- 无标题文档
查看论文信息

中文题名:

 牛至精油对异育银鲫生长、抗氧化及非特异性免疫的影响    

姓名:

 丁旺    

学号:

 2019813051    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 095108    

学科名称:

 农学 - 农业推广 - 渔业    

学生类型:

 硕士    

学位:

 农业硕士    

学校:

 南京农业大学    

院系:

 无锡渔业学院    

专业:

 渔业发展(专业学位)    

研究方向:

 水产动物病害与防治    

第一导师姓名:

 谢骏    

第一导师单位:

 南京农业大学    

第二导师姓名:

 齐志涛    

完成日期:

 2021-05-01    

答辩日期:

 2021-05-27    

外文题名:

 Effects of oregano essential oil on growth, antioxidation and non-specific immunology of gibel carp    

中文关键词:

 牛至精油 ; 异育银鲫 ; 生长性能 ; 消化酶 ; 非特异性免疫    

外文关键词:

 Oregano essential oil ; Gibel carp ; Growth performance ; Digestive enzymes ; Non-specific immunology    

中文摘要:

牛至精油是从中草药牛至中提取出的一种精油,因其具有抗菌、调味等作用常作为食品的保鲜剂、调味剂、保鲜剂或功能性成分。牛至精油是农业农村部批准使用的饲料添加剂, 被广泛应用于畜禽养殖领域,具有提高动物采食量、促生长、抗菌、抗炎症、抗寄生虫等功能,与传统饲料添加剂相比更加安全高效,且易被机体吸收、无残留,是一种绿色饲料添加剂,应用和发展潜力巨大。
本研究以异育银鲫(Carassius auratus gibebio) 为对象, 设计了 7 个牛至精油添加组进行养殖实验,分别为 N0 (0 mg/kg, 空白对照组)、N1 (25 mg/kg)、N2(50 mg/kg)、N3(100 mg/kg)、 N4(200 mg/kg)、 N5(400 mg/kg)和 N6(800 mg/kg), 养殖周期为 8 周, 旨在探讨基础日粮中添加不同含量的牛至精油对异育银鲫生长性能、 消化酶活性、肠道形态、肠道菌群、 抗氧化和非特异性免疫的影响, 并采用嗜水气单胞菌攻毒, 分析牛至精油对异育银鲫抗病原菌感染能力的影响。 本文主要内容和研究结果如下:
1. 牛至精油对异育银鲫生长性能、消化酶活性的影响
室外网箱养殖 8 周后采样测定异育银鲫生长性能和肠道消化酶活性。结果表明,基础饲料中添加 400、 800 mg/kg 牛至精油组异育银鲫的增重率、肥满度和特定生长率显著高于空白对照组(P<0.05),且饵料系数显著降低(P<0.05); 与空白对照组相比, 添加剂量为 200、 400 mg/kg 的实验组鱼体胰蛋白酶、脂肪酶和α -淀粉酶活性显著升高(P<0.05)。
2. 牛至精油对异育银鲫肠道形态、 肠道菌群和肝功能的影响
添加剂量为 200、 400 mg/kg 的实验组鱼体后肠肠壁厚度、肠绒毛高度、 肠绒毛宽度和杯状细胞数量均显著高于空白对照组(P<0.05);而在肠道菌群分析中,不同添加量的牛至精油均未影响肠道菌群的丰富度(P>0.05)。 各实验组的胆固醇(TC)和甘油三酯(TG)与空白对照组相比均无显著性差异(P>0.05);添加剂量为 200、 400、800 mg/kg 的实验组尿素(UREA)含量显著降低(P<0.05)。
3. 牛至精油对异育银鲫抗氧化功能、 非特异性免疫和抗病原菌感染能力的影响
各实验组的异育银鲫的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、总抗氧化能力(T-AOC)、丙二醛(MDA)含量等指标与空白对照组无显著差异(P>0.05); 添加剂量为 200、 400 mg/kg 的实验组鱼体血清总蛋白、白蛋白和补体 C3 均显著高于空白对照组(P<0.05); 嗜水气单胞菌攻毒后, 添加量为 200、 400 和 800 mg/kg 的实验组异育银鲫存活率显著高于空白对照组, 400 和 800 mg/kg 组异育银鲫的感染保护率显著高于 25、 50 和 100 mg/kg 组(P<0.05)。

外文摘要:

Oregano essential oil is a kind of essential oil extracted from the Chinese traditonal drug-origanum vulgare. Because of its antibacterial and flavouring properties, it is often used as a food preservative, flavouring agent, preservative or functional ingredient. Oregano essential oil is a feed additive approved by the Ministry of Agriculture and Rural Affairs and is widely used in livestock and poultry breeding. It has the functions of increasing animal feed intake, promoting growth, antibacterial, anti-inflammatory, and anti-parasitic. It is safer and more efficient than
traditional feed additives, and it is easily absorbed by the body and has no residue. Itis a green feed additive with huge application and development potential.
In this study, gibel carp (Carassius auratus gibebio) as the object, 7 oregano essential oil supplement groups were designed for breeding experiments, namely N0(0 mg/kg, the control group)、 N1(25 mg/kg)、 N2(50 mg/kg)、 N3(100 mg/kg)、
N4(200 mg/kg)、 N5(400 mg/kg) and N6(800 mg/kg), the experimental period is 8 weeks. In order to explore the effects of adding different amounts of oregano essential oil in the basal diet on the growth performance, digestive enzyme activity, intestinal
morphology, intestinal flora, antioxidant and non-specific immunology of gibel carp, and Aeromonas hydrophila was used to challenge to analyze the effect of oregano essential oil on the ability of gibel carp against pathogen infection. The main content
and experimental results of this article are as follows:
1. The effect of oregano essential oil on the growth performance and digestive enzyme activity of gibel carp

