 229-239.

[92] Ashraf M,Rahmatullah A R,Bhatti A S,Afzal M,Sarwar A,Maqsood M A,Kanwal S. Amelioration of salt stress in sugarcan (Saccharum officinarum L.) by supplying potassium and silicon in hydroponics [J]. Pedosphere,2010,20(2): 153-162.

[93] Ashraf M,Harris P J C. Potential biochemical indicators of salinity tolerance in plants [J]. Plant Science,2004,(166): 3-16.

[94] Athar H,Khan A,Ashraf M. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat [J]. Environmental and Experimental Botany,2008,63(1): 224-231.

[95] Blagodatskikh I V,Kulikov S N,Vyshivannaya O V,Bezrodnykh E A,Yamskov I A,Tikhonov V E. Influence of glucosamine on oligochitosansolubility and antibacterial activity. Carbohydrate Research,2013:28-32.

[96] Blumwald E,Aharon G S,Apse M P. Sodium transport in Plant cells[J]. Bioehimica Et BioPhysiea, Acta-Biomembranes,2000,1465(1-2): 140-151.

[97] Chen S,Li J,Fritz E. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress[J]. Forest Ecology and Management,2002,168: 217-230.

[98] Chinnusamy V,Jagendorf A,Zhu J K. Understanding and improving salt tolerance in plants [J]. Crop Science,2005,(45): 437-442.

[99] Hasegawa P M,Bressan R A,Zhu J K,Bohnert H J. Plant cellular and molecular responses to high salinity[J]. Annual Review of Plant Physiology and Plant Molecular Biology,2000,51: 463-499.

[100] Jabeen Z,Hussain N,Shengguan C,Yong H,Dezhi W,Binlin Z,Shamsi I H,Guoping Z. The in?uence of salinity on cell ultrastructures and photosynthetic apparatus of barley genotypes differing in salt stress tolerance[J]. Acta Physiology Plant,2014,36:1261-1269.

[101] Lu K X,Cao B H,Feng X P,He Y,Jiang D A. Photosynthetic response of salt-tolerant and sensitive soybean varieties[J]. Photosynthetica,2009,47: 381-387.

[102] FISHERES,BREMERE. Magnesium deficiency in expanding leaves of Phaseolus vulgar is gas excharge and nutrient concentrations In: BAROWNJed. Plant nutition fromgenetic engineering to fieldpractice [M]. Netherlands: Kluwer Academis Publishers, 1993:621-624.

[103] Flowers T J,Colmer T D. Salinity tolerance in halophytes[J]. New Phytologist,2008,179: 945-963.

[104] Gálvez F J,Baghour M,Hao G,Cagnac O,Rodríguez-Rosales M P,Venema K. Expression of Le NHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species [J]. Plant Physiology and Biochemistry,2012,51: 109-115.

[105] John A L. Plant immunization: from myth to SAR[J]. Journal of Pesticide Science,1999, 55:193-196.

[106] Kamoun S,Young M,Glascock C B. Extracellular protein elicitors from phytophthora host-specificity and induction of resistance to bacterial and fungal phytopathogens[J]. Mol Plant-Microb Inter,1993,6: 15-25

[107] Korkmaz A, Korkmaz Y,Demirk ran A R. Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid[J]. Environmental and Experimental Botany,2010,67(3): 495-501.

[108] MARSCHNERH,Cakmak I. Hight light intensity enhances chlorosis and necrosis in leaves of zinc, potassium and magnesium deficient bean (Phaseolus vulgaris) plants[J]. Plant Physiol,1989,134:308-315.

[109] Mansour M M F, Salama K H A. Cellular basis of salinity tolerance in plants [J]. Environmental and Experimental Botany,2004,52: 113-122.

[110] Majumder A L,Sengupta S,Goswami L. Osmolyte Regulation in Abiotic Stress[J]. Adaptation in Plants,2010,3: 349-370.

[111] Ma Z X,Yang L Y,Yan H X,Kennedy J F, Meng X H. Chitosan and oligochitosan enhance the resistance of peach fruit to brown rot [J]. Carbohydrate polymers,2013,94: 272-277.

[112] Michelet B,Boutry M. The Plasma Membrane H+-ATPase (A Highly Regulated Enzyme with Multiple Physiological Functions) [J]. Plant Physiology,1995,108(1): 1.

[113] Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in plant science,2002,7(9): 405-410.

[114] Miya A,Albert P,Shinya T, Desaki Y,Ichimura K,Shirasu K,Narusaka Y,Kawakami N,Kaku H,Shibuya N. CERK1,a Lys M receptor kinase, is essential for chitin elicitor signaling in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,(49):19613-19618.

