- 无标题文档
查看论文信息

中文题名:

 菊花CmPUB15-CmMYB73分子模块调控低温下花瓣花青苷合成的分子机制    

姓名:

 耿志强    

学号:

 2020204042    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0902Z1    

学科名称:

 农学 - 园艺学 - 观赏园艺学    

学生类型:

 博士    

学位:

 农学博士    

学校:

 南京农业大学    

院系:

 园艺学院    

专业:

 观赏园艺学    

研究方向:

 观赏植物遗传育种与分子生物学     

第一导师姓名:

 陈发棣    

第一导师单位:

 南京农业大学    

完成日期:

 2024-12-30    

答辩日期:

 2024-11-23    

外文题名:

 The Molecular Mechanism of the CmPUB15-CmMYB73 Module Regulates Anthocyanin Synthesis in Petals under Low Temperature    

中文关键词:

 菊花 ; 花青苷 ; 低温 ; CmMYB73 ; CmPUB15    

外文关键词:

 chrysanthemum ; anthocyanin ; low temperature ; CmMYB73 ; CmPUB15    

中文摘要:

菊花(Chrysanthemum morifolium)是我国十大传统名花之一,被誉为花中四君子之一,拥有悠久的栽培历史。菊花不仅具有深厚的文化意义,还具备显著的经济和审美价值。花色是菊花重要的观赏性状之一,主要由类黄酮、类胡萝卜素和叶绿素等色素呈现。其中类黄酮是最主要的花色素类型,其主要成分花青苷赋予花瓣粉、红和紫等不同颜色。花青苷作为植物中广泛存在的次生代谢物质,目前对其研究相对较为深入,其在植物体内的合成受相关结构基因和上游调节基因的调控,并被外界环境因素影响。温度是影响花青苷生物合成的主要环境因子,在拟南芥和苹果等植物的研究中发现,高温通常导致花青苷合成减少,而低温则促进花青苷积累。

菊花多在秋季冷凉季开花,其自然花期的平均温度约为10℃左右,大部分红色系菊花在该环境下着色良好,但适度低温促进菊花花瓣中花青苷积累和花色形成的分子机制尚不清楚。在本研究中,我们以‘南农粉翠’菊花为研究材料,对菊花开花阶段进行了24℃和10℃温度处理。主要研究内容及结论如下:

10℃低温下菊花花瓣中花青苷可被诱导积累。RT-qPCR结果表明,花青苷合成通路的主要结构基因CmCHS、CmCHI、CmDFR、CmANS、CmF3H和CmUFGT在10℃低温下均上调表达,暗示存在上游调节机制参与低温下菊花花青苷生物合成结构基因的表达调控。R2R3-MYB转录因子在调控植物花青苷生物合成结构基因表达中具有核心作用。我们对菊花中已经报道参与调控花青苷生物合成的R2R3-MYB转录因子响应低温情况进行了分析,发现CmMYB6和CmMYB73被10℃低温处理上调表达,且CmMYB73被诱导的程度更高,其在10℃低温下的表达约为常温对照的5倍,因此我们选择CmMYB73作为进一步研究的对象。

CmMYB73的氨基酸序列含有保守EAR转录抑制基序,是一个可能的转录抑制因子,但其在菊花花青苷生物合成中的功能尚不明确。为此,我们构建了CmMYB73基因的超表达和干扰表达载体,对‘南农粉翠’进行遗传转化,成功获得了相应的转基因株系。相比于野生型(Wild type, WT)对照,CmMYB73超表达株系花瓣中花青苷含量显著降低,而干扰株系则呈现出相反的表型,说明CmMYB73负调控菊花花瓣中花青苷生物合成。通过酵母单杂交(Yeast One-Hybrid, Y1H)实验和双荧光素酶报告基因实验(Dual-Luciferase Reporter Assay, Dual-Luc)发现CmMYB73通过直接结合花青苷生物合成结构基因CmCHS和CmCHI的启动子抑制其表达,并间接抑制结构基因CmANS的表达,说明CmMYB73通过转录抑制花青苷合成结构基因CmCHS、CmCHI和CmANS的表达负调控菊花花瓣中花青苷生物合成。

Western-blot实验结果表明,相比于24℃对照组,CmMYB73蛋白在10℃低温处理下加速降解,暗示CmMYB73在蛋白水平的降解是低温下菊花花瓣中花青苷积累的原因之一。为了明确CmMYB73在低温下降解的具体机制,以CmMYB73为诱饵蛋白进行了酵母双杂交筛库,筛选与CmMYB73相互作用的蛋白。鉴定到一个U-box型E3泛素连接酶CmPUB15。通过酵母双杂交(Yeast Two-Hybrid, Y2H)实验、蛋白Pull-down实验(Protein Pull-down Assay)和双分子荧光素酶互补实验(Bimolecular Luciferase Complementation, BiFC)确认了CmMYB73与CmPUB15之间的相互作用。RT-qPCR结果表明,CmPUB15基因表达在10℃低温处理下相比于24℃对照组显著上调。蛋白降解实验结果表明,CmPUB15在10℃低温处理下的稳定性高于24℃对照组。基于‘南农粉翠’的遗传转化实验表明,CmPUB15能够正向调控菊花花瓣中的花青苷积累。

体外泛素化实验结果表明,在E1(泛素激活酶)、E2(泛素结合酶)和ATP的存在下,CmPUB15蛋白能够介导CmMYB73蛋白的泛素化修饰。同时,植物体内验证结果表明,在CmPUB15蛋白的存在下,CmMYB73蛋白的泛素化水平显著提高。基于CmPUB15转基因菊花植株的半体内蛋白降解实验表明,相比于WT对照,CmMYB73蛋白在CmPUB15过量表达背景下的降解速率显著增加,而在沉默CmPUB15的背景下,CmMYB73蛋白的降解速率显著减缓,而加入26S蛋白酶体抑制剂MG132后,CmMYB73蛋白在各个背景下的降解均被显著抑制,说明CmPUB15介导的CmMYB73的泛素化修饰导致了CmMYB73蛋白通过26S 蛋白酶体途径降解。对‘南农粉翠’的瞬时转化实验结果表明,在OE-CmMYB73的背景下瞬时干扰CmPUB15的表达会进一步抑制花瓣中的花青苷积累,下游结构基因CmCHS、CmCHI、CmANS基因的表达相比于OE-CmMYB73株系中进一步下降,说明干扰CmPUB15的表达可以增强CmMYB73对菊花花青苷下游结构基因CmCHS、CmCHI和CmANS的抑制作用,进一步抑制菊花的花青素的积累。

综上,本研究初步揭示了菊花CmPUB15-CmMYB73分子模块调控低温下花瓣花青苷合成的分子机制。在常温下,CmPUB15的表达和CmMYB73蛋白的泛素化修饰水平较低,CmMYB73蛋白更为稳定,从而抑制其下游花青苷生物合成结构基因CmCHS、CmCHI、CmANS的表达,导致菊花花瓣中较低的花青苷积累水平。在10℃低温条件下,CmPUB15的表达被诱导,积累的CmPUB15蛋白与CmMYB73蛋白相互作用,并对其进行泛素化修饰,导致CmMYB73蛋白经由26S蛋白酶体途径降解,从而解除其对下游CmCHS、CmCHI、CmANS的转录抑制,促进菊花花瓣中的花青苷积累。此外,菊花花青苷生物合成的正调控转录因子CmMYB6在转录水平响应10℃低温,从而促进花瓣中花青苷在低温下的积累。这些发现加深了对低温下菊花花青苷积累的分子调控机制的理解,并为菊花周年生产以及花色分子改良提供了理论基础和优异靶基因。

外文摘要:

Chrysanthemum is one of the ten traditional famous flowers in China, honored as one of 'the Four Gentlemen' among Flowers, with a long history of cultivation. Chrysanthemum not only carries profound cultural significance but also possesses significant economic and aesthetic values. Flower color, primarily exhibited by pigments such as flavonoids, carotenoids, and chlorophyll, is a crucial ornamental trait of chrysanthemum. Among these, flavonoids are the primary type of floral pigment, with anthocyanins as their main component, imparting hues like pink, red, and purple to the petals. Anthocyanins, as widely occurring secondary metabolites in plants, have been relatively extensively studied. Their synthesis within plants is regulated by related structural genes and upstream regulatory genes and influenced by external environmental factors. Temperature is a major environmental factor affecting anthocyanin biosynthesis. Studies in plants such as arabidopsis thaliana and apples have found that high temperatures generally lead to reduced anthocyanin synthesis, while low temperatures promote anthocyanin accumulation.

