- 无标题文档
查看论文信息

中文题名:

 作物根际与原生动物联合筛选驱动的细菌群落促生机制研究    

姓名:

 桂颖    

学号:

 2022103072    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090301    

学科名称:

 农学 - 农业资源利用 - 土壤学    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 南京农业大学    

院系:

 资源与环境科学学院    

专业:

 土壤学    

研究方向:

 原生动物与土壤健康    

第一导师姓名:

 熊武    

第一导师单位:

 南京农业大学    

完成日期:

 2025-05-27    

答辩日期:

 2025-05-27    

外文题名:

 Study on the Growth-Promoting Mechanism of Rhizosphere Bacterial Communities Driven by Combined Selection of Crop Roots and Protozoa    

中文关键词:

 根际细菌群落 ; 土壤原生动物 ; 联合筛选 ; 碳氮循环 ; 时间序列分析    

外文关键词:

 Rhizosphere bacterial community ; Soil protozoa ; Joint screening ; Carbon and nitrogen cycles ; Time series analysis    

中文摘要:

近年来,如何利用微生物资源提升作物产量、减少化肥依赖,成为农业可持续发展的关键课题。根际微生物群落在作物生长和土壤功能中具有重要作用,其中包括细菌、真菌和原生动物等,它们通过参与物质循环和能量流动影响植物健康。传统研究多关注植物对根际细菌的筛选,但土壤原生动物作为微生物捕食者,也能显著调节群落结构,进而影响根际生态过程。本研究以番茄作物的根际细菌群落为研究对象,结合室内盆栽实验与扩增子分析,系统探讨了植物根际单一筛选、根际与不同原生动物联合筛选、根际与不同原生动物联合迭代筛选过程中细菌群落的动态变化,探明细菌群落演替如何反馈影响植物生长。主要结果如下:

在番茄根际连续接种三季细菌群落,植株的表型呈现出先促进后抑制的动态变化。随着筛选代数增加,根际细菌群落的多样性逐代升高,群落结构逐步分化,物种组成显著变化。第一代中植物根际促生菌(如Pseudomonas、Azospirillum等)富集,显著促进植株健康生长;而随着筛选代数增加,根际促生菌的相对丰度下降,Paulitubacter等菌群占据优势,其促生潜力减弱,植物生长受限。功能层面上,根际筛选增强了微生物群落的碳代谢潜力,但削弱了部分氮代谢通路。因此,根际连续筛选通过重塑微生物群落结构以及影响碳氮循环功能协同驱动了植物促生效应由增强向减弱的转变。

在番茄根际分别引入细菌群落与不同原生动物(肾形虫Colpoda inflata与鞭毛虫 Flectomonas ekelundi)均可促进植物生长,其中C. inflata处理组的促生效果更为显著。两种原生动物的加入均未显著改变根际细菌群落的整体多样性、群落结构以及群落组成。以地上部生物量为变量进行随机森林预测分析,Flavisolibacter、Microvirga 和 Arenimonas 是贡献度最大的关键菌属,其中Arenimonas 的丰度与地上部生物量呈正相关,该属在C. inflata处理中在根际显著富集。此外,两种原生动物均能提高根际氮循环相关功能基因的丰度:其中C. inflata显著增强了硝酸盐还原和固氮相关基因,而F. ekelundi 主要促进固氮基因的表达。因此,原生动物通过调节关键功能菌属的丰度并增强氮循环功能,协同促进植物生长。

根际与原生动物的联合迭代筛选过程中,番茄地上部生物量随筛选代数增加逐步下降,但原生动物的引入可缓解筛选带来的生长抑制效应。不同原生动物处理和筛选代数均显著影响植株表型,但二者之间的交互作用不显著。联合迭代筛选三季,根际细菌群落的多样性显著提升,群落结构与物种组成变化,并扩大了不同原生动物处理间的群落差异。连续筛选亦导致土壤潜在病原菌数量增加,而C. inflata能持续有效抑制。随机森林预测分析表明,关键微生物Brevundimonas、Exguobacterium、Massilia、Stenotrophomonas的丰度与地上部鲜重呈正相关;Arthrobacter和Nocardioides的丰度与地上部鲜重呈负相关。C. inflata处理组普遍富集与地上部鲜重呈正相关的菌属,而F. ekelundi处理组仅在初期显著富集。功能层面上,碳代谢功能基因在不同处理间差异不显著;而氮循环相关基因则在迭代过程中呈现“富集—减少—再富集”的动态变化,C. inflata 处理组的波动幅度更大。综合来看,原生动物处理与根际迭代筛选均可影响根际微生物群落组成与功能,原生动物主要通过富集有益微生物、调节功能基因表达,缓解植物生长抑制并促进植株健康生长。

综上所述,本研究首次系统揭示了作物根际与土壤原生动物联合迭代筛选对细菌群落结构与功能的动态重塑,明确了原生动物在调控根际细菌群落组成、功能基因表达及促进植物生长中的协同作用,发现其可有效缓解连续筛选带来的微生物失衡与植物生长抑制。未来研究可融合宏基因组、转录组、代谢组等多组学技术,拓展原生动物多样性研究,构建“原生动物-微生物-植物”互作网络,深入解析影响机制,并探索在微生物有机肥中添加原生动物的新型策略,为持续提升植物健康与土壤功能提供理论支撑与应用潜力。

外文摘要:

In recent years, how to utilize microbial resources to increase crop yields and reduce the reliance on chemical fertilizers has become a key issue for sustainable agricultural development. The rhizosphere microbial community plays a significant role in plant growth and soil functions, including bacteria, fungi, and protozoa, which affect plant health by participating in material cycling and energy flow. Traditional research has mainly focused on the selection of rhizosphere bacteria by plants, but soil protozoa, as microbial predators, can also significantly regulate community structure and thereby influence rhizosphere ecological processes. This study took the rhizosphere bacterial community of tomato crops as the research object, combined pot experiments in the laboratory with amplicon analysis, and systematically explored the dynamic changes of the bacterial community during the processes of single rhizosphere screening, rhizosphere and different protozoa combined screening, and rhizosphere and different protozoa combined iterative screening, to clarify how the bacterial community succession feedback affects plant growth. The main results are as follows:

1. After continuous inoculation of the rhizosphere bacterial community in tomato for three seasons, the plant phenotype showed a dynamic change from promotion to inhibition. With the increase of screening generations, the diversity of the rhizosphere bacterial community gradually increased, the community structure gradually differentiated, and the species composition significantly changed. In the first generation, plant growth-promoting rhizobacteria (such as Pseudomonas, Azospirillum, etc.) were enriched, significantly promoting the healthy growth of plants; however, with the increase of screening generations, the relative abundance of rhizosphere growth-promoting bacteria decreased, and Paulitubacter and other bacterial groups became dominant, with weakened growth-promoting potential and restricted plant growth. Functionally, rhizosphere screening enhanced the carbon metabolism potential of the microbial community but weakened some nitrogen metabolism pathways. Therefore, continuous rhizosphere screening drove the transformation of the plant growth-promoting effect from enhancement to weakening by reshaping the microbial community structure and influencing the carbon and nitrogen cycling functions.