[115] MUANPRAST C,CHATSUDTHIPONG V,Chitosan oligosaccharide:Biological activities and potential therapeutic applications[J]. Pharmacology and Therepetutics,2017,170:80-97.

[116] Roby D,Gadelle A,Toppan A. Chitin oligo-saccharides as elicitors of chitinase activity in melon plants[J]. Biochem Biophy Res Commun,1987,143(3):885-892.

[117] Volkmar K,Hu Y,Steppuhn H. Physiological responses of plants to salinity: a review[J]. Canadian journal of plant science,1998,78(1): 19-27.

[118] Wakeel A. Potassium-sodium interactions in soil and plant under saline-sodic conditions[J]. Journal of Plant Nutrition and Soil Science,2013,176(3): 344-354.

[119] Wang L J,Jiang W B,Huang B. Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions[J]. Physiol Plantarum,2004,121(2): 258-264.

[120] Wong V.N.L, Greene R.S.B,Dalal R.C,Murphy B.W. Soil carbon dynamics in saline and sodic soils:A review[J].Soil Use and Management,2009,26(1): 2-11.

[121] Sayed O H. Chlorophyll fluorescence as a tool in cereal crop research[J]. Photosynthetica, 2003,41: 321-330.

[122] Shi H,Lee B,Wu S,Zhu J. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana [J]. Nat Biotechnol,2002,21(1): 81-85.

[123] Shimizu T,Nakano T,Takamizawa D,Desaki Y,Ishii-Minami N,Nishizawa Y,Minami E,Okada K,Yamane H,Kaku H K I M,Shibuya N S I M. Two Lys M receptor molecules, CEBi P and Os CERK1,cooperatively regulate chitin elicitor signaling in rice. Plant Journal, 2010,(02):204-214.

[124] Shinozaki K,Dennis E S. Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology,2003,6(5): 441-445.

[125] Siegrist J,Orober M,Buchenauer H. Beta-aminobutyric acid-mediated enhancement of resistance of tobacco of tobacco mosaic virus depends on the accumulation of salicylic acid[J]. Physiological and Molecular Plant Pathology,2000,56(3): 95-106.

[126] Silue D,Pajot E,Cohen Y. Induction of resistance to downy mildew (Peronospora parasitica) in cauliflowe by DL-beta-aminobutyric acid[J]. Plant Pathology,2002,51(1): 97-102.

[127] Someya H,Sato N. Marine animal-derived mineral compositions for improvement of biological balance and treatment of various diseases:JP2004175680[P]:2004-06-24.

[128] Singh K. Microbial and Enzyme Activities of Saline and Sodic Soils[J]. Land Degradation and Development,2016,27: 706-718.

[129] Sottosanto J B,Saranga Y,Blumwald E. Impact of At NHX1, a vacuolar Na+/H+ antiporter, upon gene expression during short-and long-term salt stress in Arabidopsis thaliana [J]. BMC Plant Biology,2007,7(1): 18.

[130] Srivastava L M. Environmental regulation of plant growth. In: Srivastava Lalit-M (ed.). Plant Growth and Development. Academic Press,San Diego. 2002,663-664.

[131] Sun G,Yang Q,Zhang A,et al. Synergistic effect of the com-bined bio-fungicides ε-poly-l-lysine and chitooligosac-charide in controlling grey mould ( Botrytis cinerea) in tomatoes[J]. International Journal of Food Microbiology,2018,276:46-53.

[132] Tester M,and Davenport R. Na+ tolerance and Na+ transport in higher plant [J]. Annals of botany,2003,91(5): 503-527.

[133] Tonon G,Kevers C,Faivre-Rampant O,Graziani M,Caspar T. Effect of NaCl and mannitol iso-osmotic stresses on praline and free polyamine levels in embryogenic Fraxinus angustifolia callus[J]. Journal of Plant Physiology,2004,161: 701-708.

[134] Yu L M. Eliciti from Phytophthora and basic resistance in tobacco[J]. Proceedingsof the National Academy of Sciences,1995,92: 4088-4094.

[135] Zhao H C,Zhao H,Wang J B. Stress stimulus induced resisitanc of plant[J]. Colloids and Surfaces B: Biointerfaces,2005,43: 174-178.

[136] Zhang J,Li D,Gao Y,Yu B,Xia C,Bai J. Pretreatment with 5-aminolevulinic acid mitigates heat stress of cucumber leaves[J]. Biologia Plantarum,2012,56(4): 780-784.

[137] Zong H,Li K,Liu S,et al. Improvement in cadmium tolerance of edible rape ( Brassica rapa L. ) with exogenous application of chitooligosaccharides[J]. Chemosphere,2017, (181):92-100.

中图分类号:

 S-3    

开放日期:

 2020-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式