Chrysanthemums predominantly bloom during the cool autumn season, with an average temperature of approximately 10°C during their natural flowering period. Most red-colored chrysanthemum varieties exhibit good coloration under these conditions, yet the molecular mechanism underlying the promotion of anthocyanin accumulation and flower color formation in chrysanthemum petals at moderate low temperatures remains unclear. In this study, we used the chrysanthemum cultivar 'Nannong Fencui' as the research material and subjected it to temperature treatments of 24°C and 10°C during the flowering stage. The main research contents and conclusions are as follows:

Anthocyanins in chrysanthemum petals can be induced to accumulate at 10°C. RT-qPCR results indicated that the major structural genes involved in anthocyanin biosynthesis, including CmCHS, CmCHI, CmDFR, CmANS, CmF3H, and CmUFGT, were upregulated under low temperature at 10°C, suggesting the involvement of upstream regulatory mechanisms in the expression regulation of these structural genes during anthocyanin biosynthesis in chrysanthemum under low temperature. R2R3-MYB transcription factors play a central role in regulating the expression of structural genes involved in plant anthocyanin biosynthesis. We analyzed the response of R2R3-MYB transcription factors in chrysanthemum, which have been reported to regulate anthocyanin biosynthesis, to low temperature and found that CmMYB6 and CmMYB73 were upregulated by low temperature treatment at 10°C, with CmMYB73 being induced to a higher level, exhibiting an expression level approximately five times that of the control at room temperature. Therefore, we selected CmMYB73 for further study.

 2. The amino acid sequence of CmMYB73 contains a conserved EAR transcription repressor motif, suggesting it may be a transcriptional repressor, but its function in chrysanthemum anthocyanin biosynthesis is unclear. To address this, we constructed overexpression and interference expression vectors for the CmMYB73 gene and genetically transformed 'Nannong Fencui', successfully obtaining corresponding transgenic lines. Compared to the wild-type (WT) control, the anthocyanin content in the petals of CmMYB73 overexpression lines was significantly reduced, while the interference lines exhibited the opposite phenotype, indicating that CmMYB73 negatively regulates anthocyanin biosynthesis in chrysanthemum petals. Yeast one-hybrid (Y1H) experiments and dual-luciferase reporter assays (Dual-Luc) revealed that CmMYB73 inhibits the expression of structural genes CmCHS and CmCHI by directly binding to their promoters and indirectly inhibits the expression of CmANS, suggesting that CmMYB73 negatively regulates anthocyanin biosynthesis in chrysanthemum petals by transcriptionally inhibiting the expression of CmCHS, CmCHI, and CmANS.

3. Western-blot results showed that CmMYB73 protein degraded more rapidly under low temperature treatment at 10°C compared to the 24°C control, suggesting that the degradation of CmMYB73 at the protein level is one of the reasons for anthocyanin accumulation in chrysanthemum petals under low temperature. To elucidate the specific mechanism of CmMYB73 degradation under low temperature, we conducted yeast two-hybrid screening using CmMYB73 as the bait protein to identify proteins that interact with CmMYB73. We identified a U-box E3 ubiquitin ligase, CmPUB15. The interaction between CmMYB73 and CmPUB15 was confirmed through yeast two-hybrid (Y2H) experiments, protein pull-down assays, and bimolecular luciferase complementation (BiFC) experiments. RT-qPCR results showed that CmPUB15 gene expression was significantly upregulated under low temperature treatment at 10°C compared to the 24°C control. Protein degradation experiments demonstrated that CmPUB15 was more stable under low temperature treatment at 10°C than at 24°C. Genetic transformation experiments based on 'Nannong Fencui' showed that CmPUB15 positively regulates anthocyanin accumulation in chrysanthemum petals.

4. In vitro ubiquitination experiments showed that CmPUB15 protein can mediate the ubiquitination of CmMYB73 protein in the presence of E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme), and ATP. Meanwhile, in vivo validation results indicated that the ubiquitination level of CmMYB73 protein was significantly increased in the presence of CmPUB15 protein. Semi-in vivo protein degradation experiments based on CmPUB15 transgenic chrysanthemum plants showed that the degradation rate of CmMYB73 protein increased significantly in the context of CmPUB15 overexpression compared to the WT control, while the degradation rate of CmMYB73 protein slowed significantly in the context of CmPUB15 silencing. The degradation of CmMYB73 protein was significantly inhibited in all contexts after the addition of the 26S proteasome inhibitor MG132, suggesting that ubiquitination of CmMYB73 mediated by CmPUB15 leads to degradation of CmMYB73 protein via the 26S proteasome pathway. Transient transformation experiments in 'Nannong Fencui' showed that transient interference of CmPUB15 expression in the background of OE-CmMYB73 further inhibited anthocyanin accumulation in the petals, and the expression of downstream structural genes CmCHS, CmCHI, and CmANS further decreased compared to OE-CmMYB73 lines, indicating that interference of CmPUB15 expression enhances the inhibitory effect of CmMYB73 on the downstream structural genes CmCHS, CmCHI, and CmANS of chrysanthemum anthocyanin biosynthesis, further inhibiting the accumulation of anthocyanins in chrysanthemum.

In summary, this study initially revealed the molecular mechanism by which the CmPUB15-CmMYB73 molecular module regulates anthocyanin synthesis in chrysanthemum petals under low temperature. At room temperature, the expression of CmPUB15 and the ubiquitination modification level of CmMYB73 protein are low, resulting in a more stable CmMYB73 protein that inhibits the expression of its downstream structural genes CmCHS, CmCHI, and CmANS involved in anthocyanin biosynthesis, leading to low levels of anthocyanin accumulation in chrysanthemum petals. Under low temperature conditions at 10°C, the expression of CmPUB15 is induced, and the accumulated CmPUB15 protein interacts with CmMYB73 protein and ubiquitinates it, leading to the degradation of CmMYB73 protein via the 26S proteasome pathway, thereby relieving its transcriptional inhibition on downstream CmCHS, CmCHI, and CmANS and promoting anthocyanin accumulation in chrysanthemum petals. Additionally, CmMYB6, a positive regulatory transcription factor for chrysanthemum anthocyanin biosynthesis, responds to low temperature at 10°C at the transcriptional level, thereby promoting anthocyanin accumulation in petals under low temperature. These findings deepen our understanding of the molecular regulatory mechanisms underlying anthocyanin accumulation in chrysanthemum under low temperature and provide a theoretical basis and excellent target genes for the year-round production of chrysanthemum and molecular improvement of flower color.

参考文献:

[1]白新祥, 胡可, 戴思兰, 等. 不同花色菊花品种花色素成分的初步分析 [J]. 北京林业大学学报, 2006, 28: 84-9.

[2]曹志超, 顾翔, 苏佩清. 黄酮类化合物抗氧化及其作用机制的研究进展 [J]. 实用临床医药杂志, 2009, 13: 110-2.

[3]房伟民. 菊花新品种及其在花海 (花田) 中的应用 [J]. 园林, 2016, 2: 32-7.

[4]伏静, 戴思兰. 基于高光谱成像技术的菊花花色表型和色素成分分析 [J]. 北京林业大学学报, 2016, 38(8): 88-98.

[5]高国应, 伍小方, 张大为, 等. MBW 复合体在植物花青素合成途径中的研究进展 [J]. 生物技术通报, 2020, 36: 126.