Sampling after 8 weeks of breeding experiment, the growth performance and intestinal digestive enzyme activity of gibel carp were measured. The results showed
that the weight gain, condition factor and specific growth rate of gibel carp with 400 mg/kg group and 800 mg/kg group were significantly higher than those of the control group (P< 0.05), and the feed coefficient was significantly reduced (P< 0.05);Compared with the control group, trypsin, lipase and α-amylase activities in the 200 mg/kg group and 400 mg/kg group were significantly increased (P<0.05);
2. The effect of oregano essential oil on the intestinal morphology, intestinal flora and liver function of gibel carp

The thickness of the posterior intestinal wall, villus height, villi width and the
number of goblet cells in the experimental group with the addition doses of 200 and 400 mg/kg were significantly higher than those in the control group (P<0.05); In the analysis of intestinal flora, the experimental groups with different dosages did not affect the abundance of intestinal flora (P>0.05). There was no significant difference in total cholesterol (TC) and triglyceride (TG) in each experimental group compared with the control group (P>0.05); the content of urea (UREA) in the experimental group at 200 mg/kg group, 400 mg/kg group and 800 mg/kg group was significantly reduced(P<0.05) .
3. The effect of oregano essential oil on the antioxidant function, non-specific immunity and anti-pathogenic infection of gibel carp

Antioxidant indexes such as superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (T-AOC) and malondialdehyde (MDA) content of gibel carp in the experimental group were no significant difference from those in the control group (P>0.05); The total protein, albumin and complement C3 of 200 mg/kg group and 400 mg/kg group were significantly higher than those of the control group (P<0.05); After Aeromonas hydrophila challenged, the survival rate of 200, 400 and 800 mg/kg
group was significantly higher than that of the control group and the relative percent survival of 400 and 800 mg/kg group was significantly higher than that of 25, 50, 100 mg/kg group (P<0.05).

参考文献:

[1] Wang A R, Ran C, Wang Y B, et al. Use of probiotics in aquaculture of China—a review of the past decade[J]. Fish and Shellfish Immunology, 2019, 86: 734-755.

[2] Yousuke T, Hiroto M, Jae-Yoon J, et al. Growth, stress tolerance and non-specific immune response of Japanese flounder Paralichthys olivaceus to probiotics in a closed recirculating system[J]. Fisheries Science, 2006, 72(2): 310–321.

[3] Anas A, Sukumaran V, Nampullipurackal D, et al. Probiotics inspired from natural ecosystem to inhibit the growth of Vibrio spp. causing white gut syndrome in Litopenaeus vannamei[J]. 3 Biotech, 2021, 11: 2.

[4] Haroun E R, A M A-S Goda, Chowdhury M A K. Effect of dietary probiotic Biogen supplementation as a growth promoter on growth performance and feed utilization of Nile tilapia Oreochromis niloticus (L.)[J]. Aquaculture Research, 2006, 37(14): 1473–1480.

[5] Lalloo R, Ramchuran S, Ramduth D, et al. Isolation and selection of Bacillus spp. as potential biological agents for enhancement of water quality in culture of ornamental fish[J]. Journal of Applied Microbiology, 2007, 103(5): 1471–1479.

[6] Li J Q, Tan B P, Mai K S, et al. Comparative study between probiotic bacterium Arthrobacter XE-7 and chloramphenicol on protection of Penaeus chinensis post-larvae from pathogenic Vibrios[J]. Aquaculture, 253(1–4): 140–147.

[7] 王红霞. 氧化魔芋葡甘聚糖对齐口裂腹鱼免疫和抗氧化性能的影响[D]. 四川农业大学, 2013.

[8] 陈明睿. 魔芋低聚糖(KOS)对齐口裂腹鱼免疫功能的影响[D]. 四川农业大学, 2018.

[9] 陆娟娟. 低聚果糖对奥尼罗非鱼生长、血清生化指标和肠道微生物的影响[D]. 广西大学, 2011.

[10] 徐安乐, 黎中宝, 上官静波, 等. 复方中草药对珍珠龙胆石斑鱼生长、非特异性免疫及消化酶活性的影响[J]. 海洋学报, 2018, 40(12): 49-57.

[11] 周疆, 郑凯妮, 朱斐. 中草药在水产动物免疫上的应用[J]. 浙江农林大学学报, 2019, 36(02): 406-414.

[12] 胡建平. 中草药在水产养殖中的研究与应用[J]. 河南水产, 2017, 05: 42-43.

[13] 任永林. 紫锥菊提取物对鲤生产性能和免疫功能的影响[D]. 四川农业大学, 2008.

[14] 唐玲. 植物添加剂对镜鲤生长性能、消化酶活性、肌肉品质、血清生化和非特异性免疫力的影响[D]. 上海海洋大学, 2011.

[15] 蒲红宇, 李晓宇, 杜青波, 等.中草药在水产养殖中的应用研究进展[J]. Engineering, 2017, 3(05): 336-350.

[16] 夏与晴, 刘文珍, 傅松哲, 等. 25种中草药及其联合用药配伍对5种水产养殖常见致病菌的抑菌作用[J]. 大连海洋大学学报, 2019, 34(01): 7-14.

[17] 周霞. 黄连须及其主要生物碱对非特异性免疫及鲤鱼抗病力的影响[D]. 西南大学, 2016.

[18] 孙克年. 牛至及牛至精油在水产养殖中的应用研究[J]. 广东饲料, 2012, 21(6): 38-40.

[19] Charles D J. Antioxidant Properties of Spices, Herbs and Other Sources [M]. Springer, 2013: 449-458.