2. Introducing the rhizosphere bacterial community and different protozoa (Colpoda inflata and Flectomonas ekelundi) into the tomato rhizosphere could promote plant growth, with the C. inflata treatment group showing a more significant growth-promoting effect. The addition of the two protozoa did not significantly change the overall diversity, community structure, and composition of the rhizosphere bacterial community. Using aboveground biomass as a variable for random forest prediction analysis, Flavisolibacter, Microvirga, and Arenimonas were the key genera with the greatest contribution. Among them, the abundance of Arenimonas was positively correlated with aboveground biomass, and this genus was significantly enriched in the rhizosphere under the C. inflata treatment. In addition, both protozoa could increase the abundance of nitrogen cycling-related functional genes in the rhizosphere: C. inflata significantly enhanced nitrate reduction and nitrogen fixation-related genes, while F. ekelundi mainly promoted the expression of nitrogen fixation genes. Therefore, protozoa promoted plant growth by regulating the abundance of key functional genera and enhancing nitrogen cycling functions.

3. During the process of combined iterative screening of the rhizosphere and protozoa, the aboveground biomass of tomato gradually decreased with the increase of screening generations, but the introduction of protozoa could alleviate the growth inhibition effect caused by screening. Different protozoa treatments and screening generations significantly affected plant phenotypes, but the interaction between them was not significant. After three seasons of combined iterative screening, the diversity of the rhizosphere bacterial community significantly increased, the community structure and species composition changed, and the differences between different protozoa treatments expanded. Continuous screening also led to an increase in the number of potential soil pathogenic bacteria, but C. inflata could continuously and effectively inhibit them. Random forest prediction analysis indicated that the abundance of key microorganisms such as Brevundimonas, Exiguobacterium, Massilia, and Stenotrophomonas was positively correlated with the fresh weight of the aboveground parts; while the abundance of Arthrobacter and Nocardioides was negatively correlated with the fresh weight of the aboveground parts. The C. inflata treatment group generally enriched the bacterial genera positively correlated with the fresh weight of the aboveground parts, while the F. ekelundi treatment group only significantly enriched them in the initial stage. Functionally, there was no significant difference in carbon metabolism functional genes among different treatments; however, nitrogen cycle-related genes showed a dynamic change of "enrichment - reduction - re-enrichment" during the iterative process, with a greater fluctuation in the C. inflata treatment group. Overall, the treatment with protozoa and the iterative screening of the rhizosphere can both affect the composition and function of the rhizosphere microbial community. Protozoa mainly promote the healthy growth of plants by enriching beneficial microorganisms and regulating the expression of functional genes, thereby alleviating the inhibition of plant growth.

In conclusion, this study systematically revealed for the first time the dynamic reshaping of bacterial community structure and function by the joint iterative screening of crop rhizosphere and soil protozoa, clarified the synergistic role of protozoa in regulating the composition of rhizosphere bacterial communities, the expression of functional genes, and promoting plant growth, and found that it can effectively alleviate the microbial imbalance and plant growth inhibition caused by continuous screening. Future research can integrate multi-omics technologies such as metagenomics, transcriptomics, and metabolomics to expand the study of protozoa diversity, construct the "protozoa-microbe-plant" interaction network, deeply analyze the influencing mechanisms, and explore new strategies for adding protozoa to microbial organic fertilizers, providing theoretical support and application potential for continuously improving plant health and soil function.

参考文献:

[1]曹志平, 陈国康, 张凯, 等, 2005. 不同土壤培肥措施对华北高产农田原生动物丰度的影响[J]. 生态学报(11): 200-204.

[2]陈小云, 刘满强, 胡锋, 等, 2007. 根际微型土壤动物——原生动物和线虫的生态功能[J]. 生态学报(8): 3132-3143.

[3]郭非凡, 史雅娟, 孟凡乔, 等, 2006. 典型POPs物质对土壤原生动物丰度的影响[J]. 生态学报(1): 70-74.

[4]刘京伟, 李香真, 姚敏杰, 2021. 植物根际微生物群落构建的研究进展[J]. 微生物学报, 61(2): 231-248.

[5]穆文强, 康慎敏, 李平兰, 2022. 根际促生菌对植物的生长促进作用及机制研究进展[J]. 生命科学, 34(2): 118-127.

[6]彭涛, 张斯仪, 王璐婷, 等, 2020. 阿米巴-细菌互作:进化、生态与环境效应[J]. 微生物学报, 60(5): 864-874.

[7]申建波, 白洋, 韦中, 等, 2021. 根际生命共同体:协调资源、环境和粮食安全的学术思路与交叉创新[J]. 土壤学报, 58(4): 805-813.

[8]石妮, 马斯琳, 陈雯莉, 等, 2023. 原生动物-病原菌互作与土壤健康综述[J]. 农业环境科学学报, 42(3): 481-489.

[9]韦中, 宋宇琦, 熊武, 等, 2021. 土壤原生动物——研究方法及其在土传病害防控中的作用[J]. 土壤学报, 58(1): 14-22.

[10]夏铁骑, 2009. 荧光原位杂交技术及其在微生物生态学中的应用[J]. 新乡学院学报(自然科学版), 26(2): 52-54.

[11]荀卫兵, 张瑞福, 沈其荣, 2024. 根际微生物组功能补偿装配的概念、内涵和展望[J]. 土壤学报, 61(6): 1481-1491.

[12]袁仁文, 刘琳, 张蕊, 等, 2020. 植物根际分泌物与土壤微生物互作关系的机制研究进展[J]. 中国农学通报, 36(2): 26-35.

[13]张四海, 曹志平, 胡婵娟, 2011. 添加秸秆碳源对土壤微生物生物量和原生动物丰富度的影响[J]. 中国生态农业学报, 19(6): 1283-1288.

[14]赵峰, 徐奎栋, 2010. 土壤原生动物研究方法[J]. 生态学杂志, 29(5): 1028-1034.

[15]朱永官, 陈保冬, 付伟, 2022. 土壤生态学研究前沿[J]. 科技导报, 40(3): 25-31.

[16]Abbo S, van-Oss R P, Gopher A, et al., 2014. Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes[J]. TRENDS IN PLANT SCIENCE, 19(6): 351-360.

[17]Abd H, Valeru S P, Sami S M, et al., 2010. Interaction between Vibrio mimicus and Acanthamoeba castellanii[J]. Environmental Microbiology Reports, 2(1): 166-171.

[18]Adékambi T, Ben Salah S, Khlif M, et al., 2006. Survival of Environmental Mycobacteria in Acanthamoeba polyphaga[J]. Applied and Environmental Microbiology, 72(9): 5974-5981.