[6]胡可. 花青素苷合成途径中结构基因的表达对菊花和瓜叶菊花色的影响 [D]. 北京:北京林业大学, 2010.

[7]华静静, 陈晓静. 植物体中WD40蛋白的研究进展 [J]. 黑龙江农业科学, 2015, (05): 153-6.

[8]解玉玲. 高温胁迫对植物生理影响的研究进展 [J]. 吉林农业, 2019, (08): 107-8.

[9]柯燚, 高飞, 金韬, 等. 温度对植物花青素苷合成影响研究进展 [J]. 中国农学通报, 2015, 31: 101-5.

[10]李煦, 白雪晴, 刘长霞, 等. 天然花青素的抗氧化机制及功能活性研究进展 [J]. 食品安全质量检测学报, 2021, 12: 8163-71.

[11]刘淑华, 臧丹丹, 孙燕, 等. 花青素生物合成途径及关键酶研究进展 [J]. 土壤与作物, 2022, 11: 336-46.

[12]牛钰, 李晶, 王俊文, 等. 高等植物花青素生物合成、调控、生物活性及其检测的研究进展 [J]. 浙江农业学报, 2024, 36: 978-96.

[13]乔廷廷, 郭玲. 花青素花青苷来源、结构特性和生理功能的研究进展 [J]. 中成药, 2019, 41(02): 388-92.

[14]孙卫, 李崇晖, 王亮生, 等. 菊花不同花色品种中花青素苷代谢分析 [J]. 植物学报, 2010, 45: 327.

[15]王凤华, 郭佳, 吴正景, 等. 植物花青素合成的环境调控研究进展 [J]. 中国野生植物资源, 2024, 43: 78-83.

[16]王静. 菊花的药用和茶用价值 [J]. 中国菊花研究论文集, 2002, 7:71-77.

[17]王梦瑶, 王梦洁, 赖慧萍, 等. 温度影响植物花青苷积累的研究进展 [J]. 园艺学报, 2024, 51: 1501-15.

[18]王意程, 王楠, 许海峰, 等. 红肉苹果冷信号基因MdICE1的表达及其蛋白与MdMYB的互作 [J]. 园艺学报, 2018, 45: 817-26.

[19]吴宇欣, 蔡昌杨, 唐诗蓓, 等. 植物响应低温的生长发育及分子机制研究进展 [J]. 江苏农业科学, 2023, 51: 1-9.

[20]徐楚瑶, 周波. 温度胁迫调控植物花青素的生物合成 [J]. 分子植物育种2023,1-12.

[21]徐僡, 郑远静, 高方平, 等. 花色苷的生物合成及其影响因素研究进展 [J]. 江苏农业学报, 2019, 35: 1246-53.

[22]张天峰, 王劲松, 张洪芬, 等. 中国西北地区与东部季风区秋季气温对比 [J]. 干旱区研究,2010, 27: 121-127

[23]赵奂. 拟南芥抗寒相关转录因子CBF下游基因的筛选以及低温对植物开花的影响 [D]. 北京:首都师范大学, 2007.

[24]Adler G, Konrad Z, Zamir L, et al. The Arabidopsis paralogs, PUB46 and PUB48, encoding U-box E3 ubiquitin ligases, are essential for plant response to drought stress [J]. BMC Plant Biology, 2017, 17: 1-12.

[25]Aharoni A, De Vos C R, Wein M, et al. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco [J]. The Plant Journal, 2001, 28(3): 319-32.

[26]Alabd A, Ahmad M, Zhang X, et al. Light-responsive transcription factor PpWRKY44 induces anthocyanin accumulation by regulating PpMYB10 expression in pear [J]. Horticulture Research, 2022, 9: uhac199.

[27]Albert N W, Lewis D H, Zhang H, et al. Light-induced vegetative anthocyanin pigmentation in Petunia [J]. Journal of Experimental Botany, 2009, 60(7): 2191-202.

[28]Albert N W, Davies K M, Lewis D H, et al. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots [J]. The Plant Cell, 2014, 26(3): 962-80.

[29]An J-P, Liu Y-J, Zhang X-W, et al. Dynamic regulation of anthocyanin biosynthesis at different light intensities by the BT2-TCP46-MYB1 module in apple [J]. Journal of Experimental Botany, 2020a, 71(10): 3094-109.

[30]An J-P, Liu X, Li H-H, et al. Apple RING E3 ligase MdMIEL1 inhibits anthocyanin accumulation by ubiquitinating and degrading MdMYB1 protein [J]. Plant and Cell Physiology, 2017, 58(11): 1953-62.

[31]An J, Wang X, You C, et al. The anthocyanin biosynthetic regulator MdMYB1 positively regulates ascorbic acid biosynthesis in apple [J]. Frontiers of Agricultural Science and Engineering, 2021a, 8: 231-5.

[32]An J P, Wang X F, Zhang X W, et al. Apple B‐box protein BBX37 regulates jasmonic acid mediated cold tolerance through the JAZ‐BBX37‐ICE1‐CBF pathway and undergoes MIEL1‐mediated ubiquitination and degradation [J]. New Phytologist, 2021b, 229(5): 2707-29.

[33]An J P, Wang X F, Zhang X W, et al. MdBBX22 regulates UV‐B‐induced anthocyanin biosynthesis through regulating the function of MdHY5 and is targeted by MdBT2 for 26S proteasome‐mediated degradation [J]. Plant Biotechnology Journal, 2019a, 17(12): 2231.

[34]An J P, Zhang X W, Bi S Q, et al. The ERF transcription factor MdERF38 promotes drought stress‐induced anthocyanin biosynthesis in apple [J]. The Plant Journal, 2020b, 101(3): 573-89.

[35]An J P, Wang X F, Zhang X W, et al. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1‐mediated degradation [J]. Plant Biotechnology Journal, 2020c, 18(2): 337-53.

[36]An J P, Li R, Qu F J, et al. R2R3‐MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple [J]. The Plant Journal, 2018a, 96(3): 562-77.

[37]An J P, Yao J F, Xu R R, et al. Apple bZIP transcription factor MdbZIP44 regulates abscisic acid‐promoted anthocyanin accumulation [J]. Plant Cell & Environment, 2018b, 41(11): 2678-92.

[38]An J P, Zhang X W, You C X, et al. MdWRKY40 promotes wounding‐induced anthocyanin biosynthesis in association with Md MYB 1 and undergoes MdBT2‐mediated degradation [J]. New Phytologist, 2019b, 224(1): 380-95.

[39]An X-H, Tian Y, Chen K-Q, et al. The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation [J]. Journal of Plant Physiology, 2012, 169(7): 710-7.

[40]An X-H, Tian Y, Chen K-Q, et al. MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples [J]. Plant and Cell Physiology, 2015, 56(4): 650-62.

[41]Appelhagen I, Jahns O, Bartelniewoehner L, et al. Leucoanthocyanidin dioxygenase in Arabidopsis thaliana: characterization of mutant alleles and regulation by MYB–BHLH–TTG1 transcription factor complexes [J]. Gene, 2011, 484(1-2): 61-8.

[42]Aravind L, Koonin E V. The U box is a modified RING finger—a common domain in ubiquitination [J]. Current Biology, 2000, 10(4): R132-R4.

[43]Ardley H C, Robinson P A. E3 ubiquitin ligases [J].Essays In Biochemistry, 2005, 41: 15-30.

[44]Atchley W R, Fitch W M. A natural classification of the basic helix–loop–helix class of transcription factors [J]. Proceedings of the National Academy of Sciences, 1997, 94(10): 5172-6.

[45]Azevedo C, Santos-Rosa M J, Shirasu K. The U-box protein family in plants [J]. Trends in Plant Science, 2001, 6(8): 354-8.

[46]Bai S, Tao R, Tang Y, et al. BBX16, a B‐box protein, positively regulates light‐induced anthocyanin accumulation by activating MYB10 in red pear [J]. Plant Biotechnology Journal, 2019, 17(10): 1985-97.