[20] Mozaffarian V. Identification of Medicinal and Aromatic Plants of Iran [M]. Farhang Moaser Publishers, 2012: 1444.

[21] 赵海伊. 牛至精油的制备及体外抗氧化活性的抑菌作用的研究[D]. 西南大学, 2012: 27-37.

[22] 韩飞, 李瑾, 潘悄悄, 等. 新型天然植物抗生素牛至油的研究进展[J]. 中国新药杂志, 2015, 24(3): 303-307.

[23] Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review[J]. International Journal of Food Microbiology, 2004, 94(3): 223‐253.

[24] 郭俊贤. 精油对水产品特定腐败菌的抑制及其抑菌机理[D]. 广东工业大学, 2015: 13-19.

[25] Lu M, Dai T H, Murray C K, et al. Bactericidal Property of Oregano Oil Against Multidrug-Resistant Clinical Isolates[J]. Frontiers in microbiology, 2018, 9: 2329.

[26] Govaris A, Solomakos N, Pexara A, et al. The antimicrobial effect of oregano essential oil, nisin and their combination against Salmonella Enteritidis in minced sheep meat during refrigerated storage[J]. International Journal of Food Microbiology, 2009, 137(2): 175-180.

[27] Bendahou M, Muselli A, Grignon D M, et al. Antimicrobial activity and chemical composition of Origanum glandulosum Desf. essential oil and extract obtained by microwave extraction: Comparison with hydrodistillation[J]. Food Chemistry, 2007, 106(1): 132-139.

[28] Tatiane V D, Juliana C C, Jéssica L M, et al. Bioactivity of oregano (Origanum vulgare) essential oil against Alicyclobacillus spp[J]. Industrial Crops & Products, 2019, 129: 345-349.

[29] Marília G C, Priscila J P S, Fernando L H, et al. Antibacterial activity of oregano essential oil against foodborne pathogens[J]. Nutrition and Food Science, 2013, 43(2): 169-174.

[30] Cui H Y, Zhang C H, Li C Z, et al. Antibacterial mechanism of oregano essential oil[J]. Industrial Crops & Products, 2019, 139: 111498.

[31] 王新伟, 刘欢, 魏静, 等. 牛至精油、香芹酚、柠檬醛和肉桂醛抑菌作用研究[J]. 食品工业, 2010, 31(5): 13-16.

[32] 吴克刚, 罗敏婷, 魏浩. 8种植物精油对肠道常见微生物体外抑菌效果的研究[J]. 现代食品科技, 2017, 33(6): 133-141.

[33] 牛彪, 金川, 梁剑平, 等. 牛至、香茅、丁香精油化学成分及体外抑菌活性研究[J]. 食品研究与开发, 2020, 41(3): 46-52.

[34] Gracia-Valenzuela M H, Vergara-Jiménez M J, Baez-Flores M E, et al. Antimicrobial effect of dietary oregano essential oil against Vibrio bacteria in shrimps[J]. Archives of biological sciences, 2014, 66(4): 1367-1370.

[35] 曹升洪, 王婷, 黎翠兰, 等. 止痢草精油对感染嗜水气单胞菌罗非鱼免疫功能的影响[J].饲料与畜牧, 2011, 8: 8-11.

[36] Monica R L, Federica M, Filomena C, et al. Chemical analysis, antioxidant, antiinflammatory and anticholinesterase activities of Origanum ehrenbergii Boiss and Origanum syriacum L. essential oils[J]. Food Chemistry, 2009, 117(1): 174-180.

[37] Olmedo R, Nepote V, Grosso N R. Antioxidant activity of fractions from oregano essential oils obtained by molecular distillation[J]. Food chemistry, 2014, 156: 212-219.

[38] Kulisic T, Radonic A, Katalinic V, et al. Use of different methods for testing antioxidative activity of oregano essential oil[J]. Food Chemistry, 2003, 85(4): 633-640.

[39] Kavoosi G, Teixeira-da-Silva J A, Saharkhiz M J. Inhibitory effects of zataria multiflora essential oil and its main components on nitric oxide and hydrogen peroxide production in lipopolysaccharide-stimulated macrophages[J]. Journal of Pharmacy and Pharmacology, 2012, 64 (10): 1491-1500.

[40] 吴强强, 李国富, 吴江, 等. 牛至油对建鲤生长性能和血清抗氧化能力的影响[J]. 湖南农业科学, 2010, 5: 136-138.

[41] 郑宗林, 朱成科, Delbert M, 等. 饲料中添加牛至精油对红罗非鱼货架期的影响[J]. 食品科学, 2015, 36(22): 203-209.

[42] Mexis S, Chouliara E, Kontominas M. Combined effect of an oxygen absorber and oregano essential oil on shelf life extension of rainbow trout fillets stored at 4 ℃ [J]. Food Microbiology, 2009, 26(6): 598-605.

[43] 邓奇风, 刘志强, 范觉鑫, 等. 牛至油的研究进展及其在猪生产中的应用[J]. 中国猪业, 2018, 13(2): 41-46.

[44] Ran C, Hu J, Liu W S, et al. Thymol and Carvacrol Affect Hybrid Tilapia through the Combination of Direct Stimulation and an Intestinal Microbiota-Mediated Effect: Insights from a Germ-Free Zebrafish Model[J]. The Journal of Nutrition, 2016, 146(5): 1132–1140.

[45] 王芬, 曾召英, 李昕, 等. 牛至油对东北白鹅免疫器官指数及部分血清生化指标的影响[J]. 粮食与饲料工业, 2014, 12: 54-56.