[19]Alam K, Mazumder A, Sikdar S, et al., 2022. Streptomyces: The biofactory of secondary metabolites[J]. Frontiers in Microbiology, 13: 968053.

[20]Amaral-Zettler L A, McCliment E A, Ducklow H W, et al., 2009. A Method for Studying Protistan Diversity Using Massively Parallel Sequencing of V9 Hypervariable Regions of Small-Subunit Ribosomal RNA Genes[J]. PLOS ONE, 4(7): e6372.

[21]Amin S A, Hmelo L R, van Tol H M, et al., 2015. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria[J]. Nature, 522(7554): 98-101.

[22]Andrews J H, Harris R F, 1986. r- and K-Selection and Microbial Ecology[M]//Marshall K C. Advances in Microbial Ecology. Boston, MA: Springer US: 99-147.

[23]Antimicrobial Resistance Collaborators, 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis[J]. Lancet (London, England), 399(10325): 629-655.

[24]Archer E, 2025. EricArcher/rfPermute[CP/OL]. (2025-04-02)[2025-04-07]. https://github.com/EricArcher/rfPermute.

[25]Badri D V, Chaparro J M, Zhang R, et al., 2013. Application of Natural Blends of Phytochemicals Derived from the Root Exudates of Arabidopsis to the Soil Reveal That Phenolic-related Compounds Predominantly Modulate the Soil Microbiome[J]. Journal of Biological Chemistry, 288(7): 4502-4512.

[26]Badri D V, Vivanco J M, 2009. Regulation and function of root exudates[J]. Plant, Cell & Environment, 32(6): 666-681.

[27]Baetz U, Martinoia E, 2014. Root exudates: the hidden part of plant defense[J]. Trends in Plant Science, 19(2): 90-98.

[28]Bais H P, Fall R, Vivanco J M, 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant physiology, 134(1): 307-319.

[29]Baltar F, Palovaara J, Unrein F, et al., 2016. Marine bacterial community structure resilience to changes in protist predation under phytoplankton bloom conditions[J]. The ISME Journal, 10(3): 568-581.

[30]Batstone R T, O’Brien A M, Harrison T L, et al., 2020. Experimental evolution makes microbes more cooperative with their local host genotype[J]. Science, 370(6515): 476-478.

[31]Bellés-Sancho P, Liu Y, Heiniger B, et al., 2022. A novel function of the key nitrogen-fixation activator NifA in beta-rhizobia: Repression of bacterial auxin synthesis during symbiosis[J]. Frontiers in Plant Science, 13.

[32]Berendsen R L, Pieterse C M J, Bakker P A H M, 2012. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 17(8): 478-486.

[33]Berendsen R L, Vismans G, Yu K, et al., 2018. Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. The ISME Journal, 12(6): 1496-1507.

[34]Bittleston L S, 2024. Connecting microbial community assembly and function[J]. Current Opinion in Microbiology, 80: 102512.

[35]Bjorbækmo M F M, Evenstad A, Røsæg L L, et al., 2020. The planktonic protist interactome: where do we stand after a century of research?[J]. The ISME Journal, 14(2): 544-559.

[36]Blom J F, Horňák K, Šimek K, et al., 2010. Aggregate formation in a freshwater bacterial strain induced by growth state and conspecific chemical cues[J]. Environmental Microbiology, 12(9): 2486-2495.

[37]Bonaterra A, Badosa E, Daranas N, et al., 2022. Bacteria as Biological Control Agents of Plant Diseases[J]. Microorganisms, 10(9): 1759.

[38]Bonkowski M, 2004. Protozoa and plant growth: the microbial loop in soil revisited[J]. New Phytologist, 162(3): 617-631.

[39]Bonkowski M, Brandt F, 2002. Do soil protozoa enhance plant growth by hormonal effects?[J]. Soil Biology and Biochemistry, 34(11): 1709-1715.

[40]Bouffaud M L, Kyselková M, Gouesnard B, et al., 2012. Is diversification history of maize influencing selection of soil bacteria by roots?[J]. Molecular Ecology, 21(1): 195-206.

[41]Bradford M M, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical biochemistry, 72(1-2): 248-254.

[42]Bukin Y S, Mikhailov I S, Petrova D P, et al., 2023. The effect of metabarcoding 18S rRNA region choice on diversity of microeukaryotes including phytoplankton[J]. World Journal of Microbiology and Biotechnology, 39(9): 229.

[43]Caron D A, Alexander H, Allen A E, et al., 2017. Probing the evolution, ecology and physiology of marine protists using transcriptomics[J]. Nature Reviews Microbiology, 15(1): 6-20.

[44]Chaparro J M, Badri D V, Vivanco J M, 2014. Rhizosphere microbiome assemblage is affected by plant development[J]. The ISME Journal, 8(4): 790-803.

[45]Chevalier S, Bouffartigues E, Bodilis J, et al., 2017. Structure, function and regulation of Pseudomonas aeruginosa porins[J]. FEMS Microbiology Reviews, 41(5): 698-722.

[46]Classen A T, Boyle S I, Haskins K E, et al., 2003. Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils[J]. FEMS Microbiology Ecology, 44(3): 319-328.

[47]Claussen M, Schmidt S, 2017. Locomotion pattern and pace of free-living amoebae – a microscopic study[M]. 223-230.

[48]Curtis E J C, Durrant K, Harman M M I, 1975. Nitrification in rivers in the Trent basin[J]. Water Research, 9(3): 255-268.

[49]Dawson C, 2024. ggprism: A “ggplot2” Extension Inspired by “GraphPad Prism”[CP/OL]. (2024-03-21)[2025-04-07]. https://cran.r-project.org/web/packages/ggprism/index.html.

[50]De Jonckheere J F, Brown S, Dobson P J, et al., 2001. The amoeba-to-flagellate transformation test is not reliable for the diagnosis of the genus Naegleria. Description of three new Naegleria spp.[J]. Protist, 152(2): 115-121.

[51]De Weert S, Vermeiren H, Mulders I H M, et al., 2002. Flagella-Driven Chemotaxis Towards Exudate Components Is an Important Trait for Tomato Root Colonization by Pseudomonas fluorescens[J]. Molecular Plant-Microbe Interactions®, 15(11): 1173-1180.

[52]Debray R, Herbert R A, Jaffe A L, et al., 2022. Priority effects in microbiome assembly[J]. Nature Reviews Microbiology, 20(2): 109-121.

[53]Denoncourt A M, Paquet V E, Charette S J, 2014. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria[J]. Frontiers in Microbiology, 5.

[54]Dini-Andreote F, Stegen J C, van Elsas J D, et al., 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession[J]. Proceedings of the National Academy of Sciences, 112(11): E1326-E1332.

[55]Dixon P, 2003. VEGAN, a package of R functions for community ecology[J]. Journal of Vegetation Science, 14(6): 927-930.

[56]Dopheide A, Lear G, Stott R, et al., 2011. Preferential Feeding by the Ciliates Chilodonella and Tetrahymena spp. and Effects of These Protozoa on Bacterial Biofilm Structure and Composition[J]. Applied and Environmental Microbiology, 77(13): 4564-4572.