[47]Bedon F, Bomal C, Caron S, et al. Subgroup 4 R2R3-MYBs in conifer trees: gene family expansion and contribution to the isoprenoid-and flavonoid-oriented responses [J]. Journal of Experimental Botany, 2010, 61(14): 3847-64.

[48]Bode A M, Dong Z. Signal transduction and molecular targets of selected flavonoids [J]. Antioxidants Redox Signaling, 2013, 19(2): 163-80.

[49]Brugliera F, Tao G-Q, Tems U, et al. Violet/blue chrysanthemums—metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors [J]. Plant and Cell Physiology, 2013, 54(10): 1696-710.

[50]Cao H, Tian Q, Ju M, et al. Genome-wide analysis of the U-box E3 ubiquitin ligase family role in drought tolerance in sesame (Sesamum indicum L.) [J]. Frontiers in Plant Science, 2023, 14: 1261238.

[51]Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine [J].Nature Reviews Molecular Cell Biology, 2004, 5(9): 739-51.

[52]Carmona L, Alquézar B, Marques V V, et al. Anthocyanin biosynthesis and accumulation in blood oranges during postharvest storage at different low temperatures [J]. Food Chemistry, 2017, 237: 7-14.

[53]Chalker‐Scott L. Environmental significance of anthocyanins in plant stress responses [J]. Photochemistry and Photobiology, 1999, 70(1): 1-9.

[54]Chandler V L, Radicella J P, Robbins T P, et al. Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of B utilizing R genomic sequences [J]. The Plant Cell, 1989, 1(12): 1175-83.

[55]Chen C, Zhang K, Khurshid M, et al. MYB transcription repressors regulate plant secondary metabolism [J]. Critical Reviews in Plant Sciences, 2019, 38(3): 159-70.

[56]Chen P, Takatsuka H, Takahashi N, et al. Arabidopsis R1R2R3-Myb proteins are essential for inhibiting cell division in response to DNA damage [J]. Nature Communications, 2017, 8(1): 635.

[57]Chen P, Zhi F, Li X, et al. Zinc-finger protein MdBBX7/MdCOL9, a target of MdMIEL1 E3 ligase, confers drought tolerance in apple [J]. Plant Physiology, 2022, 188(1): 540-59.

[58]Cheynier V, Comte G, Davies K M, et al. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology [J]. Plant Physiology and Biochemistry, 2013, 72: 1-20.

[59]Chiu L-W, Li L. Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower [J]. Planta, 2012, 236: 1153-64.

[60]Chow V, Kirzinger M W, Kagale S. Lend me your ears: a systematic review of the broad functions of ear motif-containing transcriptional repressors in plants [J]. Genes, 2023, 14(2): 270.

[61]Cone K C, Burr F A, Burr B. Molecular analysis of the maize anthocyanin regulatory locus C1 [J]. Proceedings of the National Academy of Sciences, 1986, 83(24): 9631-5.

[62]Dai X, Xu Y, Ma Q, et al. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis [J]. Plant Physiology, 2007, 143(4): 1739-51.

[63]Dai Y, Zhang L, Sun X, et al. Transcriptome analysis reveals anthocyanin regulation in Chinese cabbage (Brassica rapa L.) at low temperatures [J]. Scientific Reports, 2022, 12(1): 6308.

[64]Davies K M, Albert N W, Schwinn K E. From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning [J]. Functional Plant Biology, 2012, 39(8): 619-38.

[65]de Vetten N, Quattrocchio F, Mol J, et al. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals [J]. Genes Development, 1997, 11(11): 1422-34.

[66]Ding B, Patterson E L, Holalu S V, et al. Two MYB proteins in a self-organizing activator-inhibitor system produce spotted pigmentation patterns [J]. Current Biology, 2020, 30(5): 802-14.e8.

[67]Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors in Arabidopsis [J].Trends in Plant Science, 2010, 15(10): 573-81.

[68]Espley R V, Hellens R P, Putterill J, et al. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10 [J]. The Plant Journal, 2007, 49(3): 414-27.

[69]Fan W, Dong X. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid–mediated gene activation in Arabidopsis [J]. The Plant Cell, 2002, 14(6): 1377-89.

[70]Fang Z, Lin-Wang K, Jiang C, et al. Postharvest temperature and light treatments induce anthocyanin accumulation in peel of ‘Akihime’ plum (Prunus salicina Lindl.) via transcription factor PsMYB10. 1 [J]. Postharvest Biology Technology, 2021, 179: 111592.

[71]Feller A, Machemer K, Braun E L, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors [J]. The Plant Journal, 2011, 66(1): 94-116.

[72]Fraser C M, Thompson M G, Shirley A M, et al. Related Arabidopsis serine carboxypeptidase-like sinapoylglucose acyltransferases display distinct but overlapping substrate specificities [J]. Plant Physiology, 2007, 144(4): 1986-99.

[73]Gandía-Herrero F, García-Carmona F. Biosynthesis of betalains: yellow and violet plant pigments [J].Trends in Plant Science, 2013, 18(6): 334-43.

[74]GAO G-y, WU X-f, ZHANG D-w, et al. Research progress on the MBW complexes in plant anthocyanin biosynthesis pathway [J]. Biotechnology Bulletin, 2020, 36(1): 126.

[75]Gao Y, Liu J, Chen Y, et al. Tomato SlAN11 regulates flavonoid biosynthesis and seed dormancy by interaction with bHLH proteins but not with MYB proteins [J]. Horticulture Research, 2018, 5.

[76]Gatica-Arias A, Farag M, Häntzschel K, et al. The transcription factor AtMYB75/PAP1 regulates the expression of flavonoid biosynthesis genes in transgenic hop (Humulus lupulus L.) [J]. Brewing Science, 2012, 65: 103-11.

[77]Geng Z, Wang Y, Wang Y, et al. Transcriptomic and metabolomic analyses reveal CmMYB308 as a key regulator in the pink flower color variation of ‘Dante Purple’chrysanthemum [J]. Plant Cell Reports, 2024, 43(6): 1-14.

[78]Giusti M M, Miyagusuku‐Cruzado G, Wallace T C. Flavonoids as natural pigments [J]. Handbook of Natural Colorants, 2023: 371-90.

[79]Goff S A, Klein T M, Roth B A, et al. Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues [J]. The EMBO Journal, 1990, 9(8): 2517-22.

[80]Gonzalez A, Brown M, Hatlestad G, et al. TTG2 controls the developmental regulation of seed coat tannins in Arabidopsis by regulating vacuolar transport steps in the proanthocyanidin pathway [J]. Developmental Biology, 2016, 419(1): 54-63.

[81]Gonzalez A, Zhao M, Leavitt J M, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings [J]. The Plant Journal, 2008, 53(5): 814-27.

[82]Gou J-Y, Felippes F F, Liu C-J, et al. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor [J]. The Plant Cell, 2011, 23(4): 1512-22.

[83]Grotewold E. The genetics and biochemistry of floral pigments [J]. Annual Review of Plant Biology, 2006, 57: 761-80.

[84]Gu Z, Zhu J, Hao Q, et al. A novel R2R3-MYB transcription factor contributes to petal blotch formation by regulating organ-specific expression of PsCHS in tree peony (Paeonia suffruticosa) [J]. Plant Cell Physiology, 2019, 60(3): 599-611.

[85]Guo S, Zhang M, Feng M, et al. miR156b-targeted VvSBP8/13 functions downstream of the abscisic acid signal to regulate anthocyanins biosynthesis in grapevine fruit under drought [J]. Horticulture Research, 2024, 11(2): uhad293.

[86]Han P-L, Dong Y-H, Gu K-D, et al. The apple U-box E3 ubiquitin ligase MdPUB29 contributes to activate plant immune response to the fungal pathogen Botryosphaeria dothidea [J]. Planta, 2019, 249: 1177-88.

[87]Hannah J, Zhou P. Regulation of DNA damage response pathways by the cullin-RING ubiquitin ligases [J]. DNA Repair, 2009, 8(4): 536-43.