[46] 徐奇友, 唐玲, 王常安, 等. 大蒜茎粉和牛至草粉对镜鲤抗氧化、非特异免疫以及肌肉品质的影响[J]. 华北农学报, 2010, 25(S2): 133-139.

[47] Zhang R, Wang X W, Liu L L, et al. Dietary oregano essential oil improved the immune response, activity of digestive enzymes, and intestinal microbiota of the koi carp, Cyprinus carpio[J]. Aquaculture, 2020, 518: 734781.

[48] Mabrok M A E, Wahdan A. The immune modulatory effect of oregano (Origanum vulgare L.) essential oil on Tilapia zillii following intraperitoneal infection with Vibrio anguillarum[J]. Aquaculture International, 2018, 26(4): 1147-1160.

[49] Zheng Z L, Liu H Y, Zhou X H, et al. Evaluation of oregano essential oil (Origanum heracleoticum L.) on growth, antioxidant effect and resistance against Aeromonas hydrophila in channel catfish(Ictalurus punctatus)[J]. Aquaculture, 2009, 292(3): 214–218.

[50] Jason L, Michael L, Essam E, et al. Nematicidal activity of two monoterpenoids and SER-2 tyramine receptor of Caenorhabditis elegans[J]. Biochemical Pharmacology, 2010, 79(7): 1062-1071.

[51] Camurca-Vasconcelos A L F, Bevilaqua C M L, Morais S M, et al. Anthelmintic activity of Croton zehntneri and Lippia sidoides essential oils[J]. Veterinary parasitology, 2007, 148(3): 288-294.

[52] Kong J O, Park I K, Choi K S, et al. Nematicidal and propagation activities of thyme red and white oil compounds toward Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae)[J]. Journal of nematology, 2009, 39(3): 237-242.

[53] Nolan M V, Zygadlo J A, Perillo M A, et al. Natural terpenes: Self-assembly and membrane partitioning[J]. Biophysical chemistry, 2006, 122(2): 101-113.

[54] Santoro G F, Guimar?es L G L, Salgado A P S P, et al. Effect of oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.) essential oils on Trypanosoma cruzi (Protozoa: Kinetoplastida) growth and ultrastructure[J]. Parasitology research, 2007, 100(4): 783-790.

[55] Shashank G, Theresa B K, Mark S K, et al. Effect of oregano essential oil and carvacrol on Cryptosporidium parvum infectivity in HCT-8 cells[J]. Parasitology International, 2018, 67(2): 170-175.

[56] Giannenas I, Florou-Paneri P, Papazahariadou M, et al. Effect of dietary supplementation with oregano essential oil on performance of broilers after experimental infection with Eimeria tenella[J]. Archives of Animal Nutrition, 2003, 57(2): 99-106.

[57] 刘广丰. 鲫鱼细菌性出血病、大红鳃及鳃出血的诊断及防治[J]. 科学养鱼, 2020, 09: 52-53.

[58] 任芳芳. 异育银鲫武汉单极虫病的病理、PCR分析和药物防控研究[D]. 上海海洋大学, 2018.

[59] 吴霆, 朱春艳, 王瑶, 等. 异育银鲫病毒性鳃出血病预防与控制技术[J]. 中国水产, 2015,10: 92-93.

[60] 卢建挺. 几种免疫增强剂改善中华绒螯蟹幼蟹生长、抗氧化和免疫性能的研究[D]. 华东师范大学, 2019.

[61] 邢薇, 姜娜, 李铁梁, 等. 免疫增强剂对血鹦鹉鱼非特异性免疫的影响[J]. 四川农业大学学报, 2017, 35(01): 99-105.

[62] 徐磊, 孙博怿, 盛鹏程, 等. 湖州地区典型水产养殖池塘中抗菌药物的污染特征[J]. 江苏农业科学, 2019, 47(11): 210-214.

[63] 孙晓杰, 王苏玥, 卢立娜, 等. 水产养殖投入品中药物残留检测方法研究及现状分析[J].食品安全质量检测学报, 2016, 7(05): 1984-1990.

[64] 菅玉霞, 高凤祥, 王雪, 等. 3种水产药物对大泷六线鱼幼鱼的急性毒性试验[J]. 广西科学院学报, 2019, 35(04): 319-324.

[65] 徐维海. 抗菌药物在水产生物体内的残留与代谢变异化合物研究[D]. 中国科学院研究生院(海洋研究所), 2004.

[66] 武国兆, 朱文锦. 我国内陆水产健康养殖发展的研究与思考[J]. 河南水产, 2020, 05: 1-3.

[67] ümit A, Osman S K, Sevdan Y, et al. Evaluation of the effects of essential oil extracted from sweet orange peel ( Citrus sinensis ) on growth rate of tilapia ( Oreochromis mossambicus ) and possible disease resistance against Streptococcus iniae[J]. Aquaculture, 2015, 437: 282-286.

[68] Azime K G, Durali D, Mesut U, et al. Effect of mixed use of thyme and fennel oils on biochemical properties and electrolytes in rainbow trout as a response to Yersinia ruckeri infection[J]. Acta Veterinaria Brno, 2013, 82(3): 297-302.

[69] Fernando J S, Delbert M G III, Berta M H, et al. Plant essential oils as fish diet additives: benefits on fish health and stability in feed[J]. Reviews in Aquaculture, 2018, 10(3): 716-726.

[70] Samira T L O, Riani A N S, Sília M N S, et al. Natural products as functional food ingredients for Nile tilapia challenged with Aeromonas hydrophila[J]. Aquaculture International, 2020, 28: 913-926.

[71] Baser K H C. Biological and Pharmacological Activities of Carvacrol and Carvacrol Bearing Essential Oils[J]. Current Pharmaceutical Design, 2008, 14(29): 3106-3119.