[57]Dotaniya M L, Meena V D, 2015. Rhizosphere Effect on Nutrient Availability in Soil and Its Uptake by Plants: A Review[J]. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85(1): 1-12.

[58]Dunthorn M, Lipps J H, Dolan J R, et al., 2015. Ciliates—Protists with complex morphologies and ambiguous early fossil record[J]. Marine Micropaleontology, 119: 1-6.

[59]El-Etr S H, Margolis J J, Monack D, et al., 2009. Francisella tularensis Type A Strains Cause the Rapid Encystment of Acanthamoeba castellanii and Survive in Amoebal Cysts for Three Weeks Postinfection[J]. Applied and Environmental Microbiology, 75(23): 7488-7500.

[60]Embley T M, Finlay B J, Thomas R H, et al., 1992. The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaeobacterial endosymbiont[J]. Microbiology, 138(7): 1479-1487.

[61]Essarioui A, LeBlanc N, Kistler H C, et al., 2017. Plant Community Richness Mediates Inhibitory Interactions and Resource Competition between Streptomyces and Fusarium Populations in the Rhizosphere[J]. Microbial Ecology, 74(1): 157-167.

[62]Fenchel T, 1986. The Ecology of Heterotrophic Microflagellates[M]//Marshall K C. Advances in Microbial Ecology. Boston, MA: Springer US: 57-97.

[63]Fields B, Friman V P, 2022. Microbial eco-evolutionary dynamics in the plant rhizosphere[J]. Current Opinion in Microbiology, 68: 102153.

[64]Fierer N, Strickland M S, Liptzin D, et al., 2009. Global patterns in belowground communities[J]. Ecology Letters, 12(11): 1238-1249.

[65]Foissner W, 1991. Basic light and scanning electron microscopic methods for taxonomic studies of ciliated protozoa[J]. European Journal of Protistology, 27(4): 313-330.

[66]Foissner W, 1999. Soil protozoa as bioindicators: pros and cons, methods, diversity, representative examples[M]//Paoletti M G. Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes. Amsterdam: Elsevier: 95-112.

[67]Foissner W, 2014. An update of ‘basic light and scanning electron microscopic methods for taxonomic studies of ciliated protozoa’[J]. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_1): 271-292.

[68]Freda Kemp, 2003. Modern Applied Statistics with S[EB/OL]. [2025-04-07]. https://link.springer.com/book/10.1007/978-0-387-21706-2.

[69]Fried J, Ludwig W, Psenner R, et al., 2002. Improvement of Ciliate Identification and Quantification: a New Protocol for Fluorescence In Situ Hybridization (FISH) in Combination with Silver Stain Techniques[J]. Systematic and Applied Microbiology, 25(4): 555-571.

[70]Futschik M E, Carlisle B, 2005. Noise-robust soft clustering of gene expression time-course data[J]. Journal of Bioinformatics and Computational Biology, 3(4): 965-988.

[71]Gao Z, Karlsson I, Geisen S, et al., 2019. Protists: Puppet Masters of the Rhizosphere Microbiome[J]. TRENDS IN PLANT SCIENCE, 24(2): 165-176.

[72]Garcia J, Gannett M, Wei L, et al., 2022. Selection pressure on the rhizosphere microbiome can alter nitrogen use efficiency and seed yield in Brassica rapa[J]. Communications Biology, 5(1): 1-11.

[73]Garland J L, Mills A L, 1991. Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Utilization[J]. Applied and Environmental Microbiology.

[74]Geisen S, Hu S, dela Cruz T E E, et al., 2021. Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes[J]. The ISME Journal, 15(2): 618-621.

[75]Geisen S, Mitchell E A D, Adl S, et al., 2018. Soil protists: a fertile frontier in soil biology research[J]. FEMS MICROBIOLOGY REVIEWS, 42(3): 293-323.

[76]Geisen S, Mitchell E A D, Wilkinson D M, et al., 2017a. Soil protistology rebooted: 30 fundamental questions to start with[J]. Soil Biology and Biochemistry, 111: 94-103.

[77]Geisen S, Mitchell E A D, Wilkinson D M, et al., 2017b. Soil protistology rebooted: 30 fundamental questions to start with[J]. Soil Biology and Biochemistry, 111: 94-103.

[78]Geisen S, Tveit A T, Clark I M, et al., 2015. Metatranscriptomic census of active protists in soils[J]. The ISME journal, 9(10): 2178-2190.

[79]Giovannoni S J, DeLong E F, Olsen G J, et al., 1988. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells[J]. Journal of Bacteriology, 170(2): 720-726.

[80]Glöckner F O, Yilmaz P, Quast C, et al., 2017. 25 years of serving the community with ribosomal RNA gene reference databases and tools[J]. Journal of Biotechnology, 261: 169-176.

[81]Goh Y F, Røder H L, Chan S H, et al., 2023. Associational Resistance to Predation by Protists in a Mixed Species Biofilm[J]. Applied and Environmental Microbiology, 89(2): e01741-22.

[82]Gómez Expósito R, Postma J, Raaijmakers J M, et al., 2015. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils[J]. Frontiers in Microbiology, 6.

[83]Granato E T, Meiller-Legrand T A, Foster K R, 2019. The Evolution and Ecology of Bacterial Warfare[J]. Current Biology, 29(11): R521-R537.

[84]Griffiths B S, Bonkowski M, Roy J, et al., 2001. Functional stability, substrate utilisation and biological indicators of soils following environmental impacts[J]. Applied Soil Ecology, 16(1): 49-61.

[85]Guillou L, Bachar D, Audic S, et al., 2012. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy[J]. Nucleic acids research, 41(D1): D597-D604.

[86]Guo S, Tao C, Jousset A, et al., 2022. Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health[J]. ISME JOURNAL, 16(8): 1932-1943.

[87]Hadley Wickham, 2016. ggplot2: Elegant Graphics for Data Analysis | SpringerLink[EB/OL]. [2025-04-07]. https://link.springer.com/book/10.1007/978-3-319-24277-4.

[88]Haichar F el Z, Santaella C, Heulin T, et al., 2014. Root exudates mediated interactions belowground[J]. Soil Biology and Biochemistry, 77: 69-80.

[89]Hansen L B S, Ren D, Burmølle M, et al., 2017. Distinct gene expression profile of Xanthomonas retroflexus engaged in synergistic multispecies biofilm formation[J]. The ISME journal, 11(1): 300-303.

[90]Hawxhurst C J, Micciulla J L, Bridges C M, et al., 2023. Soil Protists Can Actively Redistribute Beneficial Bacteria along Medicago truncatula Roots[J]. Applied and Environmental Microbiology, 89(3): e01819-22.

[91]Hogle S L, Ruusulehto L, Cairns J, et al., 2023. Localized coevolution between microbial predator and prey alters community-wide gene expression and ecosystem function[J]. The ISME Journal, 17(4): 514-524.