[88]Hao Y, Zong X, Ren P, et al. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis [J]. International Journal of Molecular Sciences, 2021, 22(13): 7152.

[89]Hatfield P M, Gosink M M, Carpenter T B, et al. The ubiquitin‐activating enzyme (E1) gene family in Arabidopsis thaliana [J]. The Plant Journal, 1997, 11(2): 213-26.

[90]Hemm M R, Herrmann K M, Chapple C. AtMYB4: a transcription factor general in the battle against UV [J]. Trends in Plant Science, 2001, 6(4): 135-6.

[91]Hichri I, Barrieu F, Bogs J, et al. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway [J]. Journal of Experimental Botany, 2011, 62(8): 2465-83.

[92]Hichri I, Heppel S C, Pillet J, et al. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine [J]. Molecular Plant, 2010, 3(3): 509-23.

[93]Hong Y, Tang X, Huang H, et al. Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum [J]. BMC Genomics, 2015, 16: 1-18.

[94]Hu D-G, Sun C-H, Ma Q-J, et al. MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples [J]. Plant Physiology, 2016, 170(3): 1315-30.

[95]Hu D, Cui R, Wang K, et al. The Myb73–GDPD2–GA2ox1 transcriptional regulatory module confers phosphate deficiency tolerance in soybean [J]. The Plant Cell, 2024a, 36(6): 2176-200.

[96]Hu D G, Li Y Y, Zhang Q Y, et al. The R2R3‐MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple [J]. The Plant Journal, 2017, 91(3): 443-54.

[97]Hu Y, Zhao H, Xue L, et al. IbMYC2 contributes to salt and drought stress tolerance via modulating anthocyanin accumulation and ROS-scavenging system in Sweet Potato [J]. International Journal of Molecular Sciences, 2024b, 25(4): 2096.

[98]Huang D, Yuan Y, Tang Z, et al. Retrotransposon promoter of Ruby1 controls both light‐and cold‐induced accumulation of anthocyanins in blood orange [J]. Plant, cell & environment, 2019, 42(11): 3092-104.

[99]Huang W, Khaldun A, Chen J, et al. A R2R3-MYB transcription factor regulates the flavonol biosynthetic pathway in a traditional Chinese medicinal plant, Epimedium sagittatum [J]. Frontiers in Plant Science, 2016, 7: 1089.

[100]Hugueney P, Provenzano S, Verries C, et al. A novel cation-dependent O-methyltransferase involved in anthocyanin methylation in grapevine [J]. Plant Physiology, 2009, 150(4): 2057-70.

[101]Jia N, Wang J-J, Liu J, et al. DcTT8, a bHLH transcription factor, regulates anthocyanin biosynthesis in Dendrobium candidum [J]. Plant Physiology and Biochemistry, 2021, 162: 603-12.

[102]Jiang H, Zhou L-J, Gao H-N, et al. The transcription factor MdMYB2 influences cold tolerance and anthocyanin accumulation by activating SUMO E3 ligase MdSIZ1 in apple [J]. Plant Physiology, 2022, 189(4): 2044-60.

[103]Jiang N, Doseff A I, Grotewold E. Flavones: from biosynthesis to health benefits [J]. Plants, 2016, 5(2): 27.

[104]Jing W, Gong F, Liu G, et al. Petal size is controlled by the MYB73/TPL/HDA19-miR159- CKX6 module regulating cytokinin catabolism in Rosa hybrida [J]. Nature Communications, 2023, 14(1): 7106.

[105]Kaur H, Salvi P, Chaurasia A, et al. PUB63, a novel early heat responsive ubiquitin E3 ligase from rice implicates heat stress tolerance [J]. Plant Stress, 2023, 10: 100291.

[106]Kiferle C, Fantini E, Bassolino L, et al. Tomato R2R3-MYB proteins SlANT1 and SlAN2: same protein activity, different roles [J]. Plos One, 2015, 10(8): e0136365.

[107]Kim J H, Nguyen N H, Jeong C Y, et al. Loss of the R2R3-MYB, AtMyb73, causes hyper-induction of the SOS1 and SOS3 genes in response to high salinity in Arabidopsis [J]. Journal of Plant Physiology, 2013, 170(16): 1461-5.

[108]Kranz H D, Denekamp M, Greco R, et al. Towards functional characterisation of the members of the R2R3‐MYB gene family from Arabidopsis thaliana [J]. The Plant Journal, 1998, 16(2): 263-76.

[109]Kurata T, Ishida T, Kawabata-Awai C, et al. Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation [J]. Development 2005,132 (24): 5387–5398.

[110]LaFountain A M, Yuan Y W. Repressors of anthocyanin biosynthesis [J]. New Phytologist, 2021, 231(3): 933-49.

[111]Landi M, Tattini M, Gould K S. Multiple functional roles of anthocyanins in plant-environment interactions [J]. Environmental and Experimental Botany, 2015, 119: 4-17.

[112]Lee J-H, Kim W T. Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis [J]. Molecules Cells, 2011, 31(3): 201-8.

[113]Li B, Xia Y, Wang Y, et al. Characterization of genes encoding key enzymes involved in anthocyanin metabolism of kiwifruit during storage period [J]. Frontiers in Plant Science, 2017, 8: 341.

[114]Li C, Ng C K-Y, Fan L-M. MYB transcription factors, active players in abiotic stress signaling [J]. Environmental and Experimental Botany, 2015, 114: 80-91.

[115]Li G, Serek M, Gehl C. Physiological changes besides the enhancement of pigmentation in Petunia hybrida caused by overexpression of PhAN2, an R2R3-MYB transcription factor [J]. Plant Cell Reports, 2023a, 42(3): 609-27.

[116]Li H L, Liu Z Y, Wang X N, et al. E3 ubiquitin ligases SINA4 and SINA11 regulate anthocyanin biosynthesis by targeting the IAA29‐ARF5‐1‐ERF3 module in apple [J]. Plant, Cell & Environment, 2023b, 46(12): 3902-18.

[117]Li L-X, Wei Z-Z, Zhou Z-L, et al. A single amino acid mutant in the EAR motif of IbMYB44. 2 reduced the inhibition of anthocyanin accumulation in the purple-fleshed sweetpotato [J]. Plant Physiology and Biochemistry, 2021a, 167: 410-9.

[118]Li Q, Li B, Wang J, et al. TaPUB15, a U‐Box E3 ubiquitin ligase gene from wheat, enhances salt tolerance in rice [J]. Food And Energy Security, 2021b, 10(1): e250.

[119]Li W, Ye Y. Polyubiquitin chains: functions, structures, and mechanisms [J]. Cellular Molecular Life Sciences, 2008, 65: 2397-406.

[120]Li X, Cao L, Jiao B, et al. The bHLH transcription factor AcB2 regulates anthocyanin biosynthesis in onion (Allium cepa L.) [J]. Horticulture Research, 2022, 9: uhac128.

[121]Li X, Cheng Y, Wang M, et al. Weighted gene coexpression correlation network analysis reveals a potential molecular regulatory mechanism of anthocyanin accumulation under different storage temperatures in ‘Friar’plum [J]. BMC Plant Biology, 2021c, 21: 1-14.

[122]Li Y-Y, Mao K, Zhao C, et al. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple [J].Plant Physiology, 2012, 160(2): 1011-22.

[123]Liang M, Foster C E, Yuan Y-W. Lost in translation: molecular basis of reduced flower coloration in a self-pollinated monkeyflower (Mimulus) species [J]. Science Advances, 2022, 8(37): 1113.

[124]Lim S-H, Kim D-H, Kim J K, et al. A radish basic helix-loop-helix transcription factor, RsTT8 acts a positive regulator for anthocyanin biosynthesis [J]. Frontiers in Plant Science, 2017, 8: 1917.

[125]Liu W, Mei Z, Yu L, et al. The ABA-induced NAC transcription factor MdNAC1 interacts with a bZIP-type transcription factor to promote anthocyanin synthesis in red-fleshed apples [J]. Horticulture Research, 2023, 10(5): uhad049.