[72] Chishti S. Medicinal importance of genus Origanum: A review[J]. Journal of Pharmacognosy and Phytotherapy, 2013, 5(10): 170-177.

[73] Hernández F, Madrid J, García V, et al. Influence of two plant extracts on broilers performance, digestibility, and digestive organ size[J]. Poultry science, 2004, 83(2): 169.

[74] Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review[J]. International Journal of Food Microbiology, 2004, 94(3): 223-253.

[75] Waleed N, El-Hawarry, Radi A, et al. Collaborating effects of rearing density and oregano oil supplementation on growth, behavioral and stress response of Nile tilapia (Oreochromis niloticus)[J]. The Egyptian Journal of Aquatic Research, 2018, 44(2): 173-178.

[76] Dinardo F R, Deflorio M, Casalino E, et al. Effect of feed supplementation with Origanum vulgare L. essential oil on sea bass (Dicentrarchus labrax): A preliminary framework on metabolic status and growth performances[J]. Aquaculture Reports, 2020, 18: 100511.

[77] Miriam F, Manuel G, Hidalgo M C, et al. Effect of starvation and refeeding on digestive enzyme activities in sturgeon (Acipenser naccarii) and trout (Oncorhynchus mykiss)[J]. Comparative Biochemistry and Physiology, 2008, 149(4): 420-425.

[78] 王秋岑. 不同食性鱼类胰蛋白酶的提纯、性质及蛋白消化力的比较研究[D]. 南昌大学, 2013.

[79] Tran N D K, Hayasaka O, Matsui H, et al. Changes in early digestive tract morphology, enzyme expression and activity of Kawakawa tuna (Euthynnus affinis)[J]. Aquaculture, 2020, 530: 735935.

[80] Larbi A C, Zhao J L, Wu J W. Replacement of fish oil with palm oil: Effects on growth performance, innate immune response, antioxidant capacity and disease resistance in Nile tilapia (Oreochromis niloticus)[J]. PloS one, 2018, 13(4): e0196100.

[81] Bowyer J N, Qin J G, Adams L R, et al. The response of digestive enzyme activities and gut histology in yellowtail kingfish (Seriola lalandi) to dietary fish oil substitution at different temperatures[J]. Aquaculture, 2012, 368-369: 19-28.

[82] 韩晴. 江鳕营养评价、消化道组织学及消化酶活力的研究[D]. 吉林农业大学, 2020.

[83] 张正荣. 黄条鰤早期发育形态和消化道组织学、消化酶活力变化研究[D]. 上海海洋大学, 2019.

[84] Eusebio P S, Coloso R M. Proteolytic enzyme activity of juvenile Asian sea bass, Lates calcarifer (Bloch), is increased with protein intake[J]. Aquaculture Research, 2002, 33(8): 569-574.

[85] Eleni F, Maria N A, Ioannis N, et al. Effect of diet composition on nutrient digestibility and digestive enzyme levels of gilthead sea bream (Sparus aurata L.)[J]. Aquaculture Research, 2005, 36(13): 1243-1251.

[86] Miegel R P, Pain S J, Howarth G S, et al. Effect of water temperature on gut transit time, digestive enzyme activity and nutrient digestibility in yellowtail kingfish (Seriola lalandi)[J]. Aquaculture, 2010, 308(3): 145-151.

[87] Bilen S, Altief T A S, ?zdemir K Y, et al. Effect of lemon balm (Melissa officinalis) extract on growth performance, digestive and antioxidant enzyme activities, and immune responses in rainbow trout (Oncorhynchus mykiss)[J]. Fish Physiology and Biochemistry, 2020, 46(1): 471-481.

[88] Elizangela M S, Renilde C S, José F B M, et al. Evaluation of the effects of Ocimum basilicum essential oil in Nile tilapia diet: growth, biochemical, intestinal enzymes, haematology, lysozyme and antimicrobial challenges[J]. Aquaculture, 2019, 504: 7-12.

[89] Ashraf Y E D, Shymaa M S, Bahig R N, et al. Possibility of using basil (Ocimum basilicum) supplementation in Gilthead sea bream (Sparus aurata) diet[J]. The Egyptian Journal of Aquatic Research, 2015, 41(2): 203-210.

[90] Laura R, Jo?o M M S, Rita C V R, et al. Effect of vegetable based diets on growth, intestinal morphology, activity of intestinal enzymes and haematological stress indicators in meagre (Argyrosomus regius)[J]. Aquaculture, 2015, 447: 116-128.

[91] Zhou Q C, Buentello J A, Gatlin D M. Effects of dietary prebiotics on growth performance, immune response and intestinal morphology of red drum (Sciaenops ocellatus)[J]. Aquaculture, 2010, 309(1): 253-257.

[92] Arkadios D, Daniel L M, Peter S, et al. Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilisation, intestinal histology and gut microbiota of gilthead sea bream (Sparus aurata)[J]. Aquaculture, 2010, 300(1): 182-188.

[93] Cheng Z Y, Delbert M G, Alejandro B. Dietary supplementation of arginine and/or glutamine influences growth performance, immune responses and intestinal morphology of hybrid striped bass (Morone chrysops × Morone saxatilis)[J]. Aquaculture, 2012, 362-363: 39-43.

[94] Mabrouk E, Mohamed R, Moustafa E M, et al. Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus[J]. Aquaculture Nutrition, 2018, 24(6): 1613-1622.

[95] Abdel-Tawwab M, Adeshina I, Jenyo-Oni A, et al. Growth, physiological, antioxidants, and immune response of African catfish, Clarias gariepinus (B.), to dietary clove basil, Ocimum gratissimum, leaf extract and its susceptibility to Listeria monocytogenes infection.[J]. Fish & shellfish immunology, 2018, 78: 346-354.