[92]Hoque M M, Espinoza-Vergara G, McDougald D, 2023. Protozoan predation as a driver of diversity and virulence in bacterial biofilms[J]. FEMS Microbiology Reviews, 47(4): fuad040.

[93]Hu J, Yang T, Friman V P, et al., 2021. Introduction of probiotic bacterial consortia promotes plant growth via impacts on the resident rhizosphere microbiome[J]. Proceedings of the Royal Society B: Biological Sciences, 288(1960): 20211396.

[94]Hünninghaus M, Koller R, Kramer S, et al., 2017. Changes in bacterial community composition and soil respiration indicate rapid successions of protist grazers during mineralization of maize crop residues[J]. Pedobiologia, 62: 1-8.

[95]İnceoğlu Ö, Al-Soud W A, Salles J F, et al., 2011. Comparative Analysis of Bacterial Communities in a Potato Field as Determined by Pyrosequencing[J]. PLOS ONE, 6(8): e23321.

[96]Ji Y Y, Zhang B, Zhang P, et al., 2023. Rhizobial migration toward roots mediated by FadL-ExoFQP modulation of extracellular long-chain AHLs[J]. The ISME Journal, 17(3): 417-431.

[97]Jjemba P K, 2001. The Interaction of Protozoa with their Potential Prey Bacteria in the Rhizosphere[J]. Journal of Eukaryotic Microbiology, 48(3): 320-324.

[98]Jones D L, Nguyen C, Finlay R D, 2009. Carbon flow in the rhizosphere: carbon trading at the soil–root interface[J]. Plant and Soil, 321(1): 5-33.

[99]Jousset A, 2012. Ecological and evolutive implications of bacterial defences against predators[J]. Environmental Microbiology, 14(8): 1830-1843.

[100]Jousset A, Lara E, Wall L G, et al., 2006. Secondary Metabolites Help Biocontrol Strain Pseudomonas fluorescens CHA0 To Escape Protozoan Grazing[J]. Applied and Environmental Microbiology, 72(11): 7083-7090.

[101]Jürgens K, Matz C, 2002. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria.[J]. Antonie van Leeuwenhoek, 81(1/4): 413-434.

[102]Kassambara A, 2023. ggpubr: “ggplot2” Based Publication Ready Plots[CP/OL]. (2023-02-10)[2025-04-07]. https://cran.r-project.org/web/packages/ggpubr/index.html.

[103]Kavitha T R, Chandana R, Chethan D, et al., 2025. Alpha Diversity Analysis Using Shannon Index for Each Species in the Rhizosphere Soil[M]//Dharumadurai D, Narayanan A S. Plant Microbiome Engineering. New York, NY: Springer US: 293-298.

[104]Kehe J, Kulesa A, Ortiz A, et al., 2019. Massively parallel screening of synthetic microbial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 116(26): 12804-12809.

[105]Kolde R, 2019. pheatmap: Pretty Heatmaps[CP/OL]. (2019-01-04)[2025-04-07]. https://cran.r-project.org/web/packages/pheatmap/index.html.

[106]Koller R, Rodriguez A, Robin C, et al., 2013. Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants[J]. New Phytologist, 199(1): 203-211.

[107]Krinos A I, Bowers R M, Rohwer R R, et al., 2024. Time-series metagenomics reveals changing protistan ecology of a temperate dimictic lake[J]. Microbiome, 12(1): 133.

[108]Kuypers M M M, Marchant H K, Kartal B, 2018. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 16(5): 263-276.

[109]Kwak M J, Kong H G, Choi K, et al., 2018. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology, 36(11): 1100-1109.

[110]Lahr D J G, Bosak T, Lara E, et al., 2015. The Phanerozoic diversification of silica-cycling testate amoebae and its possible links to changes in terrestrial ecosystems[J]. PeerJ, 3: e1234.

[111]Lakna, 2018. Difference Between Aerobic and Anaerobic Fermentation[EB/OL]. (2018-05-07)[2025-04-08]. https://pediaa.com/difference-between-aerobic-and-anaerobic-fermentation/.

[112]Lambrecht E, Baré J, Chavatte N, et al., 2015. Protozoan Cysts Act as a Survival Niche and Protective Shelter for Foodborne Pathogenic Bacteria[J]. Applied and Environmental Microbiology, 81(16): 5604-5612.

[113]Lamothe J, Thyssen S, Valvano M A, 2004. Burkholderia cepacia complex isolates survive intracellularly without replication within acidic vacuoles of Acanthamoeba polyphaga[J]. Cellular Microbiology, 6(12): 1127-1138.

[114]Lena König, Cecilia Wentrup, Frederik Schulz, et al., 2019. Symbiont-Mediated Defense against Legionella pneumophila in Amoebae[J]. mBio, 10(3): 10.1128/mbio.00333-19.

[115]Lenski R E, 2003. Phenotypic and Genomic Evolution during a 20,000‐Generation Experiment with the Bacterium Escherichia coli[C]//Janick J. 1st ed. Wiley: 225-265.

[116]Lentendu G, Wubet T, Chatzinotas A, et al., 2014. Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach[J]. Molecular Ecology, 23(13): 3341-3355.

[117]Lessard E J, Martin M P, Montagnes D J S, 1996. A new method for live-staining protists with DAPI and its application as a tracer of ingestion by walleye pollock (Theragra chalcogramma (Pallas)) larvae[J]. Journal of Experimental Marine Biology and Ecology, 204(1): 43-57.

[118]Li E, de Jonge R, Liu C, et al., 2021. Rapid evolution of bacterial mutualism in the plant rhizosphere[J]. NATURE COMMUNICATIONS, 12(1): 3829.

[119]Li M, Pommier T, Yin Y, et al., 2022. Indirect reduction of Ralstonia solanacearum via pathogen helper inhibition[J]. The ISME Journal, 16(3): 868-875.

[120]Li M, Wei Z, Wang J, et al., 2019. Facilitation promotes invasions in plant-associated microbial communities[J]. Ecology Letters, 22(1): 149-158.

[121]Li Y, Chen Y, Fu Y, et al., 2024. Signal communication during microbial modulation of root system architecture[J]. Journal of Experimental Botany, 75(2): 526-537.

[122]Li Y, Huang Yulan, Ding H, et al., 2025. Effects of the plant growth-promoting rhizobacterium Zobellella sp. DQSA1 on alleviating salt-alkali stress in job’s tears seedings and its growth-promoting mechanism[J]. BMC Plant Biology, 25(1): 368.

[123]Li Y, Shao J, Xie Y, et al., 2021. Volatile compounds from beneficial rhizobacteria Bacillus spp. promote periodic lateral root development in Arabidopsis[J]. Plant, Cell & Environment, 44(5): 1663-1678.

[124]Li Z, Bai X, Jiao S, et al., 2021. A simplified synthetic community rescues Astragalus mongholicus from root rot disease by activating plant-induced systemic resistance[J]. Microbiome, 9(1): 217.