[126]Liu X-F, Xiang L-L, Yin X-R, et al. The identification of a MYB transcription factor controlling anthocyanin biosynthesis regulation in Chrysanthemum flowers [J]. Scientia Horticulturae, 2015, 194: 278-85.

[127]Liu X-F, Yin X-R, Allan A C, et al. The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthetic genes in tobacco and Chinese bayberry (Myrica rubra) during anthocyanin biosynthesis [J]. Plant Cell, Tissue Organ Culture, 2013, 115: 285-98.

[128]Liu X, Liu H-F, Li H-L, et al. MdMYB10 affects nitrogen uptake and reallocation by regulating the nitrate transporter MdNRT2. 4-1 in red-fleshed apple [J]. Horticulture Research, 2022, 9: uhac016.

[129]Liu Y, Hou H, Jiang X, et al. A WD40 repeat protein from Camellia sinensis regulates anthocyanin and proanthocyanidin accumulation through the formation of MYB–bHLH–WD40 ternary complexes [J]. International Journal of Molecular Sciences, 2018, 19(6): 1686.

[130]Liu Y, Lin-Wang K, Espley R V, et al. StMYB44 negatively regulates anthocyanin biosynthesis at high temperatures in tuber flesh of potato [J]. Journal of Experimental Botany, 2019, 70(15): 3809-24.

[131]Lorenz S. Structural mechanisms of HECT-type ubiquitin ligases [J]. Biological Chemistry, 2018, 399(2): 127-45.

[132]Luan Y, Chen Z, Tang Y, et al. Tree peony PsMYB44 negatively regulates petal blotch distribution by inhibiting dihydroflavonol-4-reductase gene expression [J]. Annals of Botany, 2023, 131(2): 323-34.

[133]Ludwig S R, Habera L F, Dellaporta S L, et al. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region [J]. Proceedings of the National Academy of Sciences, 1989a, 86(18): 7092-6.

[134]Ludwig S R, Habera L F, Dellaporta S L, et al. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region [J]. Proceedings of the National Academy of Sciences, 1989b, 86(18): 7092-6.

[135]Luo J, Nishiyama Y, Fuell C, et al. Convergent evolution in the BAHD family of acyl transferases: identification and characterization of anthocyanin acyl transferases from Arabidopsis thaliana [J]. The Plant Journal, 2007, 50(4): 678-95.

[136]Maier A, Schrader A, Kokkelink L, et al. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis [J]. The Plant Journal, 2013, 74(4): 638-51.

[137]Mao W, Han Y, Chen Y, et al. Low temperature inhibits anthocyanin accumulation in strawberry fruit by activating FvMAPK3-induced phosphorylation of FvMYB10 and degradation of Chalcone Synthase 1 [J]. The Plant Cell, 2022a, 34(4): 1226-49.

[138]Mao X, Yu C, Li L, et al. How many faces does the plant U-Box E3 ligase have? [J]. International Journal of Molecular Sciences, 2022b, 23(4): 2285.

[139]MARKHAM K R. Flavones, flavonols and their glycosides [M]. Methods in plant biochemistry. Elsevier. 1989: 197-235.

[140]Martens S, Mithöfer A. Flavones and flavone synthases [J]. Phytochemistry, 2005, 66(20): 2399-407.

[141]Martens S, PreuB A, Matern U. Multifunctional flavonoid dioxygenases: flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L [J]. Phytochemistry, 2010, 71(10): 1040-9.

[142]Martínez‐Rivas F J, Blanco‐Portales R, Serratosa M P, et al. FaMYB123 interacts with FabHLH3 to regulate the late steps of anthocyanin and flavonol biosynthesis during ripening [J]. The Plant Journal, 2023, 114(3): 683-98.

[143]Matsui T, Ueda T, Oki T, et al. α-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity [J]. Journal of Agricultural and Food Chemistry, 2001, 49(4): 1948-51.

[144]Mazzucotelli E, Belloni S, Marone D, et al. The E3 ubiquitin ligase gene family in plants: regulation by degradation [J]. Current Genomics, 2006, 7(8): 509-22.

[145]Meng J-X, Wei J, Chi R-F, et al. MrMYB44-like negatively regulates anthocyanin biosynthesis and causes spring leaf color of Malus ‘Radiant’ to fade from red to green [J]. Frontiers in Plant Science, 2022, 13: 822340.

[146]Meng J, Sun S, Li A, et al. A NAC transcription factor, PpNAC1, regulates the expression of PpMYB10. 1 to promote anthocyanin biosynthesis in the leaves of peach trees in autumn [J]. Horticulture Advances, 2023, 1(1): 8.

[147]Mierziak J, Kostyn K, Kulma A. Flavonoids as important molecules of plant interactions with the environment [J]. Molecules, 2014, 19(10): 16240-65.

[148]Mitsuda N, Ohme-Takagi M. Functional analysis of transcription factors in Arabidopsis [J]. Plant Cell Physiology, 2009, 50(7): 1232-48.

[149]Mo R, Han G, Zhu Z, et al. The ethylene response factor ERF5 regulates anthocyanin biosynthesis in ‘Zijin’ mulberry fruits by interacting with MYBA and F3H genes [J]. International Journal of Molecular Sciences, 2022, 23(14): 7615.

[150]Morreale F E, Walden H. Types of ubiquitin ligases [J]. Cell, 2016, 165(1): 248-. e1.

[151]Muñoz-Gómez S, Suárez-Baron H, Alzate J F, et al. Evolution of the subgroup 6 R2R3-MYB genes and their contribution to floral color in the perianth-bearing Piperales [J]. Frontiers in Plant Science, 2021, 12: 633227.

[152]Naing A H, Kim C K. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants [J]. Plant Molecular Biology, 2018, 98: 1-18.

[153]Naing A H, Kim C K. Abiotic stress‐induced anthocyanins in plants: Their role in tolerance to abiotic stresses [J]. Physiologia Plantarum, 2021, 172(3): 1711-23.

[154]Nakatsuka T, Haruta K S, Pitaksutheepong C, et al. Identification and characterization of R2R3-MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers [J]. Plant and Cell Physiology, 2008, 49(12): 1818-29.

[155]Nandi D, Tahiliani P, Kumar A, et al. The ubiquitin-proteasome system [J]. Journal of Biosciences, 2006, 31: 137-55.

[156]Ni J, Bai S, Zhao Y, et al. Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in ‘Red Zaosu’ pear fruits by interacting with MYB114 [J]. Plant Molecular Biology, 2019, 99: 67-78.

[157] Noda N,Yoshioka S, Kishimoto S, et al. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism [J].Science Advances 3:e1602785

[158]Ohno S, Hosokawa M, Hoshino A, et al. A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis) [J]. Journal of Experimental Botany, 2011, 62(14): 5105-16.

[159]Panche A N, Diwan A D, Chandra S R. Flavonoids: an overview [J]. Journal of Nutritional Science, 2016, 5: e47.

[160]Park J J, Yi J, Yoon J, et al. OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment [J]. The Plant Journal, 2011, 65(2): 194-205.

[161]Persak H, Pitzschke A. Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling [J]. PLoS One, 2013, 8(2): e57547.

[162]Pickart C M, Eddins M J J B e B A-M C R. Ubiquitin: structures, functions, mechanisms [J]. Biochimica et Biophysica Acta - Molecular Cell Research, 2004, 1695(1-3): 55-72.

[163]Pietta P-G. Flavonoids as antioxidants [J]. Journal of Natural Products, 2000, 63(7): 1035-42.

[164]Plant A R, Larrieu A, Causier B. Repressor for hire. The vital roles of TOPLESS‐mediated transcriptional repression in plants [J]. New Phytologist, 2021, 231(3): 963-73.

[165]Plechanovová A, Jaffray E G, Tatham M H, et al. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis [J]. Nature, 2012, 489(7414): 115-20.

[166]Qiu Z, Wang X, Gao J, et al. The tomato Hoffman’s anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures [J]. PloS one, 2016, 11(3): e0151067.