[96] Yan L, Zhou X Q. Dietary glutamine supplementation improves structure and function of intestine of juvenile Jian carp (Cyprinus carpio var. Jian)[J]. Aquaculture, 2006, 256(1): 389-394.

[97] Hu Y J, Zhang J Z, Xue J J, et al. Effects of dietary soy isoflavone and soy saponin on growth performance, intestinal structure, intestinal immunity and gut microbiota community on rice field eel (Monopterus albus)[J]. Aquaculture, 2021, 537: 736506.

[98] Dawood M A O, Metwally A E S, El-Sharawy M E, et al. The role of β-glucan in the growth, intestinal morphometry, and immune-related gene and heat shock protein expressions of Nile tilapia (Oreochromis niloticus) under different stocking densities[J]. Aquaculture, 2020, 523: 735205.

[99] Asmaa S, El-Naby A, Al-Sagheer A A, et al. Dietary combination of chitosan nanoparticle and thymol affects feed utilization, digestive enzymes, antioxidant status, and intestinal morphology of Oreochromis niloticus[J]. Aquaculture, 2020, 515: 734577.

[100] Gustavo M R V, Sílvia U G, Gabriela P, et al. Practical diets with essential oils of plants activate the complement system and alter the intestinal morphology of Nile tilapia[J]. John Wiley & Sons, Ltd (10.1111), 2017, 48(11): 5640-5649.

[101] Ibrahim A, Jenyo-Oni A, Benjamin O E, et al. Stimulatory effect of dietary clove, Eugenia caryophyllata, bud extract on growth performance, nutrient utilization, antioxidant capacity, and tolerance of African catfish, Clarias gariepinus (B.), to Aeromonas hydrophila infection[J]. Journal of the World Aquaculture Society, 2019, 50(2): 390-405.

[102] Zhou J S, Guo P, Yu H B, et al. Growth performance, lipid metabolism, and health status of grass carp (Ctenopharyngodon idella) fed three different forms of sodium butyrate[J]. Springer Netherlands, 2019, 45(1): 287-298.

[103] Shen L Q, Guan F, Yuan Y J. Fasting affects the intestine and bacterial flora in mudskippers (Boleophthalmus pectinirostris) in semiaquatic and underwater conditions[J]. Aquaculture, 2020, 533: 736162.

[104] Patrizia L C, Concetta C, Clara B, et al. Effects of fasting and refeeding on the digestive tract of zebrafish (Danio rerio) fed with Spirulina (Arthrospira platensis), a high protein feed source[J]. Natural Product Research, 2017, 31(13): 1478-1485.

[105] 欧红霞, 王广军, 李志斐, 等. 不同饲料对大口黑鲈肠道组织结构的影响[J]. 水产科学, 2020, 39(06): 902-907.

[106] Deplancke B, Gaskins H R. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer[J]. The American journal of clinical nutrition, 2001, 73(6): 1131S-1141S.

[107] Mahmoud A O D, Nabil M E, Malik M K, et al. Saccharomyces cerevisiae increases the acceptability of Nile tilapia (Oreochromis niloticus) to date palm seed meal[J]. Aquaculture Reports, 2020, 17: 100314.

[108] Sun Z, Wang X, Andersson R. Role of intestinal permeability in monitoring mucosal barrier function. History, methodology, and significance of pathophysiology.[J]. Digestive surgery, 1998, 15(5): 386-397.

[109] Irene S, Zhang Y A, Sunyer J O. Mucosal immunoglobulins and B cells of teleost fish[J]. Developmental & Comparative Immunology, 2011, 35(12): 1346-1365.

[110] Fawzy I M, Mahmoud A O D, Mahmoud F I S, et al. Mohamed. The role of a digestive enhancer in improving the growth performance, digestive enzymes activity, and health condition of Nile tilapia (Oreochromis niloticus) reared under suboptimal temperature[J]. Aquaculture, 2020, 526: 735388.

[111] Abdel-Latif H M R, Abdel-Tawwab M, Khafaga A F, et al. Dietary oregano essential oil improved the growth performance via enhancing the intestinal morphometry and hepato-renal functions of common carp (Cyprinus carpio L.) fingerlings[J]. Aquaculture, 2020, 526: 735432.

[112] S?derholm J D, Perdue M H. Stress and gastrointestinal tract. II. Stress and intestinal barrier function.[J]. American journal of physiology. Gastrointestinal and liver physiology, 2001, 280(1): G7-G13.

[113] Denise K, Timothy K, Rustam A. Importance of microbial colonization of the gut in early life to the development of immunity[J]. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 622(1): 58-69.

[114] Averina O V, Danilenko V N. Human Intestinal Microbiota: Role in Development and Functioning of the Nervous System.[J]. Mikrobiologiia, 2017, 86(1): 5-24.

[115] Neish Andrew S. Microbes in gastrointestinal health and disease.[J]. Gastroenterology, 2009, 136(1): 65-80.

[116] 佟延南, 李芳远, 李忠琴, 等. 不同养殖阶段罗非鱼肠道微生物多样性的动态分析[J].南方农业学报, 2018, 49(07): 1415-1422.

[117] Ernesto L S, Dariel T R, Denise R A , et al. Effect of temperature and dietary lipid proportion on gut microbiota in yellowtail kingfish Seriola lalandi juveniles[J]. Aquaculture, 2018, 497: 269-277.

[118] Peter D S, Olav V. Ecological theory as a foundation to control pathogenic invasion in aquaculture[J]. The ISME Journal: Multidisciplinary Journal of Microbial Ecology, 2014, 8(12): 2360-2368.