[125]Liaw A, Wiener M, 2002. Classification and regression by randomForest[J]. R News, 2(3): 18-22.

[126]Lin C, Li L J, Yang K, et al., 2025. Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance[J]. The ISME Journal, 19(1): wraf009.

[127]Lind A L, Pollard K S, 2021. Accurate and sensitive detection of microbial eukaryotes from whole metagenome shotgun sequencing[J]. Microbiome, 9(1): 58.

[128]Ling N, Wang T, Kuzyakov Y, 2022. Rhizosphere bacteriome structure and functions[J]. Nature Communications, 13(1): 836.

[129]Liu C, Wang Y, Zhou Z, et al., 2024. Protist predation promotes antimicrobial resistance spread through antagonistic microbiome interactions[J]. The ISME Journal, 18(1): wrae169.

[130]Long J J, Jahn C E, Sanchez-Hidalgo A, et al., 2018. Interactions of free-living amoebae with rice bacterial pathogens Xanthomonas oryzae pathovars oryzae and oryzicola[J]. PLoS ONE, 13(8): e0202941.

[131]Luo Y, Zhou M, Zhao Q, et al., 2020. Complete genome sequence of Sphingomonas sp. Cra20, a drought resistant and plant growth promoting rhizobacteria[J]. Genomics, 112(5): 3648-3657.

[132]Lv Z, Rønn R, Liao H, et al., 2023. Soil aggregates affect the legacy effect of copper pollution on the microbial communities[J]. Soil Biology and Biochemistry, 182: 109048.

[133]Maeda Y, Mise K, Iwasaki W, et al., 2020. Invention of Artificial Rice Field Soil: A Tool to Study the Effect of Soil Components on the Activity and Community of Microorganisms Involved in Anaerobic Organic Matter Decomposition[J]. Microbes and Environments, 35(4): ME20093.

[134]Mahé F, de Vargas C, Bass D, et al., 2017. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests[J]. Nature ecology & evolution, 1(4): 0091.

[135]Marie D, Brussaard C P D, Thyrhaug R, et al., 1999. Enumeration of Marine Viruses in Culture and Natural Samples by Flow Cytometry[J]. Applied and Environmental Microbiology, 65(1): 45-52.

[136]Marie D, Partensky F, Jacquet S, et al., 1997. Enumeration and Cell Cycle Analysis of Natural Populations of Marine Picoplankton by Flow Cytometry Using the Nucleic Acid Stain SYBR Green I[J]. Applied and Environmental Microbiology, 63(1): 186-193.

[137]Matz C, Bergfeld T, Rice S A, et al., 2004. Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing[J]. Environmental Microbiology, 6(3): 218-226.

[138]May O, Nguyen P T, Arnold F H, 2000. Inverting enantioselectivity by directed evolution of hydantoinase for improved production of L-methionine[J]. Nature Biotechnology, 18(3): 317-320.

[139]Mazzola M, De Bruijn I, Cohen M F, et al., 2009. Protozoan-Induced Regulation of Cyclic Lipopeptide Biosynthesis Is an Effective Predation Defense Mechanism for Pseudomonas fluorescens[J]. Applied and Environmental Microbiology, 75(21): 6804-6811.

[140]Mehta H H, Shamoo Y, 2020. Pathogenic Nocardia: A diverse genus of emerging pathogens or just poorly recognized?[J]. PLoS Pathogens, 16(3): e1008280.

[141]Mendes R, Garbeva P, Raaijmakers J M, 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. FEMS Microbiology Reviews, 37(5): 634-663.

[142]Mendes R, Kruijt M, de Bruijn I, et al., 2011. Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria[J]. Science, 332(6033): 1097-1100.

[143]Meyer J B, Lutz M P, Frapolli M, et al., 2010. Interplay between Wheat Cultivars, Biocontrol Pseudomonads, and Soil[J]. Applied and Environmental Microbiology, 76(18): 6196-6204.

[144]Michiels K, Vanderleyden J, Van Gool A, 1989. Azospirillum — plant root associations: A review[J]. Biology and Fertility of Soils, 8(4): 356-368.

[145]Mitchell D R, 2007. The Evolution of Eukaryotic Cilia and Flagella as Motile and Sensory Organelles[M]//Eukaryotic Membranes and Cytoskeleton: Origins and Evolution. New York, NY: Springer: 130-140.

[146]Mthethwa-Hlongwa N P, Amoah I D, Gomez A, et al., 2024. Profiling pathogenic protozoan and their functional pathways in wastewater using 18S rRNA and shotgun metagenomics[J]. Science of The Total Environment, 912: 169602.

[147]Mukherjee A, Singh B N, Kaur S, et al., 2024. Unearthing the power of microbes as plant microbiome for sustainable agriculture[J]. Microbiological Research, 286: 127780.

[148]Neal A L, Ahmad S, Gordon-Weeks R, et al., 2012. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere[J]. PloS one, 7(4): e35498.

[149]Nguyen B A T, Chen Q L, He J Z, et al., 2020. Microbial regulation of natural antibiotic resistance: Understanding the protist-bacteria interactions for evolution of soil resistome[J]. Science of The Total Environment, 705: 135882.

[150]Oliverio A M, Geisen S, Delgado-Baquerizo M, et al., 2020. The global-scale distributions of soil protists and their contributions to belowground systems[J]. Science Advances, 6(4): eaax8787.

[151]Olson R J, Zettler E R, Chisholm S W, et al., 1991. Advances in Oceanography through Flow Cytometry[M]//Demers S. Particle Analysis in Oceanography. Berlin, Heidelberg: Springer: 351-399.

[152]Park C, Shin B, Park W, 2020. Protective Role of Bacterial Alkanesulfonate Monooxygenase under Oxidative Stress[J]. Applied and Environmental Microbiology, 86(15): e00692-20.

[153]Pascual-García A, Rivett D W, Jones M L, et al., 2025. Replicating community dynamics reveals how initial composition shapes the functional outcomes of bacterial communities[J]. Nature Communications, 16(1): 3002.

[154]Peiffer J A, Spor A, Koren O, et al., 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proceedings of the National Academy of Sciences, 110(16): 6548-6553.

[155]Pérez-Rodriguez M M, Piccoli P, Anzuay M S, et al., 2020. Native bacteria isolated from roots and rhizosphere of Solanum lycopersicum L. increase tomato seedling growth under a reduced fertilization regime[J]. Scientific Reports, 10: 15642.

[156]Pfister G, Sonntag B, Posch T, 1999. Comparison of a direct live count and an improved quantitative protargol stain (QPS) in determining abundance and cell volumes of pelagic freshwater protozoa[J]. Aquatic Microbial Ecology, 18(1): 95-103.

[157]Poole P, Ramachandran V, Terpolilli J, 2018. Rhizobia: from saprophytes to endosymbionts[J]. Nature Reviews Microbiology, 16(5): 291-303.