[167]Quattrocchio F, Wing J F, Mol J N, et al. Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes [J]. The Plant Journal, 1998, 13(4).

[168]Rajaraman J, Douchkov D, Lück S, et al. Evolutionarily conserved partial gene duplication in the Triticeae tribe of grasses confers pathogen resistance [J]. Genome Biology, 2018, 19: 1-18.

[169]Ramaroson M-L, Koutouan C, Helesbeux J-J, et al. Role of phenylpropanoids and flavonoids in plant resistance to pests and diseases [J]. Molecules, 2022, 27(23): 8371.

[170]Rauf A, Imran M, Abu-Izneid T, et al. Proanthocyanidins: A comprehensive review [J]. Biomedicine Pharmacotherapy, 2019, 116: 108999.

[171]Reyes-Turcu F E, Wilkinson K. Polyubiquitin binding and disassembly by deubiquitinating enzymes [J]. Chemical Reviews, 2009, 109(4): 1495-508.

[172]Rice-Evans C. Flavonoid antioxidants [J]. Current Medicinal Chemistry, 2001, 8(7): 797-807.

[173]Rice-Evans C A, Packer L. Flavonoids in health and disease [M]. CRC Press, 2003.

[174]Riley B, Lougheed J, Callaway K, et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases [J]. Nature Communications, 2013, 4(1): 1982.

[175]Roy S. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome [J]. Plant Signaling Behavior, 2016, 11(1): e1117723.

[176]Saini R, Nandi A K. TOPLESS in the regulation of plant immunity [J]. Plant Molecular Biology, 2022, 109(1): 1-12.

[177]Samanta A, Das G, Das S K. Roles of flavonoids in plants [J]. Carbon, 2011, 100(6): 12-35.

[178]Schaart J G, Dubos C, Romero De La Fuente I, et al. Identification and characterization of MYB‐bHLH‐WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria× ananassa) fruits [J]. New Phytologist, 2013, 197(2): 454-67.

[179]Schluttenhofer C, Yuan L. Regulation of specialized metabolism by WRKY transcription factors [J]. Plant Physiology, 2015, 167(2): 295-306.

[180]Schwinn K E, Markham K R, Giveno N K. Floral flavonoids and the potential for pelargonidin biosynthesis in commercial chrysanthemum cultivars [J]. Phytochemistry, 1993, 35(1): 145-50.

[181]Shan X, Li Y, Yang S, et al. The spatio‐temporal biosynthesis of floral flavonols is controlled by differential phylogenetic MYB regulators in Freesia hybrida [J]. New Phytologist, 2020, 228(6): 1864-79.

[182]Shi M-Z, Xie D-Y. Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana [J]. Recent Patents on Biotechnology, 2014, 8(1): 47-60.

[183]Smith T F, Gaitatzes C, Saxena K, et al. The WD repeat: a common architecture for diverse functions [J]. Trends in Biochemical Sciences, 1999, 24(5): 181-5.

[184]Song T, Li K, Wu T, et al. Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures [J]. Plos One, 2019, 14(1): e0210672.

[185]Stogios P J, Downs G S, Jauhal J J, et al. Sequence and structural analysis of BTB domain proteins [J]. Genome Biology, 2005, 6: 1-18.

[186]Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana [J]. Current Opinion in Plant Biology, 2001, 4(5): 447-56.

[187]Su M, Zuo W, Wang Y, et al. The WKRY transcription factor MdWRKY75 regulates anthocyanins accumulation in apples (Malus domestica) [J]. Functional Plant Biology, 2022, 49(9): 799-809.

[188]Tanaka Y, Brugliera F, Chandler S. Recent progress of flower colour modification by biotechnology [J]. International Journal of Molecular Sciences, 2009, 10(12): 5350-69.

[189]Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids [J]. The Plant Journal, 2008, 54(4): 733-49.

[190]Tang M, Xue W, Li X, et al. Mitotically heritable epigenetic modifications of CmMYB6 control anthocyanin biosynthesis in chrysanthemum [J]. New Phytologist, 2022, 236(3): 1075-88.

[191]Tian J, Peng Z, Zhang J, et al. Mc MYB 10 regulates coloration via activating McF3′ H and later structural genes in ever‐red leaf crabapple [J]. Plant Biotechnology Journal, 2015, 13(7): 948-61.

[192]Toledo-Ortiz G, Huq E, Quail P H. The Arabidopsis basic/helix-loop-helix transcription factor family [J]. The Plant Cell, 2003, 15(8): 1749-70.

[193]Tong S, Chen N, Wang D, et al. The U‐box E3 ubiquitin ligase PalPUB79 positively regulates ABA‐dependent drought tolerance via ubiquitination of PalWRKY77 in Populus [J]. Plant Biotechnology Journal, 2021, 19(12): 2561-75.

[194]Trenner J, Monaghan J, Saeed B, et al. Evolution and functions of plant U-box proteins: from protein quality control to signaling [J]. Annual Review of Plant Biology, 2022, 73(1): 93-121.

[195]Treutter D. Significance of flavonoids in plant resistance: a review [J]. Environmental Chemistry Letters, 2006, 4(3): 147-57.

[196]Veitch N C, Grayer R. Flavonoids and their glycosides, including anthocyanins [J]. Natural Product Reports, 2011, 28(10): 1626-95.

[197]Verma A K, Pratap R. The biological potential of flavones [J]. Natural Product Reports, 2010, 27(11): 1571-93.

[198]Vimolmangkang S, Han Y, Wei G, et al. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development [J]. BMC Plant Biology, 2013, 13: 1-13.

[199]Wang J, Qu B, Dou S, et al. The E3 ligase OsPUB15 interacts with the receptor-like kinase PID2 and regulates plant cell death and innate immunity [J]. BMC Plant Biology, 2015, 15: 1-15.

[200]Wang S, Chen J-G . Regulation of cell fate determination by single-repeat R3 MYB transcription factors in Arabidopsis [J]. Trends in Plant Science, 2014, 5: 87297.

[201]Wang W-L, Cui X, Wang Y-X, et al. Members of R2R3-type MYB transcription factors from subgroups 20 and 22 are involved in abiotic stress response in tea plants [J]. Biotechnology & Biotechnological Equipment, 2018, 32(5): 1141-53.

[202]Wang X, Ding Y, Li Z, et al. PUB25 and PUB26 promote plant freezing tolerance by degrading the cold signaling negative regulator MYB15 [J]. Developmental Cell, 2019, 51(2): 222-35. e5.

[203]Wang X, Zhang X, Song C-P, et al. PUB25 and PUB26 dynamically modulate ICE1 stability via differential ubiquitination during cold stress in Arabidopsis [J]. The Plant Cell, 2023a, 35(9): 3585-603.

[204]Wang Y, Zhou L-J, Wang Y, et al. An R2R3-MYB transcription factor CmMYB21 represses anthocyanin biosynthesis in color fading petals of chrysanthemum [J]. Science Horticulturae, 2022a, 293: 110674.

[205]Wang Y, Zhou L-J, Wang Y, et al. CmMYB9a activates floral coloration by positively regulating anthocyanin biosynthesis in chrysanthemum [J]. Plant Molecular Biology, 2022b: 1-13.

[206]Wang Y, Wang Y, Zhou L-J, et al. CmNAC25 targets CmMYB6 to positively regulate anthocyanin biosynthesis during the post-flowering stage in chrysanthemum [J]. BMC Biology, 2023b, 21(1): 211.

[207]Wang Y, Zhou L-J, Song A, et al. Comparative transcriptome analysis and flavonoid profiling of floral mutants reveals CmMYB11 regulating flavonoid biosynthesis in chrysanthemum [J]. Plant Science, 2023c, 336: 111837.

[208]Wang Y, Li S, Shi Y, et al. The R2R3 MYB Ruby1 is activated by two cold responsive ethylene response factors, via the retrotransposon in its promoter, to positively regulate anthocyanin biosynthesis in citrus [J]. The Plant Journal, 2024a, 119(3): 1433-48.