[119] Ingerslev H C, Gersdorff J L, Strube M L, et al. The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type[J]. Aquaculture, 2014, 424: 24-34.

[120] Hansen G H, Olafsen J A. Bacterial Interactions in Early Life Stages of Marine Cold Water Fish[J]. Microbial Ecology, 1999, 38(1): 1-26.

[121] Liu W S, Guo X Z, Chen Y L, et al. Carvacrol promotes intestinal health in Pengze crucian carp, enhancing resistance to Aeromonas hydrophila[J]. Aquaculture Reports, 2020, 17: 100325.

[122] Giannenas I, Triantafillou E, Stavrakakis S, et al. Assessment of dietary supplementation with carvacrol or thymol containing feed additives on performance, intestinal microbiota and antioxidant status of rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 2012, 350: 26-32.

[123] 袁锐, 方苹, 刘训猛, 等. 感染鲤疱疹病毒2型对异育银鲫肠道菌群结构的影响[J]. 江苏农业科学, 2020, 48(21): 196-201.

[124] 戚晓舟. 氨氮胁迫对鲫免疫系统及肠道菌群结构的影响[D]. 西北农林科技大学, 2017.

[125] 张婧怡. 不同品种及不同养殖环境的罗非鱼肠道微生物分析研究[D]. 广西大学, 2020.

[126] 任中华. 褐牙鲆早期生活史阶段的抗氧化和免疫系统对甲基汞毒性的响应[D]. 中国科学院大学(中国科学院海洋研究所), 2019.

[127] Marcos T D, Flávio R M . Leukocyte and thrombocyte reference values for channel catfish (Ictalurus punctatus Raf), with an assessment of morphologic, cytochemical, and ultrastructural features[J]. Veterinary Clinical Pathology, 2007, 36(1): 49-54.

[128] Francesco F, Simona M, Agata T, et al. Haematological and serum protein profiles of Mugil cephalus : effect of two different habitats[J]. Ichthyological Research, 2013, 60(1): 36-42.

[129] Francesco Fazio. Fish hematology analysis as an important tool of aquaculture: A review[J]. Aquaculture, 2019, 500: 237-242.

[130] 胡俊茹, 易昌金, 王国霞, 等.黑水虻虫油替代豆油对黄颡鱼幼鱼生长、血清生化指标和肝脏脂滴面积的影响[J]. 水生生物学报, 2020, 44(04): 717-727.

[131] 胡晓伟. 饲料中添加浒苔及中草药对黑鲷幼鱼生长、消化酶和非特异性免疫的影响[D].集美大学, 2018.

[132] 段凯文, 曹根凤, 黄小红, 等. 中药提取物对感染产气荚膜梭菌肉鸡生长性能、消化及肉质的影响[J]. 中国饲料, 2020(10): 41-44.

[133] Bruno D S S, Evandro B M, Ricácio L M G, et al. Essential oils in diets for Nile tilapia juveniles: Productive performance and plasmatic biochemistry[J]. Aquaculture Research, 2020, 51(7): 2758-2765.

[134] 孟晓雪, 卫育良, 梁萌青, 等. 鱼类胆固醇营养需求研究进展[J].动物营养学报, 2021, 33(02): 719-728.

[135]贠彪. 在高植物蛋白饲料中添加胆固醇、牛磺酸和大豆皂甙对大菱鲆生长性能和胆固醇代谢的影响[D]. 中国海洋大学, 2012.

[136] Zhao H X, Peng K, Wang G X, et al. Metabolic changes, antioxidant status, immune response and resistance to ammonia stress in juvenile yellow catfish (Pelteobagrus fulvidraco) fed diet supplemented with sodium butyrate[J]. Aquaculture, 2021, 536: 736441.

[137] 赵红霞, 乔国贤, 黄燕华, 等. 饲料添加N-氨甲酰谷氨酸对黄颡鱼幼鱼生长性能、体成分、血清生化指标和抗氨氮应激能力的影响[J]. 动物营养学报, 2019, 31(12): 5625-5634.

[138] 陈智. 低温胁对荷那龙罗非鱼血液生理生化指标的影响[D]. 广东海洋大学, 2011.

[139] 郭志勋, 林黑着, 徐力文, 等. 饲料中添加半乳低聚糖对军曹鱼生长、部分血清免疫和生化因子的影响[J]. 南方水产科学, 2011, 7(01): 56-61.

[140] Y?lmaz S, Ergün S, ?elik E S. Effect of Dietary Spice Supplementations on Welfare Status of Sea Bass, Dicentrarchus labrax L.[J]. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2016, 86(1): 229-237.

[141] Azime K G, Durali D, Mesut U, et al. Effect of mixed use of thyme and fennel oils on biochemical properties and electrolytes in rainbow trout as a response to Yersinia ruckeri infection[J]. Acta Veterinaria Brno, 2013, 82(3): 297-302.

[142] Martins N, Diógenes A F, Magalh?es R, et al. Dietary taurine supplementation affects lipid metabolism and improves the oxidative status of European seabass (Dicentrarchus labrax) juveniles[J]. Aquaculture, 2021, 531: 735820.

[143] 曲木, 黄成, 张宝龙, 等. 复方中草药对黄颡鱼生长、肉质及血清中补体C3、补体C4含量的影响[J]. 中国饲料, 2018,19: 74-79.

[144] 孟兆娜, 陈玉春, 刘敏. 复方中草药对镜鲤(Cyprinus carpio var. specularis)幼鱼非特异性免疫功能的影响[J]. 东北农业大学学报, 2011, 42(03): 54-60.