[158]Porter J, 2004. Flow Cytometry and Environmental Microbiology[J]. Current Protocols in Cytometry, 27(1).

[159]Queck S Y, Weitere M, Moreno A M, et al., 2006. The role of quorum sensing mediated developmental traits in the resistance of Serratia marcescens biofilms against protozoan grazing[J]. Environmental Microbiology, 8(6): 1017-1025.

[160]Quince C, Walker A W, Simpson J T, et al., 2017. Shotgun metagenomics, from sampling to analysis[J]. Nature Biotechnology, 35(9): 833-844.

[161]Raaijmakers J M, Paulitz T C, Steinberg C, et al., 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms[J]. Plant and Soil, 321(1): 341-361.

[162]Raghupathi P K, Liu W, Sabbe K, et al., 2018. Synergistic Interactions within a Multispecies Biofilm Enhance Individual Species Protection against Grazing by a Pelagic Protozoan[J]. Frontiers in Microbiology, 8.

[163]Rice J, O’Connor C D, Sleigh M A, et al., 1997. Fluorescent oligonucleotide rDNA probes that specifically bind to a common nanoflagellate, Paraphysomonas vestita[J]. Microbiology, 143(5): 1717-1727.

[164]Rønn R, McCaig A E, Griffiths B S, et al., 2002. Impact of Protozoan Grazing on Bacterial Community Structure in Soil Microcosms[J]. Applied and Environmental Microbiology, 68(12): 6094-6105.

[165]Rose J M, Caron D A, Sieracki M E, et al., 2004. Counting heterotrophic nanoplanktonic protists in cultures and aquatic communities by flow cytometry[J]. Aquatic Microbial Ecology, 34(3): 263-277.

[166]Rousk J, Bååth E, Brookes P C, et al., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The ISME journal, 4(10): 1340-1351.

[167]Rowe R, Todd R, Waide J, 1977. Microtechnique for Most-Probable-Number Analysis[J]. Applied and Environmental Microbiology, 33(3): 675-680.

[168]Rozen D E, Schneider D, Lenski R E, 2005. Long-Term Experimental Evolution in Escherichia coli. XIII. Phylogenetic History of a Balanced Polymorphism[J]. Journal of Molecular Evolution, 61(2): 171-180.

[169]Ruamps L S, Nunan N, Chenu C, 2011. Microbial biogeography at the soil pore scale[J]. Soil Biology and Biochemistry, 43(2): 280-286.

[170]Salas-González I, Reyt G, Flis P, et al., 2021. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis[J]. Science, 371(6525): eabd0695.

[171]Saleem M, Fetzer I, Dormann C F, et al., 2012. Predator richness increases the effect of prey diversity on prey yield[J]. Nature Communications, 3(1): 1305.

[172]Santos S S, Schöler A, Nielsen T K, et al., 2020. Land use as a driver for protist community structure in soils under agricultural use across Europe[J]. Science of The Total Environment, 717: 137228.

[173]Sarsan S, Pandiyan A, Rodhe A V, et al., 2021. Synergistic Interactions Among Microbial Communities[M]//Singh R P, Manchanda G, Bhattacharjee K, et al. Microbes in Microbial Communities: Ecological and Applied Perspectives. Singapore: Springer: 1-37.

[174]Schulz F, Lagkouvardos I, Wascher F, et al., 2014. Life in an unusual intracellular niche: a bacterial symbiont infecting the nucleus of amoebae[J]. The ISME Journal, 8(8): 1634-1644.

[175]Seppey C V, Singer D, Dumack K, et al., 2017. Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling[J]. Soil Biology and Biochemistry, 112: 68-76.

[176]Shafi J, Tian ,Hui, and Ji M, 2017. Bacillus species as versatile weapons for plant pathogens: a review[J]. Biotechnology & Biotechnological Equipment, 31(3): 446-459.

[177]Sherr E B, Sherr B F, 2002. Significance of predation by protists in aquatic microbial food webs[J]. Antonie van Leeuwenhoek, 81(1): 293-308.

[178]Shu L, He Zhenzhen, Guan X, et al., 2021. A dormant amoeba species can selectively sense and predate on different soil bacteria[J]. Functional Ecology, 35(8): 1708-1721.

[179]Sieracki M E, Haas L W, Caron D A, et al., 1987. Effect of fixation on particle retention by microflagellates: underestimation of grazing rates[J]. Marine ecology progress series: 251-258.

[180]Singh B K, Yan Z Z, Whittaker M, et al., 2023. Soil microbiomes must be explicitly included in One Health policy[J]. Nature Microbiology, 8(8): 1367-1372.

[181]Skillman L C, Toovey A F, Williams A J, et al., 2006. Development and Validation of a Real-Time PCR Method To Quantify Rumen Protozoa and Examination of Variability between Entodinium Populations in Sheep Offered a Hay-Based Diet[J]. Applied and Environmental Microbiology, 72(1): 200-206.

[182]Sohn Y J, Son J, Jo S Y, et al., 2021. Chemoautotroph Cupriavidus necator as a potential game-changer for global warming and plastic waste problem: A review[J]. Bioresource Technology, 340: 125693.

[183]Song S, Morales Moreira Z, Briggs A L, et al., 2023. PSKR1 balances the plant growth–defence trade-off in the rhizosphere microbiome[J]. Nature Plants, 9(12): 2071-2084.

[184]Strassmann J E, Shu L, 2017. Ancient bacteria–amoeba relationships and pathogenic animal bacteria[J]. PLOS Biology, 15(5): e2002460.

[185]Tamaki H, Wright C L, Li X, et al., 2011. Analysis of 16S rRNA Amplicon Sequencing Options on the Roche/454 Next-Generation Titanium Sequencing Platform[J]. PLOS ONE, 6(9): e25263.

[186]Tecon R, Van Der Meer J R, 2010. Effect of two types of biosurfactants on phenanthrene availability to the bacterial bioreporter Burkholderia sartisoli strain RP037[J]. Applied Microbiology and Biotechnology, 85(4): 1131-1139.

[187]Trap J, Bonkowski M, Plassard C, et al., 2016. Ecological importance of soil bacterivores for ecosystem functions[J]. Plant and Soil, 398(1-2): 1-24.

[188]Trigui H, Paquet V E, Charette S J, et al., 2016. Packaging of Campylobacter jejuni into Multilamellar Bodies by the Ciliate Tetrahymena pyriformis[J]. Applied and Environmental Microbiology, 82(9): 2783-2790.

[189]Trivedi P, Leach J E, Tringe S G, et al., 2020. Plant–microbiome interactions: from community assembly to plant health[J]. Nature reviews microbiology, 18(11): 607-621.

[190]Trivedi P, Trivedi C, Grinyer J, et al., 2016. Harnessing Host-Vector Microbiome for Sustainable Plant Disease Management of Phloem-Limited Bacteria[J]. Frontiers in Plant Science, 7.