[209]Wang Z, Li X, Gao X-r, et al. IbMYB73 targets abscisic acid-responsive IbGER5 to regulate root growth and stress tolerance in sweet potato [J]. Plant Physiology, 2024b, 194(2): 787-804.

[210]Watson E R, Brown N G, Peters J-M, et al. Posing the APC/C E3 ubiquitin ligase to orchestrate cell division [J]. Trends in Cell Biology, 2019, 29(2): 117-34.

[211]Wei Z-Z, Hu K-D, Zhao D-L, et al. MYB44 competitively inhibits the formation of the MYB340-bHLH2-NAC56 complex to regulate anthocyanin biosynthesis in purple-fleshed sweet potato [J]. BMC Plant Biology, 2020, 20: 1-15.

[212]Weng J K, Chapple C. The origin and evolution of lignin biosynthesis [J]. New Phytologist, 2010, 187(2): 273-85.

[213]Winkel-Shirley B. It takes a garden. How work on diverse plant species has contributed to an understanding of flavonoid metabolism [J]. Plant Physiology, 2001, 127(4): 1399-404.

[214]Xiang L, Liu X, Li H, et al. CmMYB# 7, an R3 MYB transcription factor, acts as a negative regulator of anthocyanin biosynthesis in chrysanthemum [J]. Journal of Experimental Botany, 2019, 70(12): 3111-23.

[215]XIE X B, Li S, ZHANG R F, et al. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples [J]. Plant, Cell & Environment, 2012a, 35(11): 1884-97

[216] Xu H, Wang N, Liu J, et al. The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes [J]. Plant Molecular Biology, 2017, 94: 149-65.

[217]Xu W, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes [J]. Trends in Plant Science, 2015, 20(3): 176-85.

[218]Yan H, Pei X, Zhang H, et al. MYB-mediated regulation of anthocyanin biosynthesis [J]. International Journal of Molecular Sciences, 2021, 22(6): 3103.

[219]Yan S, Chen N, Huang Z, et al. Anthocyanin Fruit encodes an R2R3‐MYB transcription factor, SlAN2‐like, activating the transcription of SlMYBATV to fine‐tune anthocyanin content in tomato fruit [J]. New Phytologist, 2020, 225(5): 2048-63.

[220]Yang Q, Zhao J, Chen D, et al. E3 ubiquitin ligases: styles, structures and functions [J]. Molecular Biomedicine, 2021a, 2: 1-17.

[221]Yang X, Wang J, Xia X, et al. OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice [J]. The Plant Journal, 2021b, 107(1): 198-214.

[222]Yang Y, Karthikeyan A, Yin J, et al. The E3 ligase GmPUB21 negatively regulates drought and salinity stress response in soybean [J]. International Journal of Molecular Sciences, 2022a, 23(13): 6893.

[223]Yang Y, Yuan Z, Ning C, et al. The pea R2R3-MYB gene family and its role in anthocyanin biosynthesis in flowers [J]. Frontiers in Genetics, 2022b, 13: 936051.

[224]Yang Y, Zhang L, Chen P, et al. UV‐B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development [J]. The EMBO Journal, 2020, 39(2): e101928.

[225]Yao L, Jiang Z, Wang Y, et al. High air humidity dampens salicylic acid pathway and NPR1 function to promote plant disease [J]. The EMBO Journal, 2023, 42(21): e113499.

[226]Yee D, Goring D R. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates [J]. Journal of Experimental Botany, 2009, 60(4): 1109-21.

[227]Yu M, Man Y, Wang Y. Light-and temperature-induced expression of an R2R3-MYB gene regulates anthocyanin biosynthesis in red-fleshed kiwifruit [J]. International Journal of Molecular Sciences, 2019, 20(20): 5228.

[228]Yuan Y W, Sagawa J M, Frost L, et al. Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus) [J]. New Phytologist, 2014, 204(4): 1013-27.

[229]Zhang B, Hu Z, Zhang Y, et al. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor) [J]. Plant Cell Reports, 2012, 31: 281-9.

[230]Zhang D, Zhu Z, Gao J, et al. The NPR1‐WRKY46‐WRKY6 signaling cascade mediates probenazole/salicylic acid‐elicited leaf senescence in Arabidopsis thaliana [J]. Journal of Integrative Plant Biology, 2021, 63(5): 924-36.

[231]Zhang F, Gonzalez A, Zhao M, et al. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis [J]. Development, 2003.

[232]Zhang M. MYB73 Negatively Regulates Both Peel Color Development and Flesh Browning in Apple [D]. Cornell University, 2021.

[233]Zhang Q-Y, Gu K-D, Wang J-H, et al. BTB-BACK-TAZ domain protein MdBT2-mediated MdMYB73 ubiquitination negatively regulates malate accumulation and vacuolar acidification in apple [J]. Horticulture Research, 2020, 7:151.

[234]Zhang Q-Y, Yu J-Q, Wang J-H, et al. Functional characterization of MdMYB73 reveals its involvement in cold stress response in apple calli and Arabidopsis [J]. Journal of Integrative Agriculture, 2017, 16(10): 2215-21.

[235]Zhang Q, Zhai J, Shao L, et al. Accumulation of anthocyanins: an adaptation strategy of Mikania micrantha to low temperature in winter [J]. Trends in Plant Science, 2019, 10: 1049.

[236]Zhang Y, Butelli E, Martin C. Engineering anthocyanin biosynthesis in plants [J]. Current Opinion in Plant Biology, 2014, 19: 81-90.

[237]Zhao J, Dixon R A. The ‘ins’ and ‘outs’ of flavonoid transport [J]. Trends in Plant Science, 2010, 15(2): 72-80.

[238]Zhao J. Flavonoid transport mechanisms: how to go, and with whom [J]. Trends in Plant Science, 2015, 20(9): 576-85.

[239]Zhao L, Gao L, Wang H, et al. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis [J]. Functional Integrative Genomics, 2013, 13: 75-98.

[240]Zhao T, Huang C, Li N, et al. Ubiquitin ligase VvPUB26 in grapevine promotes proanthocyanidin synthesis and resistance to powdery mildew [J]. Plant Physiology, 2024,195(4): 2891-2910.

[241]Zhou H, Lin‐Wang K, Wang F, et al. Activator‐type R2R3‐MYB genes induce a repressor‐type R2R3‐MYB gene to balance anthocyanin and proanthocyanidin accumulation [J]. New Phytologist, 2019, 221(4): 1919-34.

[242]Zhou L-J, Wang Y, Wang Y, et al. Transcription factor CmbHLH16 regulates petal anthocyanin homeostasis under different lights in Chrysanthemum [J]. Plant Physiology, 2022, 190(2): 1134-52.

[243]Zhou L-J, Geng Z, Wang Y, et al. A novel transcription factor CmMYB012 inhibits flavone and anthocyanin biosynthesis in response to high temperatures in chrysanthemum [J]. Horticulture Research, 2021, 8: 248.

[244]Zhou L, Liu S, Wang Y, et al. CmMYB3-like negatively regulates anthocyanin biosynthesis and flower color formation during the post-flowering stage in Chrysanthemum morifolium [J]. Horticultural Plant Journal, 2024, 10(1): 194-204.

[245]Zhou L J, Li Y Y, Zhang R F, et al. The small ubiquitin‐like modifier E3 ligase MdSIZ1 promotes anthocyanin accumulation by sumoylating MdMYB1 under low‐temperature conditions in apple [J]. Plant, cell & environment, 2017, 40(10): 2068-80.

[246]Zhu H-F, Fitzsimmons K, Khandelwal A, et al. CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis [J]. Molecular Plant, 2009, 2(4): 790-802.

[247]Zou S-C, Zhuo M-G, Abbas F, et al. Transcription factor LcNAC002 coregulates chlorophyll degradation and anthocyanin biosynthesis in litchi [J]. Plant Physiology, 2023, 192(3): 1913-27.

中图分类号:

 S68    

开放日期:

 2024-12-30    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式