[145] 李华, 张太娥, 李强. 复方中草药对大菱鲆非特异性免疫力的影响[J]. 大连海洋大学学报, 2013, 28(02): 115-120.

[146] Haimanti B, Xiao Q, Lun L M. Toxicity studies of nonylphenol on rosy barb (Puntius conchonious): A biochemical and histopathological evaluation[J]. Tissue and Cell, 2008, 40(4): 243-249.

[147] Sini?a P, Bartolo O, Krajnovi?-Ozreti? M. Cytosolic aspartate aminotransferase from the grey mullet (Mugil auratus Risso) red muscle: Isolation and properties[J]. International Journal of Biochemistry and Cell Biology, 1996, 28(8): 873-881.

[148] Hoseini S M, Rajabiesterabadi H, Kordrostami S. Chronic exposure of Rutilus rutilus caspicus fingerlings to ambient copper: Effects on food intake, growth performance, biochemistry and stress resistance.[J]. Toxicology and industrial health, 2016, 32(2): 375-383.

[149] Seyyed M H, Morteza Y. Beneficial effects of thyme (Thymus vulgaris) extract on oxytetracycline-induced stress response, immunosuppression, oxidative stress and enzymatic changes in rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture Nutrition, 2019, 25(2): 298-309.

[150] Wiegertjes G F, RenéJ M S, Parmentier H K, et . Immunogenetics of disease resistance in fish: A comparative approach[J]. Developmental and Comparative Immunology,1996,20(6):365-381.

[151] Magnadóttir Bergljót. Innate immunity of fish (overview).[J]. Fish & shellfish immunology, 2006, 20(2): 137-151.

[152] 高桂平. 日粮中添加4种传统中药方剂对吉富罗非鱼幼鱼的相关非特异性免疫和生长指标的影响[D]. 广西大学, 2018.

[153] Rishikesh S D, Tilak D, Dipesh D, et al. Metabolic and cellular stress responses of catfish, Horabagrus brachysoma (Günther) acclimated to increasing temperatures[J]. Journal of Thermal Biology, 2017, 65: 32-40.

[154] Bundit T, Bonnie J S, Thomas C, et al. Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L.[J]. Aquaculture, 2000, 182(3): 317-327.

[155] Verma A K, Pal A K, Manush S M, et al. Persistent sub-lethal chlorine exposure elicits the temperature induced stress responses in Cyprinus carpio early fingerlings[J]. Pesticide Biochemistry and Physiology, 2006, 87(3): 229-237.

[156] Mourente G, D??az-Salvago E, Bell J G, et al. Increased activities of hepatic antioxidant defence enzymes in juvenile gilthead sea bream (Sparus aurata L.) fed dietary oxidised oil: attenuation by dietary vitamin E[J]. Aquaculture, 2002, 214(1): 343-361.

[157] Jiang W D, Wen H L, Liu Y, et al. Enhanced muscle nutrient content and flesh quality, resulting from tryptophan, is associated with anti-oxidative damage referred to the Nrf2 and TOR signalling factors in young grass carp (Ctenopharyngodon idella): Avoid tryptophan deficiency or excess[J]. Food Chemistry, 2016, 199: 210-219.

[158] Liu G, Liu H K, Han D, et al. Effects of dietary Arthrospira platensis supplementation on the growth performance, antioxidation and immune related-gene expression in yellow catfish (Pelteobagrus fulvidraco)[J]. Aquaculture Reports, 2020, 17: 100297.

[159] Wang X D, Shen Z H, Wang C L, et al. Dietary supplementation of selenium yeast enhances the antioxidant capacity and immune response of juvenile Eriocheir Sinensis under nitrite stress[J]. Fish and Shellfish Immunology, 2019, 87: 22-31.

[160] Zhang P Y, Fu L L, Liu H K, et al. Effects of inosine 5′-monophosphate supplementation in high fishmeal and high soybean diets on growth, immune-related gene expression in gibel carp (Carassius auratus gibelio var. CAS Ⅲ), and its challenge against Aeromonas hydrophila infection[J]. Fish and Shellfish Immunology, 2018, 86: 913-921.

[161] Rashidian G, Boldaji J T, Rainis S, et al. Oregano (Origanum vulgare) Extract Enhances Zebrafish (Danio rerio) Growth Performance, Serum and Mucus Innate Immune Responses and Resistance against Aeromonas hydrophila Challenge[J]. Animals, 2021, 11(2): 299.

[162] Ghasem M, Gholamreza R, Hien V D, et al. Oregano (Origanum vulgare), St John's-wort (Hypericum perforatum), and lemon balm (Melissa officinalis) extracts improved the growth rate, antioxidative, and immunological responses in Nile tilapia (Oreochromis niloticus) infected with Aeromonas hydrophila[J]. Aquaculture Reports, 2020, 18: 100445.

[163] Abdel-Latif H M R, Abdel-Tawwab M, Khafaga A F, et al. Dietary origanum essential oil improved antioxidative status, immune-related genes, and resistance of common carp (Cyprinus carpio L.) to Aeromonas hydrophila infection[J]. Fish and Shellfish Immunology, 2020, 104: 1-7.

[164] Hosna G, Nicky B, Alan L. In vitro antibacterial activity of four nano‐encapsulated herbal essential oils against three bacterial fish pathogens[J]. Aquaculture Research, 2019, 50(3): 871-875.

[165] Hasan B, Osman S, Tahsin K, et al. Antibacterial activity and composition of essential oils from Origanum , Thymbra and Satureja species with commercial importance in Turkey[J]. Food Control, 2004, 15(3): 169-172.

中图分类号:

 S96    

开放日期:

 2021-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式