[191]Valiei A, Dickson A M, Aminian-Dehkordi J, et al., 2024. Bacterial community dynamics as a result of growth-yield trade-off and multispecies metabolic interactions toward understanding the gut biofilm niche[J]. BMC Microbiology, 24(1): 441.

[192]Vallina S M, Follows M J, Dutkiewicz S, et al., 2014. Global relationship between phytoplankton diversity and productivity in the ocean[J]. Nature communications, 5(1): 4299.

[193]van Elsas J D, Kastelein P, van Bekkum P, et al., 2000. Survival of Ralstonia solanacearum Biovar 2, the Causative Agent of Potato Brown Rot, in Field and Microcosm Soils in Temperate Climates[J]. Phytopathology®, 90(12): 1358-1366.

[194]Vaulot D, Geisen S, Mahé F, et al., 2022. pr2-primers: An 18S rRNA primer database for protists[J]. Molecular Ecology Resources, 22(1): 168-179.

[195]Vlot A C, Sales J H, Lenk M, et al., 2021. Systemic propagation of immunity in plants[J]. New Phytologist, 229(3): 1234-1250.

[196]Vos M, 2009. Why do bacteria engage in homologous recombination?[J]. Trends in microbiology, 17(6): 226-232.

[197]Wang D, He X, Baer M, et al., 2024. Lateral root enriched Massilia associated with plant flowering in maize[J]. Microbiome, 12(1): 124.

[198]Wang R, Chen Y, Zhang H, et al., 2025. Plant–microbe interactions drive the rhizosphere microbial assembly and nitrogen cycling in a subtropical forest[J]. Functional Ecology, n/a(n/a).

[199]Wang S, Liu Y, Chen L, et al., 2021. Effects of excessive nitrogen on nitrogen uptake and transformation in the wetland soils of Liaohe estuary, northeast China[J]. Science of The Total Environment, 791: 148228.

[200]Wang X, Wei Z, Yang K, et al., 2019. Phage combination therapies for bacterial wilt disease in tomato[J]. Nature Biotechnology, 37(12): 1513-1520.

[201]Wang Xiaofang, Wei Z, Li M, et al., 2017. Parasites and competitors suppress bacterial pathogen synergistically due to evolutionary trade-offs[J]. Evolution, 71(3): 733-746.

[202]Wei Z, Yang T, Friman V P, et al., 2015. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health[J]. Nature Communications, 6(1): 8413.

[203]Weinert N, Piceno Y, Ding G C, et al., 2011. PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa[J]. FEMS Microbiology Ecology, 75(3): 497-506.

[204]Weinreich F, Hahn A, Eberhardt K A, et al., 2022. Comparative Evaluation of Real-Time Screening PCR Assays for Giardia duodenalis and of Assays Discriminating the Assemblages A and B[J]. Microorganisms, 10(7): 1310.

[205]Wey J K, Jürgens K, Weitere M, 2012. Seasonal and Successional Influences on Bacterial Community Composition Exceed That of Protozoan Grazing in River Biofilms[J]. Applied and Environmental Microbiology.

[206]Wickham H, Averick M, Bryan J, et al., 2019. Welcome to the Tidyverse[J]. Journal of Open Source Software, 4(43): 1686.

[207]Wickham H, François R, Henry L, 等, 2023. dplyr: A Grammar of Data Manipulation[CP/OL]. (2023-11-17)[2025-04-07]. https://cran.r-project.org/web/packages/dplyr/index.html.

[208]Wieland G, Neumann R, Backhaus H, 2001. Variation of Microbial Communities in Soil, Rhizosphere, and Rhizoplane in Response to Crop Species, Soil Type, and Crop Development[J]. Applied and Environmental Microbiology, 67(12): 5849-5854.

[209]Wootton E C, Zubkov M V, Jones D H, et al., 2007. Biochemical prey recognition by planktonic protozoa[J]. Environmental Microbiology, 9(1): 216-222.

[210]Worden A Z, Follows M J, Giovannoni S J, et al., 2015. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes[J]. Science, 347(6223): 1257594.

[211]Wu J, Liu S, Zhang H, et al., 2025. Flavones enrich rhizosphere Pseudomonas to enhance nitrogen utilization and secondary root growth in Populus[J]. Nature Communications, 16(1): 1461.

[212]Wu X, Wu J, Zhou B, et al., 2024. Effects of Fertilization Patterns on the Growth of Rapeseed Seedlings and Rhizosphere Microorganisms under Flooding Stress[J]. Agronomy, 14(3): 525.

[213]Xiao Y, Jin W, Ju L, et al., 2024. Tracking single-cell evolution using clock-like chromatin accessibility loci[J]. Nature Biotechnology: 1-15.

[214]Xiong W, Jousset A, Guo S, et al., 2018. Soil protist communities form a dynamic hub in the soil microbiome[J]. ISME JOURNAL, 12(2): 634-638.

[215]Xiong W, Song Y, Yang K, et al., 2020. Rhizosphere protists are key determinants of plant health[J]. Microbiome, 8(1): 27.

[216]Yang K, Xu F, Zhu L, et al., 2023. An Isotope-Labeled Single-Cell Raman Spectroscopy Approach for Tracking the Physiological Evolution Trajectory of Bacteria toward Antibiotic Resistance[J]. Angewandte Chemie International Edition, 62(14): e202217412.

[217]Yang X, Jiang G, Zhang Yaozhong, et al., 2023. MBPD: A multiple bacterial pathogen detection pipeline for One Health practices[J]. iMeta, 2(1): e82.

[218]Yao B, Zeng Q, Zhang L, et al., 2022. Research progress on the biodiversity and ecological function of soil protists[J]. Biodiversity Science, 30(12): 22353.

[219]Ye Y, Doak T G, 2009. A Parsimony Approach to Biological Pathway Reconstruction/Inference for Genomes and Metagenomes[J]. PLoS Computational Biology, 5(8): e1000465.

[220]Yin Q, Sun Y, Li B, et al., 2022. The r/K selection theory and its application in biological wastewater treatment processes[J]. Science of The Total Environment, 824: 153836.

[221]Yin Y, Li M, Yang C, et al., 2024. Phagotrophic protists can change microbial nitrogen conversion patterns during swine manure composting[J]. Biomass Conversion and Biorefinery, 14(1): 517-524.

[222]Zelles L, 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review[J]. Biology and Fertility of Soils, 29(2): 111-129.

[223]Zhalnina K, Louie K B, Hao Z, et al., 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 3(4): 470-480.

[224]Zhang J, Yan Q, Bai G, et al., 2023. Inducing root redundant development to release oxygen: An efficient natural oxygenation approach for subsurface flow constructed wetland[J]. Environmental Research, 239: 117377.

[225]Zhang R, Vivanco J M, Shen Q, 2017. The unseen rhizosphere root–soil–microbe interactions for crop production[J]. Current Opinion in Microbiology, 37: 8-14.

中图分类号:

 S15    

开放日期:

 2025